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Lecture 5: Random walk and sampling errors

Recap
Lecture 4 examined correlation, regression, and variance ellipses. We finished up by consid-

ering the statistics of a random walk in one dimension so that position at time step N is:

xN = x0 + ∆t
N∑

n=1

vn, (1)

where x0 is the initial position, where the velocities vn are taken to be random numbers. We noted
that over time, the variance of the position is:

〈x2N〉 = (∆t)2〈v2〉
N∑

n=1

N∑
m=1

δnm = (∆t)2〈v2N = (∆t)〈v2tN . (2)

Moreover, since xN is a sum, the central limit theorem applies, and its distribution will be
Gaussian:

FxN
(r) =

1√
2π〈x2N〉

exp

(
−r2

2〈x2N〉

)
. (3)

Using the definition for 〈x2N〉, we can define diffusivity k as:

k =
1

2

d〈x2〉
dt

=
1

2
〈v2〉∆t, (4)

which has units of diffusivity (although the factor of one half might seem a little unintuitive. As a
result of this definition of diffusivity:

〈x2〉 = 2kt (5)

We can test this out with numerical simulations, and the randwalk.m code posted in Canvas
gives you a way to experiment. Numerical tests show that the random walk produces a dramatic
spread. In a second numerical case let’s ask how the variance of position would change if we
normalized it by the number of time steps—that is if we asked about the average displacement per
time step. In that case, randwalk.m shows that everything converges to zero—this is what we’d
expect, and we’ll explore this point a little further.

Spread of a tracer concentration
Now that we’ve defined diffusivity, we can ask how a patch of tracer might spread out. The

diffusivity k, plugged into our equation linking 〈x2〉 and 〈v2〉 tells us that

〈x2〉 = 2kt. (6)

Let’s consider a tracer of mass M released from the origin. Over time, it is pushed around
by multiple random velocity impulses. Since the sum of many random events has a Gaussian
distribution that depends on its variance 〈x2〉. Thus the tracer concentration Γ:

Γ(r, t) =
M√
2πkt

exp

(
−r2

4kt

)
. (7)
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If this works, then the tracer distribution should be consistent with the diffusion equation:

∂Γ

∂t
= k

∂2Γ

∂x2
. (8)

Does this work? Plug (7) into (8) to check.
Of course, in real world examples, tracer is also advected by a mean flow, so we should

augment our diffusion equation with an advection term.

∂Γ

∂t
+ ~v · ∇Γ = k

∂2Γ

∂x2
. (9)

Sampling errors
We started out this class by defining the true mean of our data:

〈x〉 = lim
N→∞

1

N

∞∑
n=1

xn (10)

This definition makes sense, but it defies the reality of our world: we never have infinite data, and
the systems we sample are not necessarily stationary (with consistent, invariant statistics) over all
time. This means that we need to compute not true statistics, but sample statistics. We now wish
to determine the accuracy of our sample statistics to aid in interpretation. The difference between
the true and sampling statistics is called the sampling error.

The sampling mean is defined as

{x} =
1

N

N∑
n=1

xn. (11)

Note the use of curly braces as a notation for the sample mean. The distinguishing factor between
(10) and (11) is that the sample mean is computed over a finite number of realizations.

Consider the problem of estimating the true mean with the sample mean. Suppose the sample
mean were calculated an infinite number of times, then we could consider the mean of the sample
mean, and compare it to the true mean. The bias is defined to be the mean difference between the
sample mean and the true mean:

E1 = 〈{x} − 〈x〉〉 =

〈
1

N

N∑
n=1

xn

〉
− 〈x〉 =

1

N

N∑
n=1

〈xn〉 − 〈x〉 =
1

N
(N〈x〉)− 〈x〉 = 0. (12)

This tells us that the sample mean is unbiased relative to the true mean: in the limit of many
samples, the sample mean converges to the true mean.

Now think about the variance of the the sample mean:

E2 = 〈[{x} − 〈x〉]2〉 =

〈(
1

N

N∑
n=1

xn − 〈x〉

)2〉
. (13)
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Moving the true mean inside the sum results in

E2 =

〈(
1

N

N∑
n=1

[xn − 〈x〉]

)2〉
. (14)

The quantity in square brackets in (??) is the fluctuation, so

E2 =
1

N2

〈(
N∑

n=1

[x′n]

)2〉
. (15)

The average squared sum of fluctuations is the sum over all elements of the covariance matrix of
the fluctuations

E2 =
1

N2

N∑
n=1

N∑
m=1

〈x′nx′m〉. (16)

Assuming the fluctuations are independent with equal variance then

E2 =
1

N2

N∑
n=1

N∑
m=1

δnmσ
2 =

σ2

N
. (17)

So the variance decreases as the inverse of N. The square root ofE2 is called the root-mean-square
error or the standard error, and decreases as the inverse of the square root of N :√

E2 =
σ√
N
. (18)

Recognizing this improvement of error by N−1/2 is key to understanding many measures of sta-
tistical uncertainty. This result also illustrates a parallel between sampling error and the random
walk (which showed that variance of position expanded like N rather than N2).

The rms error defined by E2 depends on the true variance. Now let’s consider the thornier
situation when we are constrained by limited sampling. Our estimate of the variance of anomalies
x′ is:

σ̂2 =
{
x′2
}
. (19)

The mean of this estimate is:

〈σ̂2〉 =
1

N

N∑
n=1

〈x′2〉 = σ2, (20)

so this estimate of variance is unbiased. The variance of the estimate of variance is:

F2 ≡
〈({

x′2
}
− σ2

)2〉
=

1

N2

N∑
n=1

N∑
m=1

〈x′2nx′2m〉 − σ4. (21)

In estmating F2, we’ve used (20) which means that the cross terms (〈{x′2}σ2〉) produce 2σ4. Now
assuming that the fluctuations x′n and x′m are independent,

F2 =
1

N2

[
N(N − 1)σ4 +N〈x′4〉

]
− σ4 =

1

N

(
〈x′4〉 − σ4

)
. (22)
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Thus the error in the variance depends on the fourth moment. This is a problem of closure. To
determine the error of any statistic we need to know a higher order statistic.

Now, let’s come back to the potential bias in our estimate σ̂2 in the real-world scenario when
the true mean 〈x〉 is unknown, and we’re stuck working with {x}. In this case, we know that we
want σ̂2 to be unbiased relative to the true σ2, but we might need to do a little adjustment. We’ll
define:

σ̂2 = A
{

(x− {x})2
}
, (23)

where A is an unknown adjustment parameter that we want to find. Then

F1 = 〈σ̂2 − σ2〉 (24)
= A

〈{
(x− {x})2

}〉
− σ2 (25)

= A
〈{

[(x− 〈x〉)− ({x} − 〈x〉)]2
}〉
− σ2 (26)

= A
〈{
x′2
}
− ({x} − 〈x〉)2

〉
− σ2, (27)

where we have assumed no correlation between errors in the mean ({x} − 〈x〉) and the individual
anomalies (x− 〈x〉). This leads to

F1 = A〈σ2 − σ2

N
〉 − σ2 (28)

= Aσ2

(
1− 1

N

)
− σ2 (29)

= 0, (30)

implying that in order to obtain zero bias,

A =
N

N − 1
. (31)

In essence, when we compute the mean from the original data, we lose a degree of freedom, so we
need to compute the standard deviation by assuming N − 1 degrees of freedom as a normaliza-
tion, rather than N degrees of freedom. Software packages that compute standard deviation (e.g.
Matlab’s “std” function) take this into account.

We can test out the success of these calculations using a large number of random data, with
N large enough to begin to converge toward a true value. Here’s the case that I showed in class:

% first create 100,000 ensembles, each with 100 random data points
x=randn(100000,100);

% now we can compare the mean of the ensemble with the sample mean
% E1 above
true_mean=mean(x(:))

plt(mean(x,2))
title(’sample means’)

% now consider the variance of the mean (E2)
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xbar=mean(x,2); % computes the mean of each sample
% here we print the variance of the full data set ("true" variance)
% and the variance of the means
[var(x(:)) var(xbar(:))]
% you’ll see that the variance of the sample means is the true variance/N

% finally consider F1: variance from real-world data vs true variance
variance_estimated = mean((x-mean(x,2)).ˆ2,2);
variance_true = mean(x(:).ˆ2);

N=100;
[mean(variance_estimated) variance_true N/(N-1) variance_true/mean(variance_estimated)]

or in python

import numpy as np
import numpy.matlib

# First create 100,000 ensembles, each with 100 random data points
N=100000
M=100
x=np.random.normal(size=[N,M])

# now we can compare the mean of the ensemble with the sample mean
true_mean=np.mean(x.flatten())
true_mean
# vs the sample means
plt.plot(np.mean(x,axis=1))
plt.title(’sample means’)

# now consider the variance of the mean (E2)
xbar=np.mean(x,axis=1) # computes the mean of each sample
# display the variance of the full data set ("true" variance) and the variance of the means

# this shows that the variance of the sample means is the true variance/N
np.var(x.flatten()), np.var(xbar)

# finally consider F1: variance from real-world data vs true variance
xbar_matrix=np.matlib.repmat(xbar,M,1).T
variance_estimated = np.mean((x-xbar_matrix)**2,axis=1)
variance_true = np.mean(x.flatten()**2)
variance_formal = np.var(x.flatten())

print(np.mean(variance_estimated), variance_true,
variance_formal, M/(M-1),
variance_true/np.mean(variance_estimated))


