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FIG. 8. Snapshots of the buoyancy field above well-separated bumps for g 5 10 and a 5 1/5: (a)
e
*

5 0.4 and (b) e
*

5 0.8.

between adjacent Gaussian bumps. At e* 5 1, we es-
timated the limit g ® ` using extrapolation and found
that Y(1, `) ø 1.136. In other words, at critical slope,
the conversion of an isolated Gaussian bump is only
14% greater than the weak-topography estimate.

We also computed the second-order terms in the ex-
pansion of the enhancement factor, Y(e*, g) in (59),
using the method of appendix B. We find that

2 4Y(e , g) 5 1 1 Y (g)e 1 O(e ),2* * * (60)

where Y2(g) is evaluated by summing a Bessel series
(see Fig. 7). In agreement with the sinusoidal limit in
(44) we recover Y2(0) 5 1/4. As an indication of the
asymptotic value for an isolated Gaussian we find
Y2(100) 5 0.0515.

The results of Baines (1972) are the only previous
calculations for ridgelike topography that are in the
same e* 5 O(1) parameter range as those in Fig. 9. It
is difficult to make a useful comparison because Baines
does not factor out the dependence of the conversion
on the factor contained in Cweak—see (56) and (59).2h0

Thus Fig. 6 of Baines shows mainly C } ; without2h0

normalization by Cweak it is impossible to detect the small
corrections to Cweak contained in Y.

5. Fourier superposition and random topography

The main result of the previous sections is that the
enhancement factor, Y, increases monotonically and
modestly with e. Moreover, for the sinusoid, the first
effect of e ± 0 is the quadratic term, e2/4, on the right-
hand side of (44). The corresponding result for the
Gaussian ridge is the term Y2(`) ø 0.0515 in (60).
These simple results seem to depend crucially on the
form of the topography. In the remainder of this paper
we assess tidal conversion by topographic profiles that
more closely represent the rough ocean floor.

a. Random topography

We consider an ensemble of topographies, h 5
h0Hx(X), where Hx(X) denotes a realization (labeled by
x) of the profile constructed by randomly selecting the
complex coefficients, 5 1 i , of the Fourierx (xr) (xi)H H Hn n n

representation,

nc

x x inXH (X ) 5 H e ; (61)O n
2nc

nc is a spectral cutoff. We take and to be(xr) (xi)H Hn n

independent and normally distributed random variables
with a Gaussian probability density function. In other
words, if n . 0, we pick and from the density(xr) (xi)H Hn n

2(xr)1 2H n(xr)P [H ] 5 exp . (62)n 22 [ ]2sÏ2ps nn

We obtain the n , 0 coefficients from the reality con-
dition, 5 . With this recipe, the rms topographicx (x )H H *n 2n

height is given by

nc

2h 5 S (n), (63)Orms
n51

where S (n) [ 4 is a discrete form of the power2 2h s0 n

spectral density.
In the weak-topography limit, one takes 5 andx xf Hn n

calculates the conversion using (19)–(20). This allows
a certain degree of headway in analyzing the effect of
different choices for the sn’s and nc. But once e is non-
zero, this analytic avenue is no longer open. Instead,
we rely on a combination of numerical computation and
a small-e expansion analogous to (44).

For illustration, we use a model topographic spectrum
suggested by Bell (1975b) and Goff and Jordan (1988):
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FIG. 9. (a) Y(e
*

, g) in (59) with g 5 1, 2, . . ., 10, and 0 , e
*

, 1. At fixed e
*

the conversion rate decreases as
we approach the isolated-bump limit by increasing g. (b) Y(1, g); if g is greater than about 10, Y(1, g) is independent
of g.

2 2S (n) [ 4h s0 n

2 2 2q /2(n* 1 n ) , if n # nc25 4h (64)050, if n . n .c

The model spectrum (64) has four parameters: nc, h0,
n*, and the exponent q. According to Bell (1975b) and
Goff and Jordan (1988), submarine topography is char-
acterized by a spectral exponent in the range 2 , q ,
3. We use the specific parameter settings,

n* 5 4, n 5 32, q 5 5/2. (65)c

We continue to use the definition e [ h0k0m. But,
again, the critical value of e is no longer unity. Instead,
each realization of the topography has a different max-
imum slope, say . Thus we introduce a rescaled pa-xsmax

rameter, defined as
x xe [ es .max* (66)

With this definition, a particular realization of the to-
pography has a critical slope when 5 1.xe*

b. A few realizations

We solve (14) for fn using the method outlined in
appendix A. Typical results are shown in Figs. 10–12.
With nc 5 32, the topography is a random superposition
of 32 sinusoids. But in order to reliably represent the
wavefield over the range 0 , e* # 0.95, we retained
256 sinusoids in (13). The upper panel of Fig. 10 shows
a sample topographic profile. The lower panel of Fig.
10 displays the corresponding periodogram of the to-
pography (nonzero only if 1 , n , 32), together with
the computed coefficients, fn, of the wavefield at e 5
0.03 (nonzero if 1 , n , 256). Figure 11 shows the
wavy buoyancy field above random topography of Fig.
10 with a particular choice for the tidal amplitude [a
5 0.01 in (48)].

According to (19) and (20), the conversion is pro-
portional to the sum,

`

x 2G(e, x) [ |n| |f (e)| . (67)O n
n52`

Figure 12 summarizes the conversion generated over 14
different realizations. The dashed curves in the left-hand
panel show the functions G(e, x) with x 5 1, · · ·, 14.
It is striking that the variations in conversion between
different realizations are much greater than the slight
enhancements that result from increasing from 0 toxe*
0.95. In the right-hand panel of Fig. 12 we show the
enhancement factor,

Y(e, x) [ G(e, x)/G(0, x), (68)

plotted against the rescaled parameter defined in (66).xe*
At 5 0.95—the largest value we could reliably com-xe*
pute with 256 sinusoids in the wavefield—the enhance-
ment is only about 4%–8% greater than the weak-to-
pography result, obtained by putting ø in (67).x xf Hn n

c. The ensemble-averaged conversion rate to second
order in e

With the spectral formulation, we can compute en-
semble averages of the conversion rate by Monte Carlo
simulation. The average conversion rate, estimated for
104 realizations over the range 0 , e , 0.01, is well
fit by the relation

2r U0 0 2 2 2 2^C & 5 Ï(N 2 v )(v 2 f ) k0 0 0 02v0

2 43 ^G(0)&[1 1 e Y 1 O(e )], (69)2

with ^G(0)& ø 2.5912 and Y2 ø 12.316. These numbers
can be predicted analytically (and more usefully) using
perturbation theory for small e.

The perturbation expansion is described in detail in
appendix B; briefly, we expand (14) and compute the
solution for fn by iteration to order e2. We then insert
the result into the formula for the conversion rate, en-
semble average using the probability density functions
in (62), and find
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FIG. 10. An example of a topographic profile constructed according to (61)–(65): (top) H(X) (the
solid curve) and HX /10 (the dotted curve), and (bottom) the spectral coefficients of the topography
and of the solution of (14). The topographic periodiogram is limited to 1 , n # nc 5 32. In this
illustration e 5 0.03, e

*
5 0.44.

2r U0 0 2 2 2 2^C & 5 Ï(N 2 v )(v 2 f ) k0 0 0 02v0

`

3 nS (n)O[n51

` `2 2m k0 4 31 A(m, n)S (m)S (n) 1 O(m S ) ,O O ]4 m51 n51

(70)

where A(m, n) [ (m 1 n)(m2 1 n2 2 | m2 2 n2 | ). Bell’s
(1975b) result is the first term in the square bracket on
the right-hand side of (70), and expresses the conversion
rate, averaged over the topographic ensemble, in terms
of the topographic power spectral density. Our second-
order correction is the final double sum. For the param-
eter values in (65), one finds the result in (69) with the
same value for ^G(0)&, and Y2 ø 12.3152.

The prediction 2.5912(1 1 12.3152e2) from (70) is
shown as the solid curve in the left-hand panel of Fig.
12. In order to display this same prediction in the right-
hand panel, we must convert e to an ‘‘average e*.’’ To
do this, we computed the average of the maximum
slopes using our ensemble of 10 000 topographic pro-
files; we found that ^smax& ø 14.7. Thus we define

^e & 5 14.7e* (71)

so that the prediction in (69) is

2Y(^e &) 5 1 1 0.057^e & .* * (72)

The parabola in (72) is the solid curve in the right-hand
panel of Fig. 12.

6. Conclusions and discussion

Our focus in this work has been the conversion rate
of energy from the barotropic tide into internal gravity
waves at topography with finite slope. The results in-
dicate that Bell’s weak-topography approximation pro-
vides reliable estimates of this conversion. For example,
we have shown that for an isolated Gaussian ridge the
conversion rate at critical slope is only 14% greater than
the weak-slope result obtained by Llewellyn Smith and
Young (2002) using Bell’s approach. In the case of ran-
dom topographies, having a power spectral density with
a slope of 22.5, there are factor-of-2 fluctuations in
conversion rate between different topographic realiza-
tions. These sample fluctuations are much greater than
the 4%–8% enhancement above the weak-topography
estimate occurring as the amplitude of a single reali-
zation is increased (see Fig. 12). This result suggests
that the major uncertainty in estimating ocean conver-
sion rates is adequate knowledge of ocean topography.

St. Laurent and Garrett (2002) have argued that, be-
cause the Richardson number of the internal tide is large,
vigorous shear instability will not typically occur. Thus,
even given significant energy conversion, there are still
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FIG. 11. An example of the wave field above a realization of the random topography. In this
illustration e 5 0.03, e

*
5 0.60, and the amplitude in (48) is a 5 0.01. The most striking features

in the wave field are the beams emanating from the steepest slopes of the topography.

FIG. 12. (left) The 14 dashed curves show the sum G(e) in (67) calculated using 14 realizations
of the topography. The maximum slope, , was typically of order 15 and so e

*
5 0.95 cor-xSmax

responds to maximum values of e of about 0.06. (right) The enhancement factor for the 14
topographies, Y(x, ) [ G(e, x)/G(0, x). In the right panel, the rescaled parameter defined inx xe e

* *

(66) is used as the abscissa. In both panels, the solid curve shows the results expected from the
small-e perturbation theory.

important questions surrounding the degradation of the
internal tide into small-scale mixing (see also Polzin
2002, mansucript submitted to J. Phys. Oceanogr.). Our
visualizations of the radiated wave field show sharply
collimated beams leaving the point of maximum topo-
graphic slope; density overturns and mixing might occur
in these beams. Indeed, as the critical slope is ap-
proached, even a very weak barotropic tide is sufficient
to produce overturns at some phase of the tidal cycle
(see Fig. 6). In other words, while increasing e* does

not greatly enhance the conversion rate, steeper topo-
graphic slopes do produce smaller spatial scales in the
radiated waves. Thus, a key effect of large topography
may be to destabilize the internal tide through the for-
mation of the small-scale features evident in our visu-
alizations of the wave field.

At e* 5 1, our solutions become singular via the
appearance of diverging buoyancy gradients. This sig-
nifies a breakdown of inviscid, linear theory. It seems
that useful results for the supercritical case must con-
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sider the physical processes (nonlinearity and viscosity)
that heal the singularity that attends the transition at e*
5 1. Nevertheless, in all the cases we studied, there is
no indication of dramatic changes in the conversion rate
at the critical point e* 5 1. Moreover, the numerical
results of Li (2002, mansucript submitted to J. Mar.
Res.) and Khatiwala (2002, mansucript submitted to
Deep-Sea Res.) suggest that conversion above super-
critical topography either saturates or begins to decline
with increasing e*. If these results are reliable indica-
tions of what happens in the supercritical regime, then
the weak-topography approximation is very useful tool
over the entire range of e*.
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APPENDIX A

Reduction of Eq. (14) to a Linear System

We rewrite (14) in the form
`

H(X ) 5 f 1 f exp(imj)O0 m
m51

`

1 f̂ exp(2imh), (A1)O m
m51

where m [ f2m andf̂

j [ X 2 eH(X ), h [ X 1 eH(X ). (A2)

Guided by the experience gained from studying sinu-
soidal topography, we project (A1) on exp(2inj ) and
exp(inh) to obtain the linear system,

`

A f̂ 1 f 5 Ã ,O nm m n n
m51

`

Â f 1 f̂ 5 Ã̂ . (A3)O nm m n n
m51

In (A3)

dj 2 dX
2inj 2injÃ (e) [ e H(X ) 5 e , (A4)n R R2p ine 2p

and n(e) 5 (2e). In (A4), 6 indicates an integralÃ Ã̂*n
over a period, say from X 5 2p to p.

The matrices in (A3) are

dj
2inj2imhA (e) 5 e ,nm R 2p

dh
2inh1imjÂ (e) 5 e . (A5)nm R 2p

The diagonal elements of these matrices can be further
simplified to

ˆ[A , A ] 5 22ime[H , H* ],mm mm 2m 2m (A6)

where Hp is the coefficient of exp (ipX) in the Fourier
series representation of H(X) [e.g., as in (61)]. The off-
diagonal terms of Anm and Ânm can be expressed con-
cisely in terms of the matrix,

dX
2i(m1n)X1i(n2m)eH(X )K (e) 5 e . (A7)nm R 2p

We find that

2m
A (e) 5 K (e), (m ± n), (A8)nm nmm 2 n

and

2m 2m
Â (e) 5 K * (2e) 5 K * (e)nm nm mnm 2 n m 2 n

m
5 2 A* (e). (A9)mnn

For the calculations in section 5 we numerically com-
puted Ãn and Amn from (A4), (A7), and (A8) using X
(rather than j ) as the variable of integration. Equation
(A9) then enables one to efficiently obtain the matrix
Â(e) from the transpose-conjugate of A(e).

The system (A3) can be reduced to
` ` `

ˆf 2 A A f 5 Ã 2 A Ã̂ (A10)O O On nm mp p n nm m
m51 p51 m51

by eliminating the careted variables. After truncating
and solving (A10) for fn one can then directly obtain

n from the second equation in (A3).f̂

APPENDIX B

The Second-Order Correction

This appendix summarizes the calculations leading to
the second-order correction to Bell’s formula in (70).
We begin by expanding (14) in powers of e:

inX 2i |n |eH(X )H(X ) 5 f e eO n
n

1
inX 2 2 25 f e 1 2 i |n|eH 2 n e H 1 · · · . (B1)O n 1 22n

We solve this equation iteratively

f 5 H 1 ie |n 2 p|H HOn n p n2p
p

1
2 21 e [(n 2 p 2 q) 2 2|(n 2 p 2 q)(n 2 q)|]O

2 p,q

3 H H H .p q n2p2q (B2)

Substituting into (20) we find
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2G 5 |n| |H |O n
n

1 ie |n(n 2 p)|(H H H* 2 H*H* H )O p n2p n p n2p n
n,p

21 e |n(n 2 p)(n 2 q)|H H*H H*O p q n2p n2q
n,p,q

2e
21 |n 1 p 1 q|[n 2 2|n(n 1 p)|]O

2 n,p,q

3 (H H H H* 1 H*H*H*H ). (B3)p q n n1p1q p q n n1p1q

We ensemble average

2 2|n| |H | 5 4 ns . (B4)O On n7 8n n.0

The O(e) term in G is uncorrelated and vanishes. The
hard part is the fourth-order correlation: To compute
this, we evaluate two terms separately. First, we have
^Hp Hn2p &. In order for the correlation not to van-H* H*q n2q

ish, the average must break up into either a true fourth-
order correlation (in which all the Hj have the same
index, modulo sign) or two independent pairs (second-
order correlations, with paired indices). The true fourth-
order correlation arises for p 5 6q, p 5 6(n 2 p), and
p 5 6(n 2 q). These conditions are consistent only if
2p 5 2q 5 n, bearing in mind that n 5 0 is not allowed.
The possible paired second-order correlations are

p 5 6q p 5 6(n 2 p)
, , and5 6 5 6n 2 p 5 6(n 2 q) q 5 6(n 2 q)

p 5 6(n 2 q)
. (B5)5 6q 5 6(n 2 p)

Again, we exclude many of these possibilities by de-
manding consistency and by arguing that p, q, and n
cannot vanish. Only p 5 q and n 5 p 1 q give inde-
pendent pairs. Thus,

^H H*H H* &p q n2p n2q

2 2 2 25 ^|H | &^|H | &d 1 ^|H | &^|H | &dp n2p p,q p q n,p1q

4 2 21 ^|H | &d d 2 2^|H | & d d , (B6)p p,q 2p,n p p,q 2p,n

where the final term represents the twice overcounted
fourth-order correlation, which not should not appear as
either of the independent pairings. This contribution to
^G& can then be written in the form,

2 2 22 |p 1 q|(|q| 1 |p|) s s , (B7)O p q
p,q

given that ^ | Hp | 4& 5 8 .4s p

A similar computation provides the other fourth-order
term:

^H H H H* &p q n n1p1q

2 2 2 25 ^|H | &^|H | &d 1 ^|H | &^|H | &dp n p,2q p q p,2n

2 2 4 2 21 ^|H | &^|H | &d 1 (^|H | & 2 2^|H | & )p q q,2n p p

3 (d d 1 d d 1 d d ) (B8)p,2q p,n p,2q p,2n p,2n p,q

(the illegal pairs are for p 5 6n in the first term, p 5
6q in the second, and p 5 6q in the third, which leads
to the subtracted term). The associated contribution to
G is

3 32 [|q| 1 |p| 1 2|pq|(| p| 1 |q|)O
p,q

2 2 22 2|p 1 q|(| p| 1 |q|) ]s s . (B9)p q

The O(e2) term is therefore
2 2 2 2 2 24 (p 1 q)(q 1 p 2 |p 2 q |)s s . (B10)O p q

p,q.0

Hence,
2 2G 5 4ns 1 e 4(p 1 q)O On

n.0 p,q.0

2 2 2 2 2 23 (q 1 p 2 |p 2 q |)s s . (B11)p q

Using S(n) 5 4 to eliminate , and substituting G2 2 2h s s0 n n

into (19), we obtain the expression for the ensemble-
averaged conversion to O(e 2) given in (70).
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