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As a model of the thermohaline circulation of the ocean we study the two-
dimensional Boussinesq equations forced by prescribing the surface temperature and
the surface salinity flux. We simplify the equations of motion using an expansion
pased on the small aspect ratio of the domain. The result is an amplitude equation
governing the evolution of the depth averaged salinity field. This amplitude equation
has multiple, linearly stable equilibria. The simplified dynamics has a Lyapunov
functional and this variational structure permits a simple characterization of the
relative stability of the alternative steady solutions.

Even when the thermal and salinity surface forcing functions are symmetric about
the equator there are asymmetric solutions, representing pole to pole circulations.
These asymmetric solutions are stable to small perturbations and are always found
in conjunction with symmetric solutions, also stable to small perturbations. Recent
numerical solutions of the full two-dimensional equations have shown very similar
flow patterns.

1. Introduction

At present the ocean circulation is thermally direct: cold water sinks at the poles
and rises at the equator. The bottom water is cold and fresh. But palasoceanographic
datasets have suggested that in the past the sense of the circulation has been
reversed, so that warm salty water sank near the equator and cold fresh water
upwelled at the poles. The bottom water was warm and salty. Kennett & Stott_ (1991)
report evidence from sediment records of an abrupt reversal in the oceanic sub-
thermocline meridional cell. In their interpretation of the data, saline warm water
from the midlatitudes and tropics sank to the deep ocean and spread to Antarctica
where bottom water formation was suppressed. Broecker, Peteet & Rind (1985) haye
proposed a similar circulation reversal during glacial times in the North Atlantie,
leading to a suppression of polar deep-water formation. _

The existence of more than one equilibrium circulation is understandable if one
considers that the latitudinal distributions of thermal and saline forcing at the ocean
surface are antagonistic in their effects on the density field. Colder temperatures in
high latitudes favour sinking near the poles, while fresh water fluxes there tend to
prevent it. _

The analysis of simple box models, such as those proposed by Stommel in 19(:.31', has,
shown that the existence of multiple equilibria requires ‘mixed boundary ‘condltlons
for the temperature and salinity. This means that the boundary eondlt}on§ cannot
be translated into a prescription for density alone (Welander 1986). This difference
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arises at the air-sea interface because the thermal flux depends strongly on the ocean
temperature, while the saline flux is essentially independent of the salt concentration.

The meridional thermohaline circulation of a single ocean has several different
stable states:

(i) The circulation is dominated by the thermal surface forcing and has a cell in
each hemisphere with water sinking at the poles and rising at the equator.

(i) The circulation is predominantly driven by surface salinity flux and has a cell
in each hemisphere with water sinking at the equator.

(iii) The flow is driven by a combination of thermal and saline forcing and a single
pole-to-pole cell results. In this case two states are possible: one with sinking at the
north pole and the other with sinking at the south pole.

In his review Welander (1986) illustrates these four equilibria using a three-box
model in which the connection between the reservoirs is by hydraulic pipes. Two
boxes represent the polar and subtropical section of each hemisphere and the third
box is a proxy for the equatorial and subtropical region. In the effort to increase both
the vertical and horizontal resolution, many variations and elaborations of box
models can now be found in the literature. Unfortunately the twin advantages of
conceptual simplicity and analytic tractability arc lost as the plumbing becomes
more intricate. And it is not clear that multiple box models are ‘closer’ to the true
dynamics than the two-box model originally proposed by Stommel (1961).

As an alternative to box models, multiple equilibria are also found in complex
general circulation models (GCMs) of the ocean (Bryan 1986) and of the coupled
ocean-atmosphere system (Manabe & Stouffer 1988). In Bryan (1986) the surface
flux conditions for salt and temperature are specified. On the timescales relevant to
climate change the Rayleigh-type boundary condition for temperature is equivalent
to a fixed-temperature prescription and Bryan demonstrates that the model has
multiple stable equilibria.

A model of intermediate complexity between box-models and GCMs has been
analysed by Thual & McWilliams (1991). They consider the two-dimensional non-
rotating Navier-Stokes equations forced by prescribed surface temperature and
salinity flux. Numerical solutions of the equations exhibit the equilibria listed above
and Thual & McWilliams (1991) determine the range of forcing parameters for which
these multiple equilibria are obtained.

In this article we use the same intermediate model employed by Thual &
MecWilliams, but we analyse it in a particularly tractable limit in which it is possible
to take advantage of the extremely small aspect ratio of the domain. We expand in
& small parameter which is the ratio of the vertical to horizontal lengthscales. This
approach to convection with flux boundary conditions has previously been employed
by Chapman & Proctor 1980, Depassier & Spiegel 1982 and Roberts 1985. The
asymptotic development used here is similar in spirit, but the details of the scaling
are different.

‘Spe'ciﬁcally we assume that the surface forcing is of small enough amplitude that
diffusion dominates the lowest-order balance. This restriction permits analytical
progress, but constrains the temperature and salinity fields to be vertically
homog.enous to a first approximation. Of course vertical stratification is an essential
ingredient both in the ocean and in general circulation models. However, the simple

limit analysed here reproduces qualitatively the equilibria listed above and permits
an easy characterization of the solutions,
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2. Equation of motion and non-dimensionalization

We consider the two-dimensional, Boussinesq equations for a fluid whose motion
is driven by temperature and salinity gradients. In standard notation the equations

of motion are:

Qv+vd,v+wd,v=—0,p+vV, 2.1a)
Jwtvd,wtwd,w=—0,p—glagS—a,T)+vVw, (2.15)
8,v+8,w =0, (2.1¢)

8, T+v0, T+wd, T = kg V?T, (2.1d)
3 S+v0,S+wd, 8 = kg V=S, (2.1€)

The motion is in the (y,2)-plane. This simplified model captures certain features of
the zonally averaged meridional circulation driven by thermohaline forcing. It does
not, however, include the effects of rotation and vertical vorticity, which are
paramount in the wind-driven ocean circulation.

The density p is related to the temperature, T, and salinity, S, through the
equation of state, which we take to be linear:

p = po(l+agS—arT). (2.2)
Because the motion is two-dimensional, we introduce a stream function, ¥, so that
v=—0,y, w=203,¥. (2.3)

The pressure ficld can be eliminated by forming the vorticity equation, and the flow
is then governed by:

3, VAU +J (o, V) = glaeg O, T— a8, 8) +9V*,
8, T+J(Wr,T) = kp V?T, (2.4)
8,8+J(¥,8) = ks V8.

We assume that our model ocean is contained in a rectangular box with coordinates
0<z<d, and —I <y <1 The forcing is provided by the top boundary conditions
on temperature and salinity. As discussed by Bryan (1986) the salinity and
temperature fields are forced very differently at the top boundary. Because the heat
flux between the atmosphere and the ocean depends strongly on the sea sprface
temperature, the temperature at the interface tends to adjust to an equilibrium
value. In a simple model, such as ours, where the ocean is decoupled from the
atmosphere, this amounts to specifying the temperature at the ocean top, z = d. On

the other hand, the ocean surface salinity has almost no effect on the rate 'of
precipitation and evaporation, and, in & decoupled model, it is appropljlate to specify
the salinity flux at the ocean surface. We further assume that the solid earth at the
bottom and on the sides of the ocean is a poor conductor so both the temperature .and
salinity fluxes vanish there. In summary we have the fqllowing boundary conditions

for T and S
Ty, d) = ATO(y), ,8(y.d)= ASF(y)/d,

9, T(y,0) =0, 9,8(y,0) =0,
8, T(+l2) =0, 8,8xhL2)=0.

al constants characterizing the magnitude of the

ensional functions whose magnitude is normalized
glect mechanical forcing the

(2.5)

Here AT and AS are dimension

forcing. 6(y) and F(y) are non-dim
to unity by the choice of AT and AS. Because we ne
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boundary conditions for the streamfunction are homogeneous on all boundaries,
Thus i is zero on the boundary and it also satisfies either no-slip or no-stress. In the
discussion to follow it will become clear that the choice of no-slip versus no-stress
makes little difference to the results.

The system (2.4) with boundary conditions (2.5) is best dealt with in non-
dimensional variables (denoted for the moment by ‘). We use the definitions

_— _:I./., 4 —-ﬁ ’ =_K—T ! = I-——-—-—-—VKT S:Sl VKT
(y,z)—-d(e,z), _KTt’ € v T TgaTdseZ’ goug d3e?”
(2.6)
In (2.6) we have introduced the aspect ratio
€= %33 2.7

Dropping all the primes, (2.4) becomes in non-dimensional variables:
| PRRL+T (9, 8] = 8,70, 8+ (0} +6*3}) &,
O,T+J(f, T) = (B +e232) T, (2.8)
L3, 8+ J(1F,8)] = (3E+6202) 8,
where § = (9f+¢*07)y. We have denoted with P = v/k, the Prandtl number and
with L = kg¢/kp the Lewis number. The motion is now contained in the domain

0<z<1 and —n<y<n The inhomogeneous boundary conditions for the
temperature and salinity fields are

T(y,1) = ably), 0,8(y.1)="bF(y). (2.9)
Here a and b are the non-dimensional numbers introduced by Thual & McWilliams

o= 1o ATd3(~:2, b= g ASde? ‘

VK VK (2.10)

These parameters are essentially the thermal and saline Rayleigh numbers.

In summary, there are five dimensionless parameters: @, b, P, L and ¢. There are
also two externally prescribed functions which enter through the boundary
conditions at z = 1 namely T(y, 1) = af(y) and 9,8y, 1) = bF(y).

3. The expansion

For oceanic applications, the aspect ratio, e, is very small and we seek an
expansion in this parameter so that analytic progress can be-made. Because no
mechanical forcing is imposed, motion occurs in response to the density gradient
prescribed at the surface. The analysis of the linear problem in Thual & McWilliams

suggests that if the amplitude of the surface salinity flux is related to the surface
temperature by the relation

b ~ e’a, (3.1)

then the temperature and salinity contribution to the density field are of the same

order. We further assume that a is of the order of ¢ and we consider a distinguished
limit in which ¢ 0 and ‘

a=ea;, b=eb, (3.2)
where a, and b, are held fixed. All the fields are expanded in powers of ¢:

W, T,8) = e(1, 11, 8,) + €y, Ty 8) + ..., (3.3)
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and the time is rescaled by f, = ¢ so that
8, = 0, (3.4)

The scalings for o and b in (3.2) require that 7, must be equal @, 0(y) at z = 1, and
all of the other terms in the expansion of 7' vanish at this upper boundary. However,
for the salinity it is 8,8, which satisfies the flux condition at z = 1. The earlier terms
in the expansion, 9,9, and 0,8S,, are both zero at the upper boundary.

3.1. The first-order solution
Collecting the terms of order ¢ we have the system
0=208,(T—8,)+&% V1,
0=0:1T, (3.5)
0=08;.

The fixed-temperature boundary condition determines the first-order temperature
field, while the salinity is undetermined at this order. Thus the solution of (3.5) is

T =a,0(y), S = S,(y.t,), Y= W(2)0,(S; — g ). (3.6 a—c)

Because the boundary conditions on the salinity field only determine its flux, the
depth-averaged salinity can be much larger than might be anticipated by naive
scaling arguments. In this case the surface salinity flux is O(e®), yet the depth-
average salinity field, Sy, is O(¢) and its evolution is determined at third order.

The shape function W(z) depends on the poundary conditions on i at z =0 and 1.
For no-stress one finds

‘ W(z) = &7t —22° +2). (8.7)
Other boundary conditions lead to different quartic polynomials but, in anticipation
of our results below, there are no qualitative effects introduced by different
homogeneous boundary conditions on P

The smallness of the aspect ratio, ¢, together with the restriction to small thermal
and saline Rayleigh numbers (3.2), forces vertical diffusion to dominate. As a
consequence, the lowest-order salinity and temperature fields are vertically
homogeneous. Of course, in the ocean the Rayleigh numbers are very large,
advection overwhelms mixing and the temperature and salinity are stratified.
However, the scaling (3.2) permits analytic progress and despite the unrealistic
vertical structures of the fields, we will show that it leads to multiple equilibria.

3.9. The second-order solution

At next order, €2, one has:

PRI, 0 ) = ay(Tz—Sz) +0; Ya (3.8a)
8,40, 1= 8%, (3.80)
— L7104, 0,8, = 05, (3.8¢)
The temperature and salinity equations can be integrated in z:
—1/f15yTl=asz, (3.9a)
—L7%, 0,8, = 0,8, (3.9b)

Note that 3,5, = 0 at both boundaries so the boundary conditions on salinity are
automatically satisfied at this order. (Because b ~ €* the imposed salinity flux does
not enter till third order.) Thus at second order there is no solvability condition to

determine S;{y, ;)
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One can now integrate (3.9) to obtain explicit expressions for S, and 7}. With the
polynomial W(z) in (3.7) one finds

'_[’2 = ——(,‘[,162/0(63/81'—'&1 aya) U(z)’

3.10
S, =—L‘16y81(6y31~a16y6)[U(z)-l—gi—o],J ( )

where the shape function U(z) is
Ulz) = 545(22° — 52 + 522 - 2). (3.11)

The constants of integration in (3.10) are determined imposing the boundary
conditions Ty, 1) = 0, Ty(y,0) = 8,8,(»,0) = 0 and requiring that the vertical
average of S, vanishes. This second condition amounts to a definition of S, (y, ¢,) as
the vertically averaged salinity. We do not need the explicit expression for i, (the

shape function is a ninth-order polynomial), but if necessary it could be calculated
by four integrations of (3.8a).

Finally, we observe that there is no heat flux through the top boundary due to
either 7 or 7, (from (3.9) 3,7, = 0 at z = 1). At third order we find a non-zero heat
flux, and of course it is at third order that a non-zero saline flux first appears. Thus,

despite the superficial disparity implied by the scaling in (3.2), the thermal and saline
fluxes are actually of the same order, i.e. €.

3.3. The third-order solution and the solvability condition
The salinity equation at O(e) is
L8, 8,4+ I (1, 8,) — 8,1, 8,8,] = 028, + 2.8, (3.12)

At this order the salinity field is forced by the imposed flux, 0,8,(1,y) = by, F(y). The
solvability condition is obtained integrating (3.12) vertically :

1
L‘l[atz Sl+ayf ¥, 0,5, dz] = by F(y)+22S,. (3.13)
0

Substituting the expression (3.6¢) for yr, and (3.9) for 9,8, into (3.13) we find the
evolution equation for the vertically averaged salinity field

1 .
= %SwL‘Z[ f W3(z) dz] 0y(8,8,(0, 8, —a,0,0)%) = by F(y) + 32 S,. (3.14)
0
3.4. The canonical form of the amplitude equation

We now put the amplitude equation (3.14) in canonical form using a cosmetic
rescaling. We introduce a new time

2
r=Li, =558, (3.15)
where ¢ in (3.15) is the dimensional time variable. We define a new independent
variable oly,7) = a7' S, (3.16)
and then (3.14) is
8, 0~pu*0,[0,0(d,0—0,0)% = rF(y)+ 0y o—y20 o, (3.17)
where the coefficients are
1
ut= L‘za;%j Wiz de, r= —123 (3.18)
0 ay

With the polynomial W(z) in (3.7) the integral in (3.18) is fW(z) dz =1/19040.
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In (3.17) we have also added a fourth-order hyperdiffusion term, y*d;0, to
‘regularize’ the equation. We show below that without this term the amplitude
equation develops discontinuities in 8, 0. The hyperdiffusion smooths these jumps by
forming boundary layers of thicknesses y. Apart from this, the role of y is limited and
provided it is small it does not effect the qualitative properties of the solution. For
instance, both the location and the size of the jumps in o, are independent of y.

A further justification for the ad hoc introduction of the hyperdiffusion is that we
anticipate the arrival of a term with this form at fifth order in the ¢ expansion. In
particular, the ‘cross-term’ 07 0%y in the vorticity equation eventually generates a
term proportional to 98, in the vertically averaged salinity balance at ¢®. The
reconstituted amplitude equation then contains y*d, o with y ~ €.

The boundary conditions on (3.17) are

o, 0(xm,7)=0, o(L£n,7)=0, (3.19)
and they are obtained enforcing no salt flux and no stress at the lateral boundaries.
(We are implicitly assuming that d,0(£x) = 0} 0(+n) = 0).

Equation (3.17) is the canonical form of the amplitude equation. Although the
original equations contained five non-dimensional parameters, the reduced system in

(3.17) contains three: r, # and y. And we show below that ¢ has no qualitative
importance: it is r and px which determine the structure of multiple solutions.

3.5. A discussion of the physical basis of the eTPANSIon

The non-dimensional amplitude equation in (3.17) is an equation for the vertically

averaged salinity : ;

Sy, t) = %f S(y, 2, t) dz. (3.20)

0

In (3.20) we use the dimensional variables introduced at the beginning of §2. In terms
of these dimensional variables the amplitude equation (3.17) is

8

2 - o o KsDS

0,8 =kg a;§+cfgzsay[(asay8—%ay T)? ayS]+—572—F(y). (3.21)
where ¢ is & dimensionless constant whose value depends on the boundary condi.tions
used for . Equation (3.21) is & nonlinear diffusion equajtion‘ f'or _the vertlca}ly
averaged salinity field in (3.20). The nonlinear part of the diffusivity increases with
the square of the density gradient, s 9,8—apd,T.

The asymmetry between T and S is evident. It is not necessary to find a
conservation equation for T, analogous to (3.21), because the fixed temperEL.tgre
condition at the upper boundary ensures that T =~ ATO(y). The fixed flux condition
on salinity is not so constraining. o o hich

The expansion which leads to (3.21) has several unrealfstlc restrictions w 1;:1
should be noted. Equation (3.6a,b) shows that the leading terms in both the
temperature and salinity fields are independent of z. Thus the who}e expansion
springs from using (3.2) to restrict the amplitude of the thermal and saline forcing S?f
that vertical diffusion of temperature and salinity 18 fastelj than t_he generation 0
vertical inhomogeneities by differential horizonta% adw_aotlon. This ajssum‘pmon.ls
identical to the approximation in Taylor’s (1953) lecuss1on of shear dls];)ersmn,dlwzJé
because » depends on z the term v 9,8 in (2.1¢) cont1nuou§ly creaf'fes d(_apth depend egl
salinity variations from the depth-averaged field. This creation is balanced Dy
vertical diffusion, as shown in (3.8b) and (3.8¢).
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The salinity and temperature fields in the ocean are not uniform in the vertical to
even a rough approximation. Although the aspect ratio, ¢, is of order g5 the thermal
and saline Rayleigh numbers are so large that the velocities overwhelm the vertical
mixing,.

However, the calculations by Thual & McWilliams (1991, figure 2) show that the
temperature and salinity are not far from being vertically homogeneous. In §5 we
argue that (3.21) does capture the essential structure of the multiple equilibria
reported by Thual & McWilliams. As yet there is no evidence that either general
circulation models or multi-box models have multiple equilibria which differ
qualitatively from the examples described by Thual & McWilliams and by us in §5.

4. Variational structure of the amplitude equation

Some general properties of the amplitude equation are revealed by considering the
evolution equation in terms of the salinity gradient, y = @, 0, and the temperature
gradient, » = 0, 0. Taking the y-derivative of (3.17) we have

& x =0 [Wx(x—n)—rfy)+x—v* 0 x1, (4.1)

where we have introduced
Y
fly)=— f F(y,)dy,. (4.2)

Notice that f(m) must vanish in order for the net salinity flux into the domain to be
zero. We assume that this is the case. The boundary conditions in (3.18) translate to
x=0y=0aty=+mn

Equation (4.1) is the Cahn—Hilliard (1958) equation with non-constant coefficients.
A recent review of its mathematical properties (for constant coefficients) can be
found in Alikakos, Bates & Fusco (1991). Equation {(4.1) can be written as

0P
o, x =08— 4
P X = Uy 3y (4.3)
where @[y] is the functional
Plxl = f [V(x: 9)+37%(0, x)*1 dy, (4.4)
and V(y,y) is the function
V. y) = p*Gx* —8xn) +ax* (1 + w*n®) —1fx. (4.5)
In (4.3) we have introduced the variational derivative of the functional ®[y]:
oP
B Vi—y*ex. (4.6)

The advantage of the form (4.3) is that one can now show by direct calculation that
& is a Lyapunov functional. Specifically :

3@
a,qs:f 5= dy,
_nX Sy Y
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Because D is bounded from below and always decreases in time, a steady state must
pbe reached where @ is local minimum. The integral result (4.7) guarantees that the
system has at least one stable equilibrium which minimizes the Lyapunov functional
.

We now proceed to analyse the steady solutions of (4.1). The stability of these
golutions can be assessed by calculating &[y] and determining which steady solution
minimizes this functional. The linearly stable steady solutions are local minima and
anstable steady solutions are local maxima or saddle points of D[x].

4.1. Steady solutions and their stability

The steady state solutions of (4.1) satisfy
oD 5
T qpx—mE+x—1f—y % x =0, (4.8)
with y(4n) = 0. Because y is a small number, the term Y203y can be neglected
except in boundary-layer regions. Thus outside of boundary layers the steady
solutions are obtained approximately by solving the cubic algebraic equation
Vv, = px(x=m*+x—1f=0,

for the salinity gradient, y, as a function of y.

The cubic equation in (4.9) sometimes has three real solutions, but depending on
the values of the parameters 4 and r and the position y, there may only be one.
Consider, for example, 8 and F to be symmetric functions of y. Thus 7 and f are
antisymmetric functions which both vanish at the equator y = 0. It is clear from
inspection of (4.9) that at y = 0 there is only one real solution, namely y(0) = 0. On
the other hand, there might be locations where the cubic has three real solutions. To
illustrate this possibility concretely consider the special case in which 7f(y) = 5(y), so
that the cubic in (4.9) can be factorized conveniently. The three roots are then

() = b+ G =2,
yp(y) =I—Gn*—u %)
Xcly) =17

Thus in those regions where 7 exceeds 2/u, Y can take any of the three possible values
which are the extrema of V(x). Only x4 and y¢ in (4.10) are local minima of V(x). The
third solution branch, yz is a maximum and, as one expects from the carlier
variational arguments, this branch is unstable to infinitesimal perturbations. A proof
is given in Appendix A.

In figure 1 we plot the cubic polynomial V, and show a convenient geometric
argument (the ‘Maxwell construction’) which determines the relative values of V at
the three equilibrium points. Referring to figure 1

Vixg) = Vixs)+P, Vixe) = Vixs) +€&, (4.11)

where P and @ are the areas under the curve V,. @ is negative because it lies below
the y-axis. Thus V(yg) > V(xa) and V(xgs) > V(xc), i.e. V(xz)is a local maximum. It
is also clear in figure 1 that P > || so Vixe) = Vixa) +P+Q > V(Xa) i.e. V(x,)isthe
global minimum of V(y). Hence to construct a steady, linearly stable solution we can
select either of the solution branches x,(¥) or ¥eoly)

A linearly stable solution might be constructed by selecting the local minimum,
X (), but because V(x,) < V(xc) this solution is unstable to strong perturbations.

(4.9)

(4.10)
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Freure 1. The cubic polynomial V, in (4.9) with 4> =10, 7=1.2 and 9y = L. The three zeros
correspond to the three solution branches. In this case, because the area P is bigger than the area

&, we have V(yg) > V(y.) > V(y,). The areas P and Q are equal when the inflexion point of V,, i.e.
the point where Vixy = 0, coincides with y.

xel¥)

/!

Fraure 2. A schematic illustration of the two solution branches Xa(y) and y(y). As in figure 1 we
suppose that V(y.) > V(y,). Because both y, and y, are local minima both of these branches are
linearly stable, but because y, is the global minimum a large localized perturbation of y,., such as

the dashed curve, can expand so that y, replaces Xc- By contrast a large localized perturbation of
X4, such as the dotted curve, shrinks and leaves y,.

For instance if we perturb yq(y) in a small region by jumping to the y ,(y) branch and
back again (see figure 2) then this ‘bubble’ grows so that Xa(y) replaces yo(y) in all
of the contiguous region where V(y,) < V(o). Thus the branch Xc(y) is ‘metastable’.

Alternatively one can construct a solution by selecting the global minimum, y ,(z).
This solution is not only linearly stable, but it also resists strong perturbations, i.e.
‘bubbles” of y.(y) shrink as they are replaced by x4

4.2. Changes of solution branch at critical points

There are particular values of y at which V(y,) = V/( Xc),1.e. the areas P and @ in figure
1 are equal in magnitude. We refer to these positions, at which an exchange of global
minima between branches oceurs, as critical points.

For instance, if 7f(y) = 9(y), as we assumed in (4.10), then one can show that the
location of the ecritical points, denoted by s is determined by solving
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72(ys) = 9/(24?). This condition ensures that the inflexion point of the cubic
which is at y = ¥, coincides with yz. Then from symmetry the two areas P and € in
figure 1 are equal.

The critical points are significant landmarks on the y-axis because, at these points,
(4.8) has steady solutions which jump between branches. The jump is accomplished
in a boundary layer of thickens 7y, s0 that y%y,, in (4.8) is of order unity in the
neighbourhood of yg. Further details of the boundary-layer solution are in Appendix
B. Here we give a simple proof that steady poundary-layer solutions are only possible
at the critical points.

hMultiplying (4.8) by x, and integrating across the boundary layer at yg one finds
that

Byt —Vlss =0 (4.12)

Since the term %y*y? is very small on either side of the boundary layer (ie. at
9 = yg & ) we see from (4.12) that V(x) must not jump when y changes branch in
a boundary layer at ys.

To summarize, steady boundary-layer solutions which pass from one solutions
branch to another are only possible at critical points where V(xa) = V(xe) x@)
jumps as one passes through one side of the boundary layer at g to the other. V(x)
does not jump as one passes through the boundary layer. Using the geometry in
figure 1, the critical points are Jocated by requiring that the two areas P and ¢ are
equal in magnitude.

5. Multiple equilibria in the example of Thual & McWilliams

Thual & McWilliams (1991) solved the full equations of motion in (2.4) using a
numerical scheme. Their forcing functions were

mw=ﬂm=mw,mw=ﬂw=~mw. (5.1)

These forms correspond to a surface temperature condition with a warm equator
(y = 0) and cold polar regions (y = + 7). The surface boundary condition for salt
imposes positive flux into the ocean at the equator (evaporation exceeds
precipitation) and negative flux at the poles (precipitation exceeds evaporation).
In this section we illustrate the abstract arguments of §4 by solving (4.8) with 7(y)
and f(y) in (5.1). With these choices the steady form of the amplitude equation in
(4.8} is
wry(x+ siny)?+y+rsiny = v2odx. (5.2)

As explained in §4, we suppose that y < 1 and find approximate solutions by solving
the cubic polynomial obtained by neglecting the right-hand side of (5.2), ie.
V, = wPx(x+siny)®+x+rsiny = 0. We anticipate changes of branch and boundary
layers of thickness y at the critical points.

5.1. Two limiting cases: large and small r

For large » there is a single real solution of (5.2) given approximately by the
dominant balance u%y®~ —rsiny in (5.2). The results of a numerical solution of
V,=0 with » = 2 and u? = 10 are plotted in figure 3(a). This solution is salinity
dominated because water sinks at the equator and upwells at the poles. (Notice that
in the present notation the leading-order streamfunction in (3.6¢) is proportional to
the density gradient, y —7, and that W(z) in (8.7) is positive definite. The dashed line
in figure 3 (a) shows that w = Yy~ Xy =Ty 18 positive at y = L T.)
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Fiaure 3. (a) » Only real solution of V, = 0 when 4* = 10 and » = 2; ———, total density
gradient, y—7. Because the sign of the density gradient.is the same as the sign of the salinity
gradient, y(y), we refer to this as ‘salinity dominated flow’. We explain in the text that this implies
that fluid upwells at the poles and sinks at the equator. (b) , Only real solution of ¥, = 0 when
#* =10 and r = 0.9; ———, total density gradient, y —7. Because the sign of the density gradient
is the same as the sign of the temperature gradient, 5(y) = —siny, we refer to this as ‘thermally
dominated flow’. The circulation in this case sinks at the poles and upwells at the equator.

At the other end of the parameter space, for small 7, the thermal forcing dominates
and the water sinks at the poles. Again, there is only one real solution of (5.2). The
dominant balance is (u?sin®y + 1) ¥ & —rsiny and the results of a numerical solution
with 7 = 0.9 and p* = 10 are plotted in figure 3 (D).

52, Intermediate values of r

The cubic polynomial, ¥, = 0, has three real solutions when r is of order unity. But,
as figure 4 (a) shows, these three solution branches exist, only in a part of the domain
—n < y < n. For instance, if we start at y = —n and move north then at first there
is only one solution branch available, namely x(y) & —rsiny. This is the saline
branch because the sign of the density gradient is the same as the sign of the salinity
gradient (this is not shown in figure 4). But at y = — (kn)— A the other two solution
branches appear and continue till y = —(3n)+A. Then in the equatorial band,
—(3m)+A <y < (jn)—A, there is again only one solution available. The northern
hemisphere is simply an antisymmetric reflection of the southern. Thus there are two
‘midlatitude’ bands where multiple solution branches exist. There is the southern
band, —jn—A <y < ~n+A, and the northern band, In—2A <y < in+A.
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(@

V(x)

- Van p 0 Vas P n

T1GURE 4. (@) This shows the three real solutions of ¥, = 0 when p? = 10 and r = 1.2 as funections
of y. There is only one branch, x(y) which exists for all y. Multiple equilibria are possible because
the solution can jump from xc(y) to xa(¥) in the midlatitude bands where three real solution
branches exist. (Jumps to x,(y) are possible, but these correspond to linearly unstable solutions.)
(b) This shows the potential, V(x), evaluated at the three solution branches from part (a). The
eritical points at which V(x.(¥)) = Vix,(y)) are indicated by Ys—Ysa- At these points one can
construct boundary-layer solutions which jump between yo and X 4.

Analytic expressions for A as a function of r and x* are complicated, and not
informative. More important landmarks are the locations, y/5, of the critical points.

These are the solutions of
(Sinys)2 = 9/1,-2(%’[‘—1) (5‘3)

(This result is derived in Appendix B.) Notice that the four solutions of (5.3) (denoted
by yg, t0 ¥g, and shown in figure 4b) do not coincide with the four locations at
which multiple solutions appear and disappear (i.e.y =% (3x) 7). The critical points
lie properly within the midlatitude multiple solutions bands.

To construct a steady stable solution, one begins at y = —T on the only available
solution branch of (5.2) (the saline branch, denoted by yc(y) in figure 4a) and moves
northward past —(m)—A. At the first critical point, g, one has a choice. It is
possible to stay on the saline branch, y,(y), and continue northward. The alternative
is to jump at yg, to the thermal branch, ¥,(y), and then jump back t0 ¥co(y) ot Yo
In the interval yg, < ¥ < g, it turns out that V(y,) < V(xc) so the first alternative,
¥, is & metastable solution, while the second, ¥ 4, is stable even to large perturbations.
In the northern hemisphere one is presented with the same choice at Ygs- ‘
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Freurn 5. The (472, r) parameter plane. The cubic polynomial V, = 0 has three real roots inside the
region BHA. However, the differential equation (5.2) has multiple solutions only within FH@. The
cusp, H, isat r =% and p* = 3.

To summarize, there is a choice (to jump or not to jump) in each hemisphere, and
so there are four different linearly stable solutions. Three of these are metastable
because a large localized salinity perturbation of the saline branch, y.(y), can punch
through to the thermal branch, y,(y), and expand because V(x,) < V(x,) (figure 4b).
Two of the three metastable solutions are asymmetric about the equator because
there is a jump in only one hemisphere. The other metastable solution, which has no
jumps, is just the saline branch y.(y), and so is symmetric. The fourth, nonlinearly
stable solution is a global minimum of ¥(y). It has a jump to the thermal branch in
both hemispheres and so is symmetric about the equator.

The discussion in the previous paragraphs has referred to figure 4 in which
r= 12> 1. Analogous multiple solutions exist when r < 1, but in this case the
branch y.(y), which exists for all —n < y < 7, is a thermal flow with sinking at the
poles and upwelling at the equator. At the transition, » = 1, the branch y(y) is given

by (4.10¢), so that there is no density gradient (y—» = 0) and therefore no motion
(Y, =1, =0).

5.3. The domain of existence and stability of multiple states

Multiple solutions of the cubic polynomial on the left-hand side of (5.2) can only be
found if

277 — 18 —24?| < 2p3(1 —3u~2)t. (5.4)
(This result is obtained using the formula for the solution of a cubic polynomial.) The

‘boundary of this domain is shown in figure 5 by the solid curve EHG. There is a cusp
at the point H which is at » = § and u? = 3.

However, only a subset of the domain defined by (5.4) supports stable multiple
equilibria. Analysis of the function V(y) reveals that for

27r—18—-2u2 > 0, (5.5)

(the dashed curve FH) only one symmetric state can be constructed. A representative
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FIGURE 6. (@) The real solutions of ¥, = 0 when u* =10 and r = 1.5. This point is within the region
EHF in figure 5. As in figure 4, there s midlatitude band in which this cubic has three real solutions,
(b) The potential, V(y), evaluated at the three solution branches from (a). There are no critical
points at which changes of branch can occur. We conclude that multiple solutions of the differential

equation (5.2) are not possible within EHF.

gure 6. Notice that V()

solution with parameters in the region BHF is shown in fi
y¢)> shown as a solid line.

shown as a dotted line in figure 6 (b), is always larger than V(
Therefore within EHF thee is no critical point at which yo can jump to ¥, via an
internal boundary layer.

To summarize, multiple solutions of the differential equation (5.2) (such as that
shown in figure 4) are found within the domain FHG. The lower curve, GH, is given
by 27r—18—2u% = —24%(1 —3u7%)% and the upper curve, FH, by 27r—18—2p* = 0.
The two curves meet in a cusp at r = § and p* = 3.

5.4. Comparison with the numerical solution

Thual & McWilliams (1991) solved the unreduced equations of motion in (2.8)
numerically. In a control space analogous to that in figure 5 they found two cusp
catastrophes. Based on calculations with € = 1 and ¢ = 0.4 they concluded that as
¢—0 the two cusps merge and both converge to (a,b) = (eay, 6%bs) = (0,0). The
amplitude expansion used here supports both of these conclusions: we find only one
cusp catastrophe and, since a, and b, are fixed as >0, this point converges to
(a,b) = (0,0) as €—>0.

Thual & McWilliams also speculated that as ¢—0 the cusps approach the ‘zero
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Freure 7. This figure shows the leading-order approximation to the streamfunction,

o ~ () —2(y) W(z),

for three of the four linearly stable solutions in figure 4. We have not included the boundary-layer
corrections (Appendix B) so that the streamfunctions shown in this figure are discontinuous at the
critieal points. (@) This shows the saline mode in which y = y. everywhere. There are no changes
of branch. This flow is symmetric about the equator and is metastable. (b) This shows the thermal
flow in which x jumps from y. to x, and back in both hemispheres. The flow is symmetric about
the equator. (¢) This shows one of the two asymmetric solutions. In this case there is a jump in the

southern hemisphere, but not in the northern hemisphere. (The other asymmetric solution is a
reflection of this one.)

circulation line’. In our terminology this is r = 1. (Note that when # = 1 the cubic
polynomial on the left-hand side of (5.2) has a root y(y) = #(y) which corresponds
to no density gradient and no motion.) Our results disagree with this conclusion: the
cusp in figure 5 is at 7 = §, not » = 1. It may be that the numerical caleulations with
€ = 0.4 were not close enough to asymptotic values to distinguish between 1 and &.

A second point of disagreement between the amplitude equation and the full
numerical solution is indicated in figure 7. In his figure we contour the leading-order
approximation to the stream function

W(y,2) = a(x—1) Wiz) (5.6)
for three of the four multiple solutions shown in figure 4. (We show only one of the
two asymmetric states, since the other is merely a reflection of the first.) The

asymmetric flow in figure 7(c) jumps to the thermal branch in the southern
hemisphere, but not in the northern hemisphere. Since both x and 77 are zeroaty = 0
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the equatorial line, ¥ =0, is a streamline separating the strong thermal cell in the
southern hemisphere from the weaker saline cell in the northern hemisphere. Note
that both cells circulate in the same direction.

The results in Thual & McWilliams (1991) show that the asymmetric circulation
actually consists of a single pole-to-pole cell. Their figure 2(c) shows that in the
asymmetric solution the stream function is much larger in one hemisphere than in
the other but, in contrast to figure 7(c) the equatorial line is not a streamline
separating two cells. This failure of the amplitude equation might be corrected by the
inclusion of higher-order terms in €.

6. Conclusion

In this article we have used an expansion in aspect ratio to simplify the two-
dimensional non-rotating thermohaline convection equations in (2.1). The result of
the expansion is the equation (3.21) for the vertically averaged salinity field. The
asymmetry between temperature and salinity arises from the different boundary
conditions. At the top of the domain the temperature and the salinity flux are
prescribed.

The expansion we have used has some unrealistic limitations described in the
discussion below (3.21). Despite these limitations (3.21) has geveral advantages over
the increasingly elaborate box models which have been advanced as attempts to
make the original Stommel (1961) two-box model more realistic. First, (3.21) is a
rational approximation to the dynamics of non-rotating two-dimensional thermo-
haline convection in (2.1) and could be compared quantitatively and systematically
with numerical solutions of that system. The same cannot be said for multi-box
models, Further, it is possible to extend (3.21) to include three dimensions and
rotation.

The second advantage of (3.21) is that it is more compact and more analytically
tractable than multi-box models. In support of this assertion we empha,sme the
utility of the variational formulation in §4. With the variational principle we can
construct the steady solutions by identifying the points at which changgs of brancb
occur (the critical points) and we also have a succinct characterization of their
stability. This allows us to distinguish between steady solutiong which are local
minima and those which are global minima. The local minima are linearly stable, but
are vulnerable to large spatially localized perturbations. On the oth.er ‘hand, the
global minimum resists even large perturbations. The difference is illustrated
schematically in figure 2. i

It is interesting that in the example discussed in §5 the multiple brgnchea occur
only in a midlatitude band (see figure 4). This means that the loc':al minima are most
vulnerable to perturbations in this midlatitude region. vFor 1n§t§nnce, the sal}ne
branch, y(¥), in figure 4 (a) can be destabilized by & locah?ed salinity pertur]oatmn
only in the region where the alternative steady solutlor}s exist, In the qquatorlal and
polar regions it should be resistant to even 1arge-amphtud.e pertgrbatlons. It would
be interesting to see if the multiple equilibria in general .01rculat10n modpls, such as
that of Bryan (1886), are selectively sensitive to midlatitude perturbations.
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interesting us in the general question of multiple thermohaline equilibria, and
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Appendix A. Linear stability near a stationary solution
The evolution equation can be written in the form

8,y =02 (%;i) (A1)

with the Lyapunov functional, ®(y), defined in (4.4). A stationary solution, Xo
satisfies
0P

5| =0 (42)

Xo

and in the vicinity of the stationary solution the functional derivative of @ can be
approximated by

8d(x) _ . 0D

The linear stability problem is then

+0((x —Xo)®)- (A3)

Xo

5P
0 (X — Xo) = 0 [(X—Xo)a—xg

} . (A 4)
Xo

Multiplying (A 4) by the quantity inside the square brackets and integrating over the
domain one has

2 2

™ 52 L[ 52
aTj_n(x—xo)zs—)—(; dy=—2f_"[ay(x-xu>5—x2

The right-hand side of (A 5) is positive definite, while the sign of the left-hand side
depends on the curvature of the Lyapunov functional at the extremum location, Yo
If the stationary solution, yx,, is a minimum then a perturbation will be linearly
damped, although a finite-amplitude perturbation might grow. If x, is a maximum
then (A 5) guarantees linear instability of y,.

T dy. (A 5)
Xo

Xo

Appendix B. The structure of the internal boundary layers
The steady-state solutions satisfy the differential equation
Vo= wix(x—n)+x—1f = y* 05 x. (B 1)
Steady boundary layers can only be found at the critical points, whose locations, ¥,
are found by requiring that the areas P and @ in figure 1 are equal. Now the inflexion
point, y;, of the cubic polynomial on the left-hand side of (B 1) is at
X1 =59 (B 2)
From symmetry, the location of the critical point is determined by requiring that x;

coincides with the middle zero of V, (i.e. x5 in figure 1). Thus the locations of the
critical points are given implicitly by

31f(ys) = (1 +n(ys)). (B 3)
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(For instance, substituting f(y) and 7(y) from (5.1) into (B 3) we get (5.3).) Sinee f(y)
varies slowly on the scale of the boundary layer we can use (B 3) to eliminate f(y)
from (B 1) and then factor the resulting cubic. Thus, in the vicinity of the critical
points, the boundary-layer approximation of (B 1) is

WA= [(x—3)*+u~ =] = y* ). (B 4)
The solution of (B 4) is

X=%+atanh[g:aﬁ], (B 5)

where we have made the definitions

- V' 2y
=lpp—p? d=l<l B6

Indeed, the outer limit of the boundary-layer solution is
Xio =§1E00 (BT)

These values of y coincide with the (stable) zeros y, and yg of V, at the critical points
location, ¥g.
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