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Abstract 

We consider the dynamics of a set of diffusively coupled "grid points". The dependent variable defined at each grid point 
is the salinity which is forced by a spatially uniform distribution of evaporation minus precipitation. The nonlinearity in the 
system is a convective adjustment rule that sets the salinity back to zero if it ever exceeds one. The aim of this study is 
to understand the spatial and temporal variability that results from the interaction between convective adjustment rules and 
horizontal diffusivity. 

Analytic results show that the model has a large number of different solutions which are periodic in space and time. Some 
of these solutions have a surprising structure in which convective adjustment is entirely suppressed at some grid points, and 
occurs with a higher frequency at neighboring points. Numerical solutions indicate that these solutions have finite basins of 
attraction in the space of initial conditions. Thus small changes in the initial conditions can produce solutions with grossly 
different average properties. 

Numerical errors due to the finite size of the time step, or roundoff, can also have a decisive role in selecting the ultimate 
state which emerges from a particular condition. For instance, numerical errors can stabilize an unstable solution. 

Keywords: Convective adjustment; Coupled map lattices 

1. Introduction 

In ocean general circulation models, static instabil- 

ities (heavy fluid over light) are removed by a "con- 

vective adjustment" (CA) algorithm. The essential 

idea is that when a density inversion is detected one 

rapidly mixes temperature and salinity to produce a 

neutrally stable state [1]. In this article we investigate 

some consequences of  the interaction between two 

widely accepted model ingredients, namely CA rules 
and horizontal diffusion. 

* Corresponding author. Tel.: 619 534 0622; fax: 619 534 
9820; e-mail: cessi@dalek.ucsd.edu. 

There are different implementations of  CA algo- 

rithms (e.g., [2,3] but one common aspect is that the 

decision to adjust ignores horizontal differences in 

density. Thus, if CA occurs at one grid point, but not 

at a neighboring grid point, then a grid-scale density 
jump is created very rapidly - perhaps in a single time 

step depending on the CA algorithm. 

We illustrate the effects of  these density jumps in 

Fig. 1. In Fig. l(a) the density at all of  the grid points 

is increasing so that eventually the threshold for ad- 
justment will be reached. The first grid point to reach 

this threshold is the density maximum at n = 0. In 

Fig. l(b) we show the situation a short time later in 

which there is now a large jump in density between 
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Fig. 1. A schematic showing the result of convective adjustment. 
The vertical axis is density and the horizontal axis is the grid 
point position. (a) All of the grid points are advancing upwards 
towards the threshold for adjustment: this increase in density is 
driven by a preponderance of evaporation over precipitation so 
that the salinity of the layer is increasing. The point n = 0 is 
a local density maximum and it will adjust first. Immediately 
after adjustment the density at n = 0 will be equal to the 
density of the very deep, cold and fresh resevoir layer, i.e., the 
column is neutrally stable. But then thermal coupling to the 
atmosphere very rapidly increases the temperature at n = 0, but 
leaves the low salinity behind. The result is that the density at 
n = 0 is now stable because of the freshwater imported from 
the deep resevoir: this is the configuration shown in panel (b). 
Because of diffusive coupling with the neighboring grid points 
the point at n = 0 tends to drag its neighbors away from the 
threshold. 

n = 0 and its immediate neighbors n = 4-1. After ad- 

justment, horizontal diffusion will smooth the discon- 
tinuity in density. This horizontal flux of density will 

tug the nonadjusted grid points, n ----- 4-1, away from 

the threshold. Thus in Fig. l(b) the grid points n = 

4-1 can vacillate: while they are close to the thresh- 

old they are also diffusively fluxing density to n = 0 
and this tendency is stabilizing. The same stabilizing 

tendency will also be felt in an attenuated form at in- 
creasingly removed grid points n = 4-2 etc. We indi- 

cate this in Fig. l(b) by showing that the grid points 

at n = + 1 and +2  are moving away from the thresh- 

old, while those at n = -t-3 are still moving towards 

the threshold. 

The upshot of  all this is that in Fig. l(b) it is unclear 

if the grid points n = 4-1 will soon adjust or not. 

We show in this paper that this uncertainty produces 

intrinsic time dependence and spatial nonuniformities 

in the thermohaline fields. We find that the variability 

driven by this mechanism produces a curious coupling 

between the largest and the smallest spatial scales in 

the model. The CA rule, because it is applied at a 

single grid point, transfers density variance directly to 

the model grid scale without any intermediate cascade 

through wave number space. 

Fig. 1 also illustrates the possibility of  making an 

inaccurate application of  the CA rule. Suppose that an 

accurate solution of  the system leads to the situation in 

Fig. l(b), in which the grid points n = 4-1 are moving 

away from the threshold. A numerically inaccurate 

solution might lead to the three grid points n = 0 and 

n = 4- l all passing over the threshold in a single time 

step. In this case the CA algorithm will set all three 

grid points equal to the same value and this state differs 

appreciably from the accurate solution in Fig. l(b). 

We believe that the thermohaline variability de- 

scribed above is an unrealistic aspect of  the CA proce- 

dure in ocean general circulation models. Convection 

in the ocean certainly produces interesting large scale 

thermohaline structure. But the thermohaline variabil- 

ity documented in this paper is best described as a 

pathology of  the CA algorithm, rather than the result 

of  a plausibly parameterized physical process. Unfor- 

tunately we have not been able to formulate an entirely 

satisfactory alternative to the standard procedure. Our 

goal here is less ambitious: we will document the con- 

sequences of  the mechanism in Fig. 1 so that it can 

be recognized when it operates in ocean circulation 

models. 
Our discussion of  CA has been from the perspective 

of  an ocean modeler or numerical analyst. But the 
system we will formulate in Section 2 turns out to 

have some unexpected affinities with coupled lattice 
models (e.g., [4,5]). We will return to this interesting 

analogy after formulating the model. 
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Fig. 2. A scenario leading to the model in (2.1a), (2.1b). The 
upper layer has a fixed temperature T = 1 and an evolving 
salinity S(x, t) so that the density is /9 = S - 1. The evapora- 
tion minus precipitation forcing on the upper layer is spatially 
uniform and equal to one. The lower layer is very deep with 
infinite capacity and S = T = /9 = 0. Fast mixing with the 
lower layer occurs when S(x,  t) exceeds one. 

2. Formulation of  the model 

We use the model introduced by Cessi [6] which is a 
collection of spatially coupled "convective adjustment 
oscillators": 

S t = l + o e S x x + C A  if S <  1, (2.1a) 

S ---> 0 if S > 1, (2.1b) 

where 0 < x < 1. For simplicity we ignore end- 

effects by considering periodic systems with S(x, t) = 
S(x + 1, t). 

An oceanographic scenario leading to (2.1) is illus- 

trated in Fig. 2: S(x, t) is the salinity in an upper layer 

of fluid with fixed temperature T = 1. The very deep, 
lower layer has T = S = 0. We use a linear equation 
of state in which the density/9 = S - T so that the 

density of the lower layer is zero and the density of the 
upper layer is S - 1. The first term on the right-hand 
side of (2. la) represents the imbalances between evap- 
oration and precipitation (E - P in Fig. 2) that tend to 

destabilize the layer by steadily increasing its salinity. 
The second term on the right-hand side of (2.1a) is 
diffusive coupling. The final term, CA, in (2.1a) is to 

remind us that the model has appended to it the rule 
in (2.1b): the model is strongly nonlinear despite the 
superficially linear structure of (2.1 a). 

The temperature in the upper layer is clamped to 
the value 1 while the salinity evolves so that we are 
considering the scenario in which thermal relaxation 

is much more rapid than saline relaxation (e.g., [1,7]). 

This is the fundamental asymmetry between heat and 

salt in this system. Now suppose that there is some 

point where the salinity, S(x, t), of the upper layer ex- 

ceeds the temperature, T ---- 1. Then at that position 

the density of the upper layer is greater than the den- 
sity of the lower layer and the ensuing static instability 

produces instantaneous mixing. This rapid mixing is 

encoded by the CA rule in (2. lb) which sets the salin- 
ity of the upper layer equal to that of the very deep 

lower layer. 

Contrary to the suggestion in Fig. 2, oceanographic 

convection is not often driven by evaporation. A more 

common scenario is polar convection in which the 

surface is cooled and freshened so that heat, rather 

than salinity, is the destabilizing component. However, 

analogous dynamics can be obtained in the thermally 
driven case if one considers the effects of a nonlin- 

ear equation of state (e.g., [8,9]). We prefer to use the 

salinity driven model because it is conceptually sim- 

ple and avoids nonessential complications such as a 
realistic equation of state. 

The problem in (2.1a), (2.1b), and particularly the 

adjustment rule, has to be understood in the context 
of a discretized model. In fact, as it stands, the model 

in (2.1) would offend a traditional numerical analyst. 
For instance, Sxx is not defined after one applies the 

rule in (2. lb). Or perhaps it is better to say that it is 

not clear how this rule can be implemented in a con- 

tinuous model. This criticism applies with equal force 
to all ocean general circulation models that use CA, 

beginning with that of Bryan in [10]. However, in our 

opinion, this difficulty with the continuous limit is not, 
by itself, a trenchant objection to the CA algorithm. 

The point is that one can interpret the model as a set 
of coupled equations obtained by spatially discretiz- 
ing (2.1a). Thus we divide the interval 0 < x < 1 into 

N subregions of length 1/N so that x = n/N where 
1 < n < N. The state of the system at time t is de- 

fined by the N-component vector Sn (t) and this vector 
evolves according to 

s. = 1 + 2 [S .÷I  - 2S .  + s . - 1 ]  

Sn"->O i f S n >  1. 

if Sn ~_ I, 

(2.2a) 

(2.2b) 
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For numerical implementation one has to also dis- 

cretize (2.2a) in time. But for expositional purposes 

we distinguish the semi-discrete form in (2.2) from 

the fully discrete form in (2.3) and (2.4) below. 

We now discretize (2.2) in time using the simplest 

scheme: forward Euler. Given the present state Sn (t) 

we define the tentative future state by 

Sn(t + r)  -= Sn(t) + r 

-+- (/,zz) [Sn+l(t) - 2Sn(t) + Sn- l ( t ) ]  , 

(2.3) 

Coupled map lattices are intended to model and 

characterize space-time intermittency such as the 

presence of localized patches of turbulence in an other- 

wise laminar fluid flow. Localized oceanic convection 

is a naturally occurring example of this phenomenon. 
In this sense Bryan's introduction of convective ad- 
justment in 1969 seems to be a farsighted anticipation 

of coupled map lattices! 

3. Some simulations 

where r is the time step and/z - a N  2. We then apply 

CA and obtain the true future state by using the rule: 

S n ( t + r ) = S n ( t + r )  i f S n ( t + r ) <  I, (2.4a) 

S n ( t + r ) = O  if Sn(t + r )  > 1. (2.4b) 

3.1. The synchronized solution and the grid mode 

The semi-discrete model in (2.2) has a simple solu- 

tion in which all of the Sn's are equal, 

Sn = t - int(t), (3.1) 

Eqs. (2.3) and (2.4) define the algorithm used in the 

numerical calculations in this paper. 
The explicit time-stepping procedure in (2.3) has 

a well-known numerical instability if r is too large. 

Specifically, in order to suppress the "computational 

mode", the time step must satisfy the inequality 

1 /zr < ~. (2.5) 

All the simulations in this paper will satisfy the con- 

dition in (2.5). 
At this point we can draw an analogy between the 

fully discrete system and the coupled map lattices 

studied by Keeler and Farmer [4] and Crutchfield and 
Kaneko [5]. A coupled map lattice is a dynamical sys- 

tem with discrete time, discrete space and continuous 

state. In the examples referenced above the coupling 
is diffusive between nearest neighbors. The system in 

(2.3) and (2.4) is then a special case of a coupled map 

lattice. In the world of lattice maps the term "local dy- 
namics" refers to what happens at a single point if one 

removes all coupling to the neighbors, i.e., set ot ---- 0 
in (2.2). Our model in (2.3) and (2.4) is simple because 
the local dynamics at each site is periodic in time. 
Other examples of coupled map lattices assume that 
the local dynamics is more interesting. The quadratic 
map is a popular choice so that in this case the local 
dynamics can be chaotic rather than simply periodic. 

where int(t) is the integer part of t ,  e.g., int(zr) = 3. In 
this spatially uniform solution all of the grid points are 

in phase and synchronized adjustment occurs at t --- 

1, 2, 3, etc. This spatially uniform solution is analo- 

gous to the thermohaline relaxation oscillations whose 
dynamics were first isolated by Welander [11] with 

the "flip-flop" model (e.g., [12]). 
It can be shown analytically that the synchronized 

solution in (3.1) is unstable to a grid-scale instability, 

such that all the even grid points adjust out of phase 
of the odd ones [6]. In order to motivate some ana- 

lyric solutions in Section 4 we recall some aspects of 
Cessi's analysis. One can find a solution which is peri- 

odic in space with S2n (t) = a(t)  and S2n+l(t) = b(t),  
so that the wavelength is two intervals. With this sim- 

plification the system is described by a point in the 
(a, b) space. We now construct a rime periodic solu- 

tion following the lead in Fig. 3. We suppose that at 
t = 0 the even grid points have just adjusted so that 
a(0) = 0 and b(0) ---- B. For a periodic solution it 

turns out that the next adjustment is at t = ½ and at 
this time a(1)  = B and b(½) = 1 ~ 0. In the next 
interval, ½ < t < 1, the roles of a and b are reversed. 

To determine the constant B notice that the solution 
of (2.2a) in the interval 0 < t < 1 is 

1 B 1 B 
( b ) = t ( 1 ) + - ~ ( 1 ) + - ~ ( l l ) e  -4ut, (3.2) 
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Fig. 3. The phase plane of the grid mode, b as a function 
of a, both given by (3.2) for one cycle of the oscillation. At 
t = 0, a has just adjusted and b(0) = B, given by (3.3). At 
t = ½ the system reaches the point (B, 1) and at this instant b 
adjusts instantly, bringing the system to (B, 0). Next, at t = 1, 
a adjusts and the system reaches (1, b(1) = B). 

where /z  = teN 2. Putting t = 1 into (3.2) gives 

1 
B = 1 + exp( -2 /z ) "  (3.3) 

Cessi [6] analyzed the stability of  the periodic solu- 

tion above to synchronizing perturbations by calcu- 
lating the return map for arbitrary orbits in the (a, b) 

plane. Her conclusion was that the periodic solution in 
Fig. 3 is stable and the synchronized solution in (3.1) 
is unstable for all values o f / z  = a N  2. 

This "grid mode" is periodic in space with a wave- 

length n = 2 and periodic in time with a period of 1. 
The grid mode is a frequently observed modulation in 

chains of  coupled map lattices (e.g., [5]). In the cou- 
pled map lattice literature the grid mode is referred to 

as "zig-zag" instability. We believe that the solution 

above may well be the simplest example that isolates 
the basic physics of  this widely observed instability. 

3.2. Roundoff suppression of the grid mode 

We mentioned in the discussion surrounding (2.5) 
that numerical stability requires tha t /z r  < 1. But nu- 
merical stability is not the same as numerical accuracy 

and this distinction is particularly important in deter- 

mining the stability of  the grid mode in the fully dis- 
crete system (2.3) and (2.4). We see from Fig. 3 that 
an accurate application of  the CA rule at t = 1 re- 

quires distinguishing the difference between B(/z) and 

1, else one might accidently adjust both a and b back 

to zero and latch on to the synchronized solution in 

(3.1). When/z  is large 1 - B ~ exp( -2 /z ) ,  so that the 

accurate solution of (2.2) requires that the time step 

satisfy the inequality 

r < e -21z. (3.4) 

When /z  = otN 2 >> 1 the accuracy condition in (3.4) 

is much more stringent than the stability condition in 

(2.5). In fact, as the spatial resolution is increased the 
condition in (3.4) soon becomes burdensome. 

What happens if the t ime-step violates (3.4), but 

still satisfies the condition for numerical stability? That 
is, suppose the time step satisfies the double inequality: 

e -21z < r < 1/4/z. (3.5) 

In this case, as we have explained above, very small 

numerical errors have large effects because the CA rule 

in (2.2b) is occasionally applied inaccurately. We have 
argued that the result of  these errors is a tendency to 

suppress the grid mode and establish the synchronized 
solution. 

The grid mode is an anathema to all sensible numer- 

ical schemes. It is alarming to discover that the CA 
algorithm can excite this mode and it is curious that 
roundoff errors can correct this problem by suppress- 

ing the grid mode. Roundoff error operates in ocean 
general circulation models, and it is interesting to see 

what happens in our simple model if the time step sat- 
isfies the inequality in (3.5). In this case our numerical 

scheme is accurately solving the differential equations 

in (2.2a) but the scheme is inaccurately applying the 

rule in (2.2b). We expect that the resulting roundoff 
suppression is equivalent to having some very small 
random fluctuations, on the order of  the machine pre- 
cision, in either the forcing rate, or in the salinity of  
the deep lower layer in Fig. 2. It is beyond the scope 
of this communication to pursue this suggestion sys- 
tematically by adding controlled amounts of  extrinsic 
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noise to the model  (2.2). Instead we focus solely on 

the effects of  roundoff errors. 

3.3. Some solutions illustrating the effect of  initial 
conditions 

As an example of  what can happen when the time 

step satisfies the double inequality in (3.5), suppose 

that c~ = 0.03 and N = 100 so that e x p ( - 2 t ~ N  2) 

is below machine precision. We use a time step r = 

(128N2) -~ . With this parameter setting we do not ob- 

serve the grid mode. Instead the system (2.3) and (2.4) 

exhibits a bewildering variety of  qualitatively differ- 

ent asymptotic attractors and we find that the initial 

condition, Sn (0), plays a decisive role in selecting the 

ultimate state. This multiplicity of attractors is remi- 

niscent of  coupled map lattices [5]. 

Consider initial conditions of  the form 

Sn(0) = 1 - p + p s i n 2 [ q r r  (n+~°) ] .  (3.6) 

In Fig. 4 we summarize the results of  four calculations 

with different initial conditions from the family in (3.6) 

by showing the points in the (n, t) plane at which the 

CA rule in (2.4) has been applied. In panel (a) of  Fig. 4 

we see that the synchronized solution in (3.1) emerges 

after some transient activity. 

Panels (b) and (c) of  Fig. 4 show examples in which 

the adjustment events occur apparently at random ex- 

cept for a few grid points at which CA occurs with 

greater frequency than in the background. In panel (b) 

there are four such "adjustment centers" at n = 20, 

45, 70 and n = 95. The points n = 20 and n = 70 

are maxima in the initial condition while n = 45 and 

n = 95 are minima in the initial condition. In panel 

(c) of  Fig. 4 there are two adjustment centers which 

are located at the maximum and minimum of  the ini- 

tial condition. Adjustment is suppressed, but not en- 

tirely eliminated, at the grid points that neighbor the 

adjustment centers. 

Panel (d) of  Fig. 4 displays another possibility: there 

is a solution that is periodic in both space and time. We 

refer to such doubly periodic solutions as "structured". 

In the structured solution in Fig. 4(d) CA occurs only 

at 44 of  the 100 grid points and the adjustment at each 
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Fig. 4. The space-time coordinates of the convective adjustment 
events, for four numerical integrations of (2.3) and (2.4) with 
c~ = 0.03, N = 100, r = 1/(128N2). The initial condition for 
all the calculations is given by (3.6) and each has a different 
value of p and q. (a) For p = 0.03 and q = 5 after an 
initial excitation of the grid mode, the system synchronizes and 
the spatially homogeneous solution (3.1) is obtained. (b) For 
p = 0.3 and q = 2, there are four preferred points of adjustment 
located at the maxima and minima of the initial conditions, 
while a lower level of random CA activity takes place at all 
the other grid points. (c) For p = 1.0 and q = 1, two preferred 
points of adjustment emerge, located at the extrema of the initial 
condition. The other grid points experience the same level of 
weak, random CA as in the case shown in (b). (d) For p = 0.07 
and q = 4. CA occurs periodically in time at 44 selected grid 
points, while the other grid points never experience CA. The 
salinity is periodic in time and space. 

of  those 44 sites is periodic in time with the same 

period at each site. 

A close examination of  panels (b) and (c) of  Fig. 4 

shows that the adjustment events are symmetrically 

distributed around the adjustment centers. The back- 

ground is not as random as it might seem at a first 

glance. In panel (a) of  Fig. 5 we show snapshots of  

the four simulations in Fig. 4 at the final time t = 20. 

The spatial symmetry of  Sn is also apparent in this fig- 

ure. Panel (b) of  Fig. 5 shows snapshots of the simula- 

tion from Fig. 4(b) at five different times. This figure 

also shows that the salinity seems to hover just  below 

the threshold for adjustment, S = 1. This impression 
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Fig. 5. Upper panel: The salinity at the final time, S, (t = 20), 
for the four simulations of  Fig. 4. Notice the symmetry around 
the preferred centers of adjustment of the instantaneous salinity 
for the calculations of Figs. 4(b) (shown here with crosses) and 
(c) (shown here with filled circles). Lower panel: The salinity at 
five different times for the simulation of Fig. 4(b): The salinity 
is fluctuating near and below the CA threshold and is symmetric 
around the four centers of adjustment (located at n = 20, 45, 70 
and 95). 

is confirmed when we examine the spatially averaged 

salinity. 

The spatially averaged salinity is 

1 n=N 
3(0  =-- ~ y ~  Sn(t). (3.7) 

n=l 

Figure 6 shows time series of  S(t)  for the four initial 

conditions used in Fig. 4. The upper panel of  Fig. 6 

shows the two periodic solutions in Figs. 4(a) and (d). 

The solution in Fig. 4(d) oscillates within the range 

0.75 < S < 1 while the synchronized solution has 

a sawtooth oscillation over the complete range 0 < 

< 1, e.g., (3.1). The lower panel of  Fig. 6 shows the 

"random" solutions from Figs. 4(b) and (c). It is clear 

that the solution in Fig. 4(c) has smaller fluctuations 
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Fig. 6. The mean salinity S(t) as a function of time for the four 
simulations shown in Fig. 4. Upper panel: the mean salinity for 
the time-periodic calculations described in Figs. 4(a) and (d). 
The synchronized solution (dotted line) oscillates between 0 and 
1, while the partially synchronized solution (solid line) oscil- 
lates between 0.75 and 1 at twice the frequency. Lower panel: 
the mean salinity for the calculations described in Figs. 4(b) 
and (c) fluctuate around and below the CA threshold and the 
solution with four centers of adjustment (dotted line) has larger 
fluctuations than that with two CA centers (solid line). 

than that of  Fig. 4(b). But both solutions hover close 

to, but below, the threshold at S = 1. In this sense the 

solutions are close to a state of  marginal stability. 

3.4. Random initial conditions 

The four solutions shown in Figs. 4--6 all derive 

from the family of  initial conditions in (3.6). We 

thought that the adjustment centers and the spatial 

symmetries might be inherited from these organized 

initial conditions. We now show that random initial 

conditions also produce patterns with adjustment 

centers. 

As in the previous three figures we use a = 0.03, 

N = 100 and r = 1/(128N2).  The initial value of  
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Fig. 7. The space- t ime locations of  the adjustment events for 
(~ = 0.03, N = 100, r = 1 / (128N2) .  The initial condition is 
a random number  uniformly distributed between 0 and 0.0001. 
Four different realizations are shown each with a different seed 
in the random number  generator (the ESSL subroutine DU- 
RAND).  Some random initial conditions lead to the emergence 
of  adjustment centers. 

For instance, if we repeat the calculation which pro- 

duced the solid curve in the lower panel of Fig. 6(b) 

with half the time step and double the time step we 

find that the three graphs of  S(t) coincide to within 

the line width of  the plot up till at least t ---- 14. After 

this time the three curves spread apart but the statis- 

tical behavior of  the three cases seems to be identical 

in so far as all three time series fluctuate about the 

same average level with the same RMS AS. A closer 

examination of  the growth of  the difference between 

the three cases shows that the difference is growing 

exponentially with time. 

We also were curious about the effect of  increas- 

ing the diffusivity or. If  we increase the diffusivity by 

a factor of  10 to ot = 0.3 and repeat the calculations 

in Fig. 7 then we find that all four initial conditions 

eventually become synchronized as in Fig. 4(a). How- 

ever, if we take the same four random initial conditions 

and multiply by 10 4, so that each Sn(O) is now a ran- 

dom number uniformly distributed between zero and 

one, then we find the result in Fig. 8. With these large 

initial fluctuations in salinity none of  the realizations 

synchronize and in two of  the cases in Fig. 8 persis- 

S at each grid point is a random number uniformly 

distributed in the interval 0 < Sn (0) < 10 -4. Fig. 7 

shows four different realizations obtained by using 

four different seeds in the ESSL subroutine DURAND. 

In Figs. 7(a), (b) and (d) we see that adjustment cen- 

ters emerge from the random initial condition. Also 

the pattern of  adjustment events is symmetric about 

these centers once they appear. Note also that the ad- 

justment centers in Figs. 7(a) and (b) consist of  two 

adjacent grid points locked together, while in Fig. 7(d) 

the adjusment centers consist of  a single grid point. 

Fig. 7(c) shows an apparently random set of  events 

with no fixed centers. 

3.5. Sensitivity to time step and changes in diffusivity 

All the above results were obtained using a time step 
of  t = 1/(128N2). We have repeated many of  them 

both doubling and halving the time step and we have 

found that the results are insensitive to these changes. 
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Fig. 8. Same as Fig. 7 except that (~ = 0.3 and the initial 
condition is a random number  uniformly distributed between 0 
and 1. Centers of  preferred adjustment are obtained also with 
this larger diffusivity. 
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tent centers of  adjustment nucleate from the random 

initial conditions. 
The simulations summarized in these sections dis- 

play a bewildering variety of  patterns which emerge 

from both random and structured initial conditions. 

Perhaps the most surprising result is the existence of  

centers of  adjustment and the persistence of  grid-scale 

structure. In Section 4 we will turn to some simple 

analytic considerations that help rationalize these ob- 

servations. 

4. Analytic models with small N 

In this section we retreat to some analytic models 

in which the number of  grid points is small. Our goal 

is to find some analytic solutions which demonstrate 

the existence of  centers of  adjustment and the asso- 

ciated suppression of  adjustment at neighboring grid 

points. 

4.1. Triplet solutions 

In Section 3 we summarized the "grid mode" solu- 

tion which had essentially two independent variables: 

a(t)  and b(t). In this section we construct an analo- 

gous solution with three independent variables. Sup- 

pose that 

S3n = a(t) ,  

S3n+l = b(t ), (4.1) 

33n+2 = c( t ) .  

and at t = 0 there has just been an adjustment so 

that a(0) = 0 while b(0) = B and c(0) = C. We 

look for a solution in which the next adjustment is at 

t = ½ a n d a ( 1 )  = B , b ( 1 ) = C a n d c ( I )  = 1---> 0. 
The dynamics in subsequent interval, I < t < 2/3,  

repeats what happened in the first interval, but with 

the replacement a --+ b, b ~ c and c --+ a. Thus at 

the end of  three such intervals the system has returned 
to initial state. 

The solution described above is a wave with wave- 

length n = 3 and period 1. The wave travels to the 
right because the first three grid points adjust in the or- 
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der 1, 2, 3 and so on. By symmetry there is also a left 

going wave in which the order of  adjustment is 3, 2,1 

and so on. We refer to these solutions that are periodic 

in both space and time as "structured solutions". 

Because of  the symmetry we have assumed the set 

of  differential equations in (2.2a) reduces to 

= l + / x ( b  + c -  2a), 

b = 1 + / z ( a  + c - 2b), (4.2) 

= 1 + # ( a  + b -  2c). 

It is easy to explicitly solve this set in the interval 0 < 

t < I with the initial condition a(0) = 0, b(0) = B 

and c(0) = C. Then at t = I one can determine the 

constants B and C by requiring that the pattern has 

shifted one grid point to the right. The result is that 

1 
B =  

1 + e x p ( - ~ )  + exp(-2 /z)  ' 
(4.3) 

1 + exp( - /z )  
C =  

1 + exp( - /z )  + e x p ( - 2 / z )  

Notice that both B and C are less than one. One can 

also verify that b(t) and c(t) remain less than one 

throughout the interval 0 < t < 1. Thus we have a 

good solution of  (2.2a), (2.2b). 

W h e n / z  is large we see that 1 - C ~ exp(-2/z) ,  

which is the same exponentially small quantity that 

appeared in our earlier discussion of  the grid mode 

e.g., see (3.4) and the surrounding discussion. Thus 

we expect that this traveling triplet solution puts the 

same demands on accuracy as the grid mode solution. 

(Incidentally, the grid mode is equivalent to a traveling 

doublet but in this case there is no distinction between 

a left and right going wave.) 

Figure 9 shows the results of  a numerical integra- 

tion of  the N = 3 version of  (2.2). We have taken ot = 
½ so that /z  -- a N  2 = 9 and a time step r = 10 -5 . 

In Fig. 9(a) we show the results of  starting the system 

with an initial condition given by the analytic solu- 

tion. The result is the 1-2-3  wave described above. In 

Fig. 9(b) this initial condition is perturbed slightly but 
the 1-2-3 wave eventually emerges. Thus the 1-2-3 

solution has a finite basin of  attraction. In Fig. 9(c) the 

strength of  the initial perturbation is increased and a 
3-2-1  wave emerges i.e., the direction of  propagation 



296 P. CessL W.R. Young/Physica D 98 (1996) 287-300 

a - 0 .5 ,  r - l O  "= 

3 ~ o  • • • o ' •  • • • O ~ s .  0 
N 2  ~e • • • • • • • • 0 " 1 S = " 0 . 9 9 1 2  

1 r- • • • • ¶ • • • • - ~ S , - - o . a 8 2  
(a) 

o . =  N 2  • • • • • • • • o _ s  = 10"  

1 • • ? • • • • - t S , - 0 . 9 8 2 + 1 0 " '  
(b) 

3 |F 4 • • • o ' •  • • • n ° - ~ s , ' °  + 10-= 
N 2 ~ - 0  • • • • • • • • e l  S = . 0 . 9 9 1 2 - 1 0  "= 

1 r- • • • • I '  • • • • - ~ S , - 0 . 9 8 2 + 1 0 "  
(c) 

N • • • • e l S = - 0 . 9 9 1 2 - 1 0 "  
• • • • ~iJS= =" 0 .982  + 1 0 "  

0 5 10 
(d) 

t 

Fig. 9. The time-space coordinates of the CA events for a 
numerical integration of (2.3) and (2.4) with c~ = 0.5, N = 3 
and r = 10 -5  for different initial conditions. For some initial 
conditions the "traveling triplet" is obtained (upper three panels) 
and for other initial conditions a partially synchronized solution 
emerges. 

of the wave of  adjustment is now reversed. An even 

stronger perturbation, shown in Fig. 9(d), results in a 

partially synchronized solution in which grid points 

1 and 3 are locked together and adjust in alternation 

with 2. 
The result in Fig. 9(d) motivated us to look for such 

a partially synchronized, and periodic in time, solu- 

tion. One sets Sl(t) = S2(t) = a(t) and S3(t) = 
c(t). (Of course, there are two other partially synchro- 

nized solutions that be constructed using the relabel- 

ing symmetry.) 
Suppose that a "double adjustment" has just oc- 

cured at t = 0 so that a(0) = 0 and c(0) = C. Then a 

single adjustment occurs at t = tl, so that a( t l )  = A 
and C(tl) = 1 ~ 0. It turns out that the next double 

adjustment occurs at t = 1 so that the requirement of  

periodicity implies a(1) = 1 ~ 0 and c(1) = C. One 
can solve the reduced version of  (2.2a), analogous to 

(4.2), in the two intervals 0 < t < t] and tl < t < 1 

and apply the various conditions above to obtain three 

equations for the three unknowns A, C and t]. The al- 

gebra is more complicated than the earlier calculations 

because this partially synchronized solution has fewer 

symmerties than either the grid mode or the traveling 

triplet. The transcendental equation that determines tl 

is 

tl = ~  + 1 [ 1 - e - 3 U ]  -1 

× [e -3u - 2e -3utl + e - 3 u ( l - q ) ] ,  (4.4a) 

~ ÷ l e - u ,  (4.4b) 

where the approximation in (4.4b) requires that 

exp(-2 /z)  << 1. This same approximation also shows 

that 

A ~ 1 - e -2u, (4.5a) 

C ~ 1 - e -u .  (4.5b) 

Once again, we see that accuracy demands resolving 

the exponentially small quantity exp(-2/z) .  

To summarize, with N = 3, we have six differ- 

ent periodic in time solutions. There is the synchro- 

nized solution, two solutions corresponding to left and 

right going waves, and three different partially syn- 

chronized solutions. Fig. 9 offers numerical evidence 

that some of these solutions have a finite basin of  at- 

traction. With these results we start to glimpse some 

of  the complexity that emerged in Section 3 when we 

numerically solved the system with N = 100. 

One issue that the N = 3 solutions do not address 

is the possibility of  suppression of  adjustment at some 

grid points and the concomitant formation of  centers of  

adjustment at other grid points. To find such solutions 

we turn to N = 4. 

4.2. Quartet solutions 

With N = 4 one can obtain the traveling wave solu- 

tions which are analogous to the 1-2-3 wave described 

above. We defer discussion of  this case till after we 
have examined a more interesting solution which ex- 

hibits suppression of  adjustment. 
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Fig. 10. (a) The spatial configuration for the quartet solution 
(4.6). Shown above is Sn for the seven grid point n = 0 to 
n = 6. Numbers 1-4 form a quartet according to the nota- 
tion in (4.6). This configuration is then reproduced periodi- 
cally along the n-axis. The points at n = 2 and n = 4 [i.e., 
S2(t) = S4(t) = b(t)] never undergo adjustment, while those 
corresponding Sl(t)  and S3(t) adjust in alternation at times 
separated by ~. (b) The time evolution for 0 < t < ~ of  the 
four salinity values S1 = a(t), $2 = $4 = b(t) and $3 = c(t): 
at t = ¼, c(t) reaches the CA threshold. For ~ < t < ½, the 
roles of a and c are exchanged, while b is the same. 

by showing a plot of  the solution in Fig. 10(b). At t = 

0, S1 (0) = a(0) has just adjusted so that a(0)  = 0. At 
t = ¼, $3(¼) = c(1)  adjusts so that c(1)  = 1 ~ 0. 

Also at t = l ,  b(1)  = s 2 ( l )  = S3(1) have returned 
to their position at t = 0 so b(¼) = b(0). Finally at 
t = I a ( l )  = c(0) In the next interval, I < t  < 1, 

the motion repeats itself but with a(t) and c(t) ex- 

changed. Thus the period is ½, i.e., Fig. 10(b) shows 

half of  one oscillation. 
To determine the constants B -- b(0) and C -- c(0) 

one solves the reduced version of (2.2a) in the interval 

0 < t < I and applies the various initial and final 

conditions. In this way one obtains 

1[,__ 1] 
B = ~  1 - e - t *  + l + e - U / 2  ' 

1 
C - -  

1 + e-U/2" 

(4.7) 

However, we are not finished because we must still 

verify that all the variables remain below the threshold 

S = 1 during the interval 0 < t < ¼. It turns out that 

this condition is equivalent to 1 > B(/z). The function 

B(/~) is plotted in Fig. 11 and the condition that 1 > 
B(/,)  is equivalent to 

2 in 2 < / z .  (4.8) 

This completes the construction of the symmetric 

quartet solution. 

Recalling that # - otN 2 we see from (4.8) that 

the symmetric quartet is a possible solution provided 

that the coupling between adjacent grid points is 

Consider the "symmetric quartet" configuration in 
Fig. 10(a). That is 

S1 (t) = a( t ) ,  

S2(t) = S4(t) = b(t), (4.6) 

S3(t) = C(t). 

We now construct a periodic in time solution in which 
a(t) and c(t) alternately adjust while b(t) never ad- 
justs. Thus there are two adjustment centers and there 
is suppression of adjustment at the other two grid 

points. In order to motivate the construction we begin 
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Fig. 11. A plot of  $2(0) = $4(0) as a function of  the coupling 
parameter/z ---- otN 2. Only values below unity are acceptable. 
Thus/L must exceed 2 In 2. 
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Fig. 12. The time-space coordinates of the CA events for a 
numerical integration of (2.3) and (2.4) with ~ = 0.5, N = 4 
and r = 10 -5 for initial conditions that are perturbations of 
(4.7), i.e., those leading to the exact "symmetric quartet" solu- 
tion (4.6). For small perturbations the "symmetric quartet" is 
obtained (upper three panels) and for large perturbations (low- 
est panel) the synchronized solution is obtained. 

sufficiently strong. If  # is large then the results in 

(4.7) simplify to 

B ~ 1 - le-tZ/2, C ,~ 1 - e -~/2. (4.9) 

To accurately represent the solution that we have found 

above a computer must be able to distinguish between 

B and 1. This resolution requirement is much weaker 

than those associated with our earlier solutions be- 

cause e x p ( - t t / 2 )  >> exp(-2 /z)  when/z  is large. 

Figure 12 shows the results of  integrating the system 

(2.2) with N = 4 and ot = ½, so that/z = 8. The time 
step is r = 10 -5 which satisfies the double inequality 

e -2u << r << e -tz/2. (4.10) 

The inequality above ensures that the grid mode is 

suppressed, while the symmetric quartet is resolved. In 

Fig. 12(a) the initial condition is given by the analytic 
result in (4.7). The three successive parts of  Fig. 12 
show the results of  perturbing this symmetric quartet 

Fig. 13. Same as Fig. 12 except that r = 10 -8, i.e., small 
enough to resolve the grid mode discussed in Section 3.1. The 
"symmetric quartet" solution, with suppressed CA at two points, 
is robust to small perturbations (upper three panels). Large 
perturbations lead to the emergence of the grid mode (lowest 
panel). 

initial condition. In Figs. 12(b) and (c) the symmetric 

quartet solution attracts the perturbed initial condition. 

But for the large initial perturbation in Fig. 12(d) the 

synchronized solution is the final state of  the system. 

If  the calculations in figure are repeated with a much 

smaller time step, r = 10 -8, so that now 

r << e -2u << e -~/2, (4.11) 

then the grid mode is no longer suppressed by the 

roundoff error. The result is shown in Fig. 13. In 

Fig. 13(a) the system is started precisely on the sym- 

metric quartet solution it remains there. Figs. 13(b), 
(c) and (d) show that the symmetric quartet solution 

is stable to small perturbations even when the grid 
mode is allowed. The grid mode, however, emerges for 

large perturbations, instead of  the synchronized solu- 

tion (cf. Fig. 12(d) with Fig. 13(d)). Thus with the very 
small time step, r = 10 -8, we are accurately solving 

the semi-discrete system in (2.2) and the grid mode 
emerges as well as the symmetric quartet solution. 
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To complete our discussion of structured solutions 
for N = 4 we consider the "traveling quartet", which 
is the analog of the traveling triplet discussed in 
Section 4.1. We remove the symmetry (4.6b), so that 
all four points have distinguished values at t = 0. 

Thus Sl(0) = 0, $2(0) = B, $3(0) = C and $4(0) = 
D. At t ---- ¼ we require that the pattern has shifted 
by one grid point to the right. That is: Sl(1) = D, 
$2(¼) = 1 ~ 0, $3(1) = B and $4(1) = C. A 

straightforward calculation then shows that 

2 + exp(-/~/2)  
B =  

2 + 2 exp(-/z)  ' 

1 
C - (4.12) 

1 q- exp( - /z ) '  

2 - exp(- /z /2)  
D =  

2 + 2 e x p ( - # )  " 

The requirement that all the points are below the 
threshold during the interval 0 < t < ¼ implies that 

# < 21n2. (4.13) 

Remarkably, this condition is complementary to the 
condition in (4.8) which is required for the existence 
of the symmetric quartet. 

4.3. Implications for larger values of N 

The methods we have used to construct periodic so- 
lutions with N = 2, 3 and 4 can be applied to larger 
values of N. For instance it is possible to find a trav- 
eling wave solution with spatial period N and tempo- 
ral period 1. The wave translates one grid point every 
At  = 1/N. This is the generalization of the N = 4 
traveling wave in (4.12). The existence of this solu- 
tion requires that the coupling coefficent /z satisfies 
an inequality analogous to (4.13), with the maximum 
value of /z  approaching unity as N increases. 

When N is even there is also a "symmetric N-tet" 
solution in which two antipodal grid points adjust in 
alternation and the remaining N - 2 grid points never 
adjust. The period of this N-tet oscillation is 2/N.  The 
existence of the symmetric N-tet solution requires that 
the coupling coefficient,/z, satisfy an inequality analo- 
gous to (4.8). The minimum value of tt increases with 

increasing N. The patterns of adjustment in Figs. 4(b) 

and (c) seem to be noisy versions of this solution. 
To summarize, when N is large the system in (2.2) 

has many exact solutions that are periodic both in 
space and time. Each of these periodic solutions has a 
"basin of attraction" in the space of initial conditions. 
With large values of N this can result in complicated 
behavior because of the many alternative ways of con- 
structing periodic solutions, e.g., if N = 100 we could 
in principle look for traveling wave solutions with any 
spatial periods that divides evenly into 100 or, if /z is 
large enough, a symmetric solution in which just two 

grid points adjust and the remaining 98 never adjust. 
However, obtaining these structured solutions nu- 

merically requires resolving some exponentially small 
quantity, so that the time step must satisfy an inequal- 
ity of the form 

r < exp(-q/z) .  (4.14) 

The constant q depends on the details of the solution: 
for the grid mode q = 2, for the symmetric quar- 
tet q = 1, and for the symmetric N-tet q = 2/N.  

Generally, q becomes smaller as the temporal period 
becomes shorter. This is so because each adjustment 
event forces the grid mode. This mode then decays 
in between adjustment events with an e-folding time 
of 4/z. Thus if the time between adjustment events 
is At then the grid mode has decayed by a factor of 
exp(-4/zAt)  by the time the next event occurs. This 
implies that the value of S at some nonadjusting grid 
point differs from one by exp(-4/zAt) .  This expo- 
nentially small quantity must be resolved in order to 
accurately compute the structured solution. 

5. Conclusion 

Convective adjustment algorithms that are based on 
applying a rule have an unphysical sensitivity to nu- 
merical errors and slight changes in time step, spatial 
resolution and initial condition. Indeed, as we have 
repeatedly emphasized, the dependence on the spa- 
tial resolution is exponentially strong. It may be that 
alternative strategies, such as implicit vertical diffu- 
sion (e.g., [2]) avoid these problems. Implicit vertical 
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diffusion schemes increase the strength of  the verti- 

cal mixing coefficient to some large, but finite, value 

when the layer is statically unstable. Thus density in- 

versions are removed rapidly, but not instantaneously. 

Based on our results we can identify a nondimen- 

sional parameter which characterizes implicit vertical 

diffusion schemes. This is the ratio of  the horizontal 

diffusion time between grid points (1 /4#  in our case) 

to the time scale for vertical mixing (zero in our case). 

We expect that when this parameter is large (i.e., when 

horizontal mixing is slower than the vertical mixing) 

then implicit vertical diffusion schemes will probably 

display the same sensitivity as the instantaneous ad- 

justment model considered in this paper. 

Recent models of  oceanic convection [13-15] em- 

phasize that the rim current enclosing a convective 

chimney is baroclinically unstable. The ensuing frag- 

mentation of  the chimney produces lateral mixing. 

Thus the vertical and lateral mixing processes trig- 

gered by oceanic convection are coupled. It is precisely 

this aspect of  the physical problem which is ignored 

by the convective adjustment rules we have criticized 

in this paper. So the challenge facing us now is to 

formulate a physically motivated parameterization of  

convection that accounts for the coupling between ver- 

tical and lateral mixing. 
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