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Near-critical reflection of internal waves
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Using a matched asymptotic expansion we analyse the two-dimensional, near-critical
reflection of a weakly nonlinear internal gravity wave from a sloping boundary in
a uniformly stratified fluid. Taking a distinguished limit in which the amplitude
of the incident wave, the dissipation, and the departure from criticality are all
small, we obtain a reduced description of the dynamics. This simplification shows
how either dissipation or transience heals the singularity which is presented by the
solution of Phillips (1966) in the precisely critical case. In the inviscid critical case, an
explicit solution of the initial value problem shows that the buoyancy perturbation
and the alongslope velocity both grow linearly with time, while the scale of the
reflected disturbance is reduced as 1/t. During the course of this scale reduction, the
stratification is ‘overturned’ and the Miles–Howard condition for stratified shear flow
stability is violated. However, for all slope angles, the ‘overturning’ occurs before the
Miles–Howard stability condition is violated and so we argue that the first instability
is convective.

Solutions of the simplified dynamics resemble certain experimental visualizations
of the reflection process. In particular, the buoyancy field computed from the analytic
solution is in good agreement with visualizations reported by Thorpe & Haines
(1987).

One curious aspect of the weakly nonlinear theory is that the final reduced de-
scription is a linear equation (at the solvability order in the expansion all of the
apparently resonant nonlinear contributions cancel amongst themselves). However,
the reconstructed fields do contain nonlinearly driven second harmonics which are
responsible for an important symmetry breaking in which alternate vortices differ in
strength and size from their immediate neighbours.

1. Introduction
1.1. Reflection of internal waves on a sloping bottom

Understanding the intensity and spatial distribution of turbulent vertical mixing in
the ocean is an important problem in physical oceanography. Ocean models require
accurate parametrizations of turbulent mixing to make realistic predictions of the
transport of heat, salt and chemical species. Because the ocean is stably stratified,
vertical mixing is inhibited and convection to great depth occurs only in restricted
high-latitude regions. But the fluid which has reached the abyss by convection must
ultimately return to the sea surface so as to maintain a quasi-steady state. How and
where this return flow occurs remains obscure to this day. Munk (1966) and Armi
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Figure 1. Schematic view of the reflection of the incident wave. The angle between the bottom
slope and the horizontal is γ; the angle between the incident group velocity and the horizontal is β,
and α = β + γ. cg indicates the group velocity and g indicates gravity.

(1978) suggested that significant vertical mixing takes place at sloping boundaries.
Indeed, a recent report by Polzin et al. (1997) shows greatly elevated mixing rates
above rough topography, especially in the deepest 150 m of the Brazil basin.

Sandstrom (1966) was the first to propose the oceanic internal wave field as a
possible source of the energy which is needed to activate strong mixing near sloping
boundaries. Internal waves are well documented in nature (see Munk 1981) and they
obey simple, but unusual, reflection laws at a rigid boundary. In optics or acoustics,
the incident and reflected wave rays make the same angle with respect to the normal
to the reflecting surface, whereas for internal waves they make the same angle with
respect to the direction of gravity. When internal waves reflect off a sloping bottom,
the reflected wave has the same frequency ω as the incident wave. But because the
wave frequency is related to the direction of propagation by ω = N sin β preservation
of ω implies preservation of the angle β (N is the buoyancy frequency and, as shown
in figure 1, β the angle between the group velocity and the horizontal). This reflection
law leads to a concentration of the energy density into a more narrow ray tube upon
reflection. A fraction of the energy of the incident wave is radiated away as the
reflected ray, but a part of the energy is lost due to turbulent dissipation, the rest
being converted into irreversible mixing which accounts for the vertical transport of
mass and matter.

Probably the most effective situation for boundary mixing arises when an oncoming
wave reflects from a bottom slope which nearly matches the angle of wave propa-
gation. At this critical angle, the analytic theory of internal waves reflecting from a
uniformly sloping bottom (Phillips 1966) predicts that the reflected wave has infinite
amplitude and infinitesimal wavelength. These unphysical results signal the failure
of the idealizations (for example, linear waves and inviscid fluid) made by Phillips
(1966).

Sandstrom (1966) reported observational evidence of energy enhancement at a
particular frequency. Later Eriksen (1982, 1985) presented data showing energy and
shear enhancement near the critical frequency at a few mooring sites. Eriksen in-
terpreted deviations from a linear and inviscid theory as evidence for dissipation
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through shear instability and nonlinear interaction. The inviscid nonlinear case was
theoretically considered by Thorpe (1987) who showed that singularities may occur
at other frequencies when a finite-amplitude incident wave interacts resonantly with
its own phase-locked reflected wave. Gilbert (1993) has also studied this phenomenon
on the continental rise and slope off Nova Scotia. Energy enhancement at the critical
frequency was significant at the 95% level for eight of the thirty tests performed
even though the overall concavity of the slope should have slightly inhibited the phe-
nomenon. Finally, Eriksen (1998) has recently reported striking observations made
on the steep flank of a tall North Pacific Ocean seamount. Eriksen found a dramatic
departures from the quasi-universal Garett–Munk spectral model near the bottom in
a frequency band centred on the frequency for which ray and bottom slopes match.

1.2. Laboratory and numerical experiments

Following the first observational studies, Sandstrom (1966) performed a laboratory
experiment that clearly demonstrated the amplification that results from internal wave
reflection off a sloping bottom. Then, Cacchione & Wunsch (1974) showed that at
the critical angle, the strong shearing motion becomes unstable and results in the
formation of a series of periodic vortices. Overturning of these vortices produces
mixed fluid that propagates into the interior as regularly spaced layers all along the
slope.

Thorpe & Haines (1987) reported evidence of the three-dimensional structure of the
boundary layer but they were unable to reproduce the formation of the vortex array
seen by Cacchione & Wunsch (1974). The absence of vortices was also noted by Ivey
& Nokes (1989) when they studied the mixing efficiency in the case of the breaking
of a monochromatic incident wavefield uniformly distributed over the sloping bed.
Taylor (1993) was particularly interested in the decaying turbulence and the mixing
generated in the boundary layer. De Silva, Imberger & Ivey (1997) considered the
case of a small ray width compared to the bed length.

Ivey & Nokes (1989), De Silva et al. (1997) and McPhee (1998) have also shown
the formation of filaments by instabilities as waves approach the critical frequency
by the action of the incident and reflected waves. Exactly at the critical angle, instead
of producing fine-structured filaments, the waves produced turbulent vortices at the
boundary. These vortices apparently mix boundary fluid which is presumably expelled
along the isopycnal corresponding to the new density of the mixed fluid. As suggested
by Caldwell, Brubaker & Neal (1978), these intrusive layers could also explain the
presence of a highly ‘stepped’ temperature profile as the steep slope is approached at
Lake Tahoe, California.

On the numerical side, Slinn & Riley (1996) have shown the creation of a thermal
front moving upslope at the phase speed of the oncoming wave in the turbulent
boundary layer. For a steep slope, the thermal front resembles a turbulent bore ex-
hibiting nearly continuous localized mixing, whereas for shallower slope, the mixing
is observed across the breadth of the domain and is temporally periodic. The internal
wavefield continuously pumps fresh stratified fluid into the mixed layer, while simul-
taneously extracting the mixed boundary fluid. Slinn & Riley (1998b) have pursued
their published work and have recently reported very detailed results on the effects of
the slope angle on the turbulent layer thickness, mixing period and mixing efficiency.
An advantage of the numerical approach is that it is possible to perform experiments
over the shallow bottom slopes that are more typical of oceanic conditions.

Other recent numerical work of Javam, Imberger & Armfield (1997) showed that for
near-critical waves, the instabilities were triggered at the bed, while for supercritical
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γ β

(deg.) (deg.) N sin β h a0 R̃e Re a ε %

Cacchione & Wunsch (1974) 30 30 0.48 40 0.4 2 5400 0.008 0.24 0.45
Thorpe & Haines (1987) 20 21 0.65 28 2.1 28 4500 0.037 0.32 0.13
Ivey & Nokes (1989) 30 30 0.30 40 4.6 139 3600 0.085 0.53 0.05
— — — — — 3.7 89 — 0.068 0.49 0.07
Taylor (1993) 20 20.1 0.16 53 3.2 14 4000 0.028 0.29 0.18
— — — — — 4.6 30 — 0.040 0.32 0.13
De Silva et al. (1997) 38 38 0.36 40 3.1 144 8200 0.052 0.61 0.03

Table 1. A summary of experimental parameters. γ is the angle between the bottom slope and the
horizontal. N sin β the frequency in s−1; h is the depth of water in cm; a0 is the amplitude of the
motion of the paddle in cm; R̃e = ζ2N sin β/ν is the Reynolds number defined by Thorpe & Haines
(1987) and used by Ivey & Nokes (1989); Re = N sin β/νK2 is the Reynolds number defined by

Slinn & Riley (1996) and us; a is the non-dimensional parameter defined in (2.12); ε = (a tan α)1/3

is the small parameter used in our expansion and % is the dissipative parameter defined in (3.8).

waves the instabilities develop away from the bed. Javam et al. (1997) also showed
the nonlinear creation of harmonics.

1.3. Questions and strategy

Our goals in this paper are to understand the role of the nonlinearity in the reflection
process, and to characterize the instabilities responsible for the transition to turbulence
near the slope. We also emphasize the role of transience and dissipation in healing
the singularity which occurs when the reflection is critical.

The paper is organized into four sections. The formulation of the problem is de-
scribed first in § 2. We also present the main effect of the reflection process in the outer
region. In § 3, we focus our study on the reflection problem in the boundary layer close
to the slope. In § 4, we derive the explicit solution for the inviscid case, whereas the
viscous effects are presented in § 5. Finally, § 6 contains the summary and conclusions.

2. Analysis
2.1. Formulation in the coordinate system of the slope

We will consider a two-dimensional, non-rotating, incompressible Boussinesq fluid,
with constant Brunt–Väisälä frequency N and a uniformly sloping bed (angle of
inclination is γ) shown in figure 1. We do not make the approximation of small
inclination. In lakes, bed slopes are in the range 2◦–20◦, whereas in the ocean the
r.m.s. slope of the sea bed is roughly 4◦. In the vicinity of seamounts slopes can
be considerably higher, in the range 6◦–26◦ (see De Silva et al. 1997 and references
therein). And most experiments use even larger angles of inclination.

The incident wave is a nearly monochromatic group of internal gravity waves. The
angle between the incident group velocity and the horizontal is β and thus the carrier
frequency of the group is N sin β.

Our analysis employs a slope-oriented coordinate system in which x is the distance
along the slope and z is the distance normal to the slope. In terms of these tilted
coordinates the stratification of the Boussinesq fluid is

ρ = ρ0

[
1− g−1N2(z cos γ + x sin γ)− g−1b

]
, (2.1)

where b(x, z, t) is the buoyancy perturbation of the stratification at rest.
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Figure 2. Schematic view of the reflection process for γ ≈ β. The reflected wave is alongslope,
whereas the nonlinearly reflected second harmonic, represented with the dotted line, makes an angle
θ with the slope.

Denoting by (u, w) the components of the velocity field, the equations of motion
are

Du

Dt
− sin γ b+ px = ν∇2u, (2.2a)

Dw

Dt
− cos γ b+ pz = ν∇2w, (2.2b)

Db

Dt
+N2 sin γ u+N2 cos γ w = κ∇2b, (2.2c)

ux + wz = 0, (2.2d)

where D/Dt = ∂t + u∂x + w∂z is the convective derivative.
The boundary conditions at z = 0 are

u = w = 0, N2 cos γ + bz = 0. (2.3a–c)

The condition (2.3c) is that there is no diffusive flux of buoyancy through the
slope. Wunsch (1970) and Phillips (1970) have shown that this condition at a sloping
boundary produces a flow near the wall in a stably stratified fluid. Under laboratory
conditions using dissolved salt this flow is very small (but detectable). This no-flux
condition will cause some complications later.

2.2. The incident wave and non-dimensional variables

The situation we envisage is shown in figure 2. The incident wave nearly satisfies
the critical condition that γ = β. Consequently the group velocity of the reflected
wave makes a very shallow angle with the slope. The figure also anticipates some
aspects of our analysis: when the reflection is nearly critical the advective term
becomes important in a region near the slope. This quadratic nonlinearity results
in the production of a second harmonic. This nonlinearly generated wave can then
radiate away from the slope (see Thorpe 1987). The angle θ with which the second
harmonic leaves the slope is not necessarily shallow.

Using the convention

u = −ψz, w = ψx, (2.4)
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for the streamfunction, we consider an ‘incident wave train’

[ψ, b] ≈ [1, NK]A(t− sz) cos(K sin α x+K cos α z −N sin βt) (2.5)

impinging on the slope. We have introduced the wavenumber K and, as suggested by
figure 1,

α ≡ β + γ. (2.6)

The envelope, A in (2.5), changes slowly relative to the space and time scales of
the carrier wave; s−1 is the vertical group velocity of this slowly modulated incident
wave. Thus, near the slope, the incident wave switches on slowly with a prescribed
amplitude A(t).

We now non-dimensionalize (2.2) using the scales suggested by the incident wave
in (2.5). The envelope can be written as

A = ψmaxÂ, (2.7)

where ψmax is the maximum amplitude of the streamfunction and so max(Â) = 1. The
non-dimensional variables are

[x̂, ẑ] ≡ K[sin α x, cos α z], t̂ ≡ N sin β t, (2.8a–c)

[ψ, u, w, b, p] ≡ ψmax[ψ̂, K cos α û, K sin α ŵ, KNb̂, Np̂]. (2.8d–h)

Using the variables above, the non-dimensional equations of motion are

Du

Dt
+

tan α

sin β
px − sin γ

sin β cos α
b =

1

Re
∇2u, (2.9a)

Dw

Dt
+

cot α

sin β
pz − cos γ

sin β sin α
b =

1

Re
∇2w, (2.9b)

Db

Dt
+

sin γ cos α

sin β
u+

cos γ sin α

sin β
w =

1

Pe
∇2b, (2.9c)

ux + wz = 0. (2.9d)

The differential operators in (2.9) are

∇2 = sin2α ∂2
x + cos2α ∂2

z , (2.10a)

D

Dt
= ∂t + a (u∂x + w∂z) . (2.10b)

In (2.9), we have dropped the ‘hats’ which would otherwise decorate the non-
dimensional variables. The dimensionless dissipation parameters are the Reynolds
and the Péclet numbers defined as follows:

Re =
N sin β

νK2
and Pe =

N sin β

κK2
. (2.11a, b)

The other non-dimensional parameter in (2.10b) is a measure of the nonlinearity:

a ≡ K2 sin 2α

2N sin β
ψmax. (2.12)

Thorpe (1987) gives a useful physical interpretation of the amplitude parameter a:
the maximum slope of the isopycnals in the incident wave (2.9) is a tan β/(1 − a) if
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a < 1 or infinite if a > 1. In what follows we will deal exclusively with the weakly
nonlinear case in which a is small. The parameter a is also related to the internal
Froude number Fr ≡ max(uz/N) by

Fr = a
sin 2β cos β

sin 2α
. (2.13)

Some authors prefer to use the minimal Richardson number Ri ≡ Fr−2. Thus, with the
appropriate geometric factors, a is simply related to the other measures of nonlinearity
used in the literature.

In this non-dimensional and slope-oriented coordinate system, the dispersion rela-
tion of an inviscid linear internal wave (with all fields proportional to exp[ikx+ imz−
iωt]) is

ω = ± k sin α cos γ − m cos α sin γ

sin β
√

(k sin α)2 + (m cos α)2
, (2.14)

with the corresponding group velocity

cg =

(
∂ω

∂k
,
∂ω

∂m

)
= ±sin 2α (m cos α cos γ + k sin α sin γ)

2 sin β
[
(k sin α)2 + (m cos α)2

]3/2 (m,−k). (2.15)

One solution of the dispersion relation (2.14) is (ω, k, m) = (1, 1, 1); this is the incident
wave. In terms of the non-dimensional variables, the wave fields are

[ψ, b, p] =
A

2
ei(x+z−t) [1, 1,−i cos β] + c.c. (2.16)

where A(t− sz) is the wave envelope and s−1 = − sin 2α/2 tan β is the group velocity
in the direction normal to the slope (put k = m = 1 in (2.15)).

2.3. The ‘near-critical’ approximation

We will develop a reductive approximation which is based on taking a distinguished
limit in which a, β − γ, Re−1 and Pe−1 are all small. To motivate our scaling
assumptions, we recall the classical solution of the reflection problem given by
Phillips (1966). The no-flux boundary condition that w = 0 at z = 0 is satisfied by
superposing a reflected plane wave on top of the incident wave in (2.16). In terms of
non-dimensional variables, the vertical wavenumber of the reflected wave is

m =
tan (γ + β)

tan (γ − β)
. (2.17)

The critical reflection condition is that β = γ and then, according to (2.17), the
wavenumber of the reflected wave is infinite. When γ − β is small, m is large and the
reflected wave has a much smaller length scale than that of the incident wave. This
singularity, or near singularity, signals that the assumptions implicit in the Phillips’
solution (stationarity, linearity and absence of dissipation) fail when the incidence is
near critical.

We define the parameter ε by

ε ≡ (a tan α)1/3. (2.18)

(Because a ∝ cos α, ε is bounded as α → π/2.) The reduction is based on the
assumption that ε is small. As a measure of the degree to which the slope departs
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from the critical condition β = γ, we introduce σ defined

β =
α

2
− σε2

2
, γ =

α

2
+
σε2

2
. (2.19a, b)

The sign of σ determines if the reflection is supercritical (σ < 0, upslope reflection);
or subcritical (σ > 0, downslope reflection); σ = 0 corresponds to precisely critical
reflection.

From (2.17) and (2.19a, b) it follows that when ε� 1,

m ≈ tan α

σε2
. (2.20)

Thus the ‘near-critical’ condition in (2.19a, b) ensures that the vertical wavenumber
of the reflected wave is much greater than that of the incident wave.

Using (2.15), one can also show that the group velocity of the reflected wave in the
near-critical case is

cg ≈ tan 2β

tan β

1

m2
[−m, 1]. (2.21)

Using (2.20), one sees that the z-component of the group velocity in (2.21) is of order
ε4. Thus if ε � 1 it might take an impractically long time to establish the solution
given by Phillips (1966).

The theory employs a matched asymptotic expansion in which the incident wave
in (2.16) is in the outer region and the reflected disturbance is largely confined to an
inner region, which is essentially a boundary layer close to the slope.

From (2.20), we can anticipate that as ε → 0 a useful inner coordinate is likely to
be ξ = ε−2 tan α z. The fields of the reflected wave are

[ψ, b, p] =
A

2
ei(x+mz−t)

[
1,

sin(β + γ)

sin(β − γ) , i cos β

]
+ c.c. (2.22)

and this suggests the introduction of the more appropriate variables B = bε2/ sin α
and P = p/ cos β.

Using (2.21), we can also estimate the time for the reflected wave to travel through
a distance on the order of its own wavelength. One finds that this transit time scales
as ε2 which motivates the introduction of a slow timescale t2 ∼ ε2t.

The other scaling assumptions are that

Re =
sin2 α

ε6ν6

and Pe =
sin2 α

ε6κ6

. (2.23a, b)

The main justification for the choices above is a posteriori – they work in the sense
that the dissipative terms are comparable to the others in the final amplitude equation.
Knowledge of ε is then the key to recovering a specific physical situation.

2.4. Nonlinearly reflected second harmonic

Because of the quadratic terms in (2.10b), one can anticipate, following Thorpe (1987),
the nonlinear creation of a second harmonic in the small [z = O(ε2)] region in which
the advective terms become important. However this second harmonic does not
remain confined to the region in which z = O(ε2). The second harmonic can radiate
into the outer region where it appears as a plane wave. A successful completion of the
matching problem requires that one recognizes this possibility that the inner region
drives the outer region through this nonlinear process.
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Figure 3. m̃(α), the z-wavenumber of the nonlinearly reflected second harmonic,
in the near-critical case. When α > π/3, m̃(α) is complex.

We now assemble the fields which describe the second harmonic in the outer region.
A modulated plane wave second harmonic with upward group velocity is

[ψ, b, p] = 1
2
H ei(2x+m̃z−2t)[1, b̃, ip̃] + c.c., (2.24)

where H(t− s̃z) is the envelope of the second harmonic and s̃−1 is the vertical group
velocity. The matching will determine H in terms of the incident amplitude A. In
(2.24), we use the tilde to denote quantities associated with the second harmonic. In
the nearly critical case these quantities are given to leading order by

m̃(α) ≡ − 2
3

cosec 1
2
α tan α[cos 1

2
α+ 2 (2 cos α− 1)1/2], (2.25a)

b̃(α) ≡ 1 +
(
1− 1

2
m̃
)

cos α, (2.25b)

p̃(α) ≡ (2 cos α− 1)1/2 , (2.25c)

s̃(α) ≡ − tan α

2

(
4 + m̃2 cot2 α

)3/2

2 + m̃ cot α cot 1
2
α
. (2.25d)

If α > π/3, the second harmonic is evanescent in z†, while for α < π/3 the second
harmonic propagates away from the slope; m̃(α) is plotted in figure 3. The angle θ
between the slope and the direction of propagation of the second harmonic is

θ = − arctan

(
2 tan α

m̃(α)

)
(α 6 π/3). (2.26)

Both θ and the group velocity s̃−1 are shown in figure 4. Because both θ and the
group velocity are non-zero the second harmonic is not trapped in a boundary layer
close to the slope.

Slinn & Riley (1998a) have reported that when γ < π/6, intrusive layers form near
the slope. However, interestingly, in the case γ = π/6 (i.e. the critical value above

† Javam et al. (1997) showed the nonlinear creation of evanescent harmonics. Apparently they
never performed numerical experiments in the case γ < π/6 when they should propagate according
to the present results.
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Figure 4. s̃−1 (solid line), the z-component of the group velocity, and θ (dashed line) angle of
reflection between the slope and the direction of propagation of the second harmonic in the critical
case.

which the nonlinearly reflected second harmonic is evanescent), there is a uniform
thickening of the dye layer along the slope.

2.5. The outer region

The first two orders of the outer solution are obtained by taking a combination of
the incident wave in (2.16) and the second harmonic (2.24)

[ψ, b, p] = 1
2
A ei(x+z−t) [1, 1,−i cos β] + 1

2
εH ei(2x+m̃z−2t)[1, b̃, ip̃] + O(ε2) + c.c. (2.27)

The connection between H(t− s̃z) and A(t−sz) is determined by the matching problem
in the inner region.

3. The inner region
In the inner region, we use a stretched coordinate ξ to describe the reflected

disturbance close to the slope and a slow timescale t2. Following our earlier discussion
in § 2.3, these scales are

ξ ≡ ε−2 tan α z, t2 ≡ µε2t, (3.1a, b)

where µ ≡ cot (α/2). As suggested by (2.22), we introduce

B ≡ ε2b

sin α
and p ≡ cos β P . (3.2a, b)

Finally, it is convenient to define

u ≡ ε−2 tan α U, w ≡W, ψ ≡ Ψ, (3.3a–c)

so that we have

U = −Ψξ and W = Ψx. (3.4a, b)

In the zone close to the slope, where ξ = O(1), B and U are also O(1). That is,
the buoyancy perturbation and the alongslope velocity are O(ε−2) larger than in the
incident wave.
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In the inner region, using (2.23a, b), (2.9) becomes

DU

Dt
− B = ε2

[−µPx + µσB + ν6Uξξ

]
+ O(ε3), (3.5a)

−Pξ + B = ε2
[
σ

2µ
B +

1

µ

∂W

∂t

]
+ O(ε3), (3.5b)

Ux +Wξ = 0, (3.5c)

DB

Dt
+U = ε2

[−µσU − µW + κ6Bξξ
]

+ O(ε3), (3.5d)

where the convective derivative is

D

Dt
= ∂t + µε2∂t2 + ε

(
U∂x +W∂ξ

)
. (3.6)

Using the complex variable S = Ψ + iP , (3.5) can be written compactly as

Sξt − iSξ = −εJ(Ψ, Sξ) + ε2
[
−µSξt2 + iµ

(
σSξ − Sx)− i

µ
(Wtt − iWt)

− iσ

2µ
(Bt − iB) + µ%2Sξξξ + µζS∗ξξξ

]
+ O(ε3), (3.7)

where

%2 =
ν6 + κ6

2µ
, ζ =

ν6 − κ6

2µ
, (3.8a, b)

and J(a, b) is the Jacobian.
The equation above must be solved with the boundary conditions:

S(x, 0, t, t2) + S∗(x, 0, t, t2) = 0 (no normal flow), (3.9a)

Sξ(x, 0, t, t2) + S∗ξ (x, 0, t, t2) = 0 (no slip), (3.9b)

Sξξ(x, 0, t, t2)− S∗ξξ(x, 0, t, t2) = 0 + O(ε4) (no flux of buoyancy). (3.9c)

By taking the inner limit of the right-hand side of (2.27), we obtain the matching
condition

lim
ξ→∞ S = A(t2)e

i(x−t) + εH(t2)
(1− p̃ sec β)

2
e−2i(t−x)

+εH∗(t2)
(1 + p̃∗ sec β)

2
e2i(t−x) + O(ε2). (3.10)

The weakly nonlinear analysis proceeds by introducing not only slow space and
time scales but also seeking a solution of (3.7) in terms of the regular perturbation
expansions

S = S0 + εS1 + ε2S2 + O(ε3). (3.11)

Substituting (3.11) into (3.7) leads to the following hierarchy:

ε0 : (∂t − i) ∂ξS0 = 0, (3.12a)

ε1 : (∂t − i) ∂ξS1 = −J(Ψ0, S0ξ), (3.12b)

ε2 : (∂t − i) ∂ξS2 = − [J(Ψ0, S1ξ) + J(Ψ1, S0ξ)
]

+ [LT ]0. (3.12c)
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In (3.12c), [LT ]0 means the linear term in the square bracket of the right-hand side
of (3.7), evaluated with S0.

3.1. Leading order

From (3.12a), we obtain the leading-order solution

S0 = e−i(x−t)S(ξ, t2) + Aei(x−t) − A∗e−i(x−t), (3.13)

and the leading-order streamfunction

Ψ0 = 1
2
ei(t−x)S(ξ, t2) + c.c. (3.14)

The evolution of S(ξ, t2) will be determined at higher order. However, at this order,
the matching (3.10) is satisfied provided that

lim
ξ→∞S = A∗, (3.15)

whereas the no-flux and no-slip condition at ξ = 0 requires that

S(0, t2) =Sξ(0, t2) =Sξξ(0, t2) = 0. (3.16)

Equation (3.13) is not the most general solution of (3.12a). However, for simplicity
we include only the e−ix harmonic which is required by the matching condition to the
incident wave.

3.2. Order ε

Equation (3.12b) gives

S1ξt − iS1ξ = − 1
2

[
e2itJ(e−ixS, e−ixSξ) + J(eixS∗, e−ixSξ)

]
, (3.17)

leading to

S1 = iR(x, t, t2) + e2i(t−x)

[
1

2
SSξ −

∫ ξ

0

S2
u du

]
+
S∗Sξ

2
. (3.18)

We satisfy the no-normal-flow condition (3.9a) by requiring that R is real. The no-
slip condition (3.9b) and the no-flux condition (3.9c) are satisfied provided that S
satisfies these conditions. At this order, the nonlinear effects produce a rectified and
a second-harmonic waves.

Now we match (3.18) with (3.10). The most important result is that this matching
condition defines the envelope of the nonlinearly reflected second harmonic:

H(t2) = −
∫ ∞

0

S∗2ξ dξ. (3.19)

Thus we have an expression for the amplitude of the second harmonic in terms of
the incident wave. The matching tells also that R = He2i(x−t)(1− p̃ sec β)/2i + c.c. and
that the rectified flow vanishes in the outer region because of condition (3.15).

3.3. Order ε2

At this order, we have (3.12c). To avoid secular growth, all the resonant terms on
the right-hand side must vanish. This condition determines the evolution equation for
S(ξ, t2).
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Although it is not initially obvious, all nonlinear resonant contributions cancel†
and the final evolution equation is linear:

St2ξ − iσSξ +S− %2Sξξξ = A∗(t2) . (3.20)

Using (3.20), one can obtain an alternative expression for the envelope of the second
harmonic:

Ht2 + 2iσH = 2%2

∫ ∞
0

S2
ξξ dξ − A2. (3.21)

We emphasize that although there are no nonlinear terms in (3.20), the nonlinearity
is important for the generation of the second harmonic and also for all the nonlinear
contributions to S1 in (3.18). And when we come to visualize the solution, these
nonlinearly forced components of the solution lead to a symmetry breaking.

Equation (3.20) is third order in space and we are imposing four boundary condi-
tions in (3.15) and (3.16). Consequently, the problem is overspecified and we resolve
this issue by discarding the no-buoyancy-flux condition Sξξ = 0. This unsatisfactory
point might be corrected by demanding that the Péclet number in (2.11b) be very
large. In this circumstance, one would expect a very thin buoyancy diffusive layer in
which dynamics similar to that of Wunsch (1970) and Phillips (1970) is important.

4. The inviscid case
We first consider the special case of (3.20) in which the fluid is inviscid (% = 0).

The solution of (3.20) which satisfies the initial condition that S(ξ, 0) = 0 is

S(ξ, t2) =

∫ t2

0

A∗(t2 − τ)eiστ

√
ξ

τ
J1

(
2
√
ξτ
)

dτ, (4.1)

and (3.21) leads to the following expression for the envelope of the second harmonic:

H(t2) = −
∫ t2

0

e2iσ(τ−t2) A2(τ) dτ. (4.2)

The amplitude A(t2) of the incident wave must be specified to completely determine
the solution. As in all the experiments, we take the simplest case in which A(t2) switches
on suddenly at t2 = 0 (Because A depends only on the slow time t2, the sudden switch-
on means that the incident wave achieves its ultimate constant amplitude on a time
scale which is slow relative to t but fast relative to t2). That is, A(t2) = 1 when t2 > 0.

4.1. The critical case

In the critical case σ = 0 the integral in (4.1) can be evaluated and

S = 1− J0(2
√
ξt2), (4.3)

where J0 is the Bessel function of the first kind of order 0. Thus, in this critical
case, the solution has a ‘similarity’ form in which the thickness of the inner region is
inversely proportional to time. That is, there is no steady solution as t→∞. Instead,
the disturbance near the slope becomes strongly oscillatory as the undulations of J0

are intensified.

† The underlying reason for the miraculous cancellation of the resonant nonlinear terms
is the following special case of the Jacobi identity: J

[Q, J(Qξ ,Q∗)] + J
[Q∗, J(Q,Qξ)]

+ J
[
J(Q,Q∗),Qξ] = 0.
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Using (4.3) we have

[Ψ0, U0] = cos(x− t)
[
1− J0,−2t2

J1

χ

]
, (4.4a)

[W0, P0, B0] = sin(x− t)
[
J0 − 1, 1 + J0,−2t2

J1

χ

]
, (4.4b)

Ψ1 = t2

(
J1

χ
(1− J0) + J2

0 + J2
1 − 1

)
cos 2(x− t) + t2(1− J0)

J1

χ
, (4.4c)

U1 = 2t22

(
J2(1− J0) + J2

1

χ2

)
cos 2(x− t) + 2t22

(
J2

χ2
(1− J0)− J2

1

χ2

)
, (4.4d)

W1 = 2t2

(
1− J2

0 − J2
1 − J1

χ
(1− J0)

)
sin 2(x− t), (4.4e)

B1 = 2t22

(
J2

χ2
(1− J0) +

J2
1

χ2

)
sin 2(x− t), (4.4f)

where χ ≡ 2
√
ξt2 and Ji = Ji(χ). Notice that in this critical case the alongslope

velocity U0 and the buoyancy perturbation B0 both grow linearly with time. This
response is analogous to that of a resonantly forced oscillator.

The streamfunction is shown in figure 5. At small times the reflection process creates
a regular array of counter-rotating vortices. As time progresses, figure 5(b) shows that
the scale of the vortices decreases. Panels (c) and (d) are both at N sin β t = 3. The
‘velocity vector’ presentation in panel (d) more clearly displays the asymmetry of the
vortices which is the effect of the nonlinear terms in Ψ1.

Figure 6 shows the distortion of the isopycnals as the oscillations amplify. In
panel (a) the disturbance is very small and one sees essentially the initial background
stratification. In panel (b) the disturbance begins to ‘fold-up’ the isopycnals and, near
the slope, this process produces a region of static instability. In the panel (c) the
development of small scales in the isopycnal field is evident.

In this case, with σ = 0, the amplitude of the second harmonic is a linear function
of time:

H(t2) = −t2 = − ε2

tan γ
t, (4.5)

and so εΨ1 becomes comparable to Ψ0 when t2 = O(ε−1). For these reasons the
expansion becomes disordered when t2 = O(ε−1) and the results above are no longer
reliable. However, as we show below, well before this breakdown, the buoyancy
becomes statically unstable. Thus the expansion above strongly suggests that the next
evolutionary stage is characterized by the onset of turbulence triggered by overturning
instability.

4.2. Overturning instability or stratified shear flow instability?

One scenario for the transition to turbulence is that the growing disturbance produces
a statically unstable density field which then overturns (we refer this as overturning
instability). An alternative is that the local Richardson number might fall below a
critical value while the density is still statically stable. In this second case the overturns
are produced by a rapidly growing secondary shear flow instability. Experimentally,
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(c) (d )
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Figure 5. Streamfunction for four different times in the critical case. (a–c) N sin β t = 1
2
, 1 and

3. (d) An alternative ‘velocity vector’ visualization of (c). ε = 0.3, γ = β = 20◦. In (d), there are
two pairs of counter-rotating vortices immediately adjacent to the slope. The clockwise vortices
are slower and thinner than the counter-clockwise vortices. This symmetry breaking is a result of
the second-harmonic term such as Ψ1 in (4.4). The dimensions of the panel are 2λ/ sin α in the
x-direction (i.e. two alongslope wavelengths) by λ/ sin α in the z-direction.

Thorpe & Haines (1987) have reported that the overturning instability is very likely
to be convectively driven. On the other hand, Slinn & Riley (1998a) identified a shear
instability mechanism; but they noted that the Reynolds number of their numerical
simulations was matched to experimental values by forcing larger amplitude waves
in a more viscous fluid. Consequently, the Richardson number in these simulations
was relatively low compared to those of laboratory experiments. However, all these
claims must be viewed cautiously because both instabilities are intrinsically related in
a stratified flow.

Using our analytic results we can make a rough assessment of these two possibilities.
Taking into account the background linear buoyancy, and the first-order correction,
we can calculate the overturning time to which is the time at which negative vertical
buoyancy gradients first occur. In dimensional variables:

to =

√
8 tan γ

N sin 2γ
ε−3/2. (4.6)

We can also calculate the time ts at which the minimum Richardson number first
falls below 1/4:

ts =

√
2

cos γ
to > to. (4.7)
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Figure 6. (a–c) Buoyancy field in the critical case at N sin β t =3, 10 and 20. ε = 0.3; β = γ = 20◦.
The dimensions of the panel are λ/ sin α in the x-direction by λ/5 sin α in the z-direction. In (b) and
(c), some overturned regions are evident.

This analytical calculation also shows that both of the unstable conditions above
occur first at the wall (see also Jevam et al. 1997).

Because to < ts we can argue that the convectively driven overturning instability
should appear first. In the typical experimental case ε = 0.3, for example, both critical
times are plotted as a function of the slope angle γ in figure 7. It is interesting to note
that N sin β to is an increasing function of the slope angle γ.

However, let us note that the domain of validity of the Miles–Howard theorem
(stability if Ri > 1/4) applies to steady, parallel shear flows, whereas the present
flow is unsteady and non-parallel. In addition, (4.7) was derived using the usual
definition of the Richardson number Ri = N2/U2

z (see, for example, Kundu 1990).
An alternative definition could be

R̃i = − (g/ρ0)dρ/dz

U2
z

, (4.8)

where the numerator takes into account not only the background buoyancy, but also
the perturbative part of the buoyancy. It is clear from (4.8), that R̃i would reach 1/4
before zero, and therefore before negative vertical buoyancy gradients first occur. So,
the whole discussion simply indicates that there are plausible reasons to expect that
the solution we have found will become unstable, and ultimately turbulent, and we
have three criteria for instability; the static instability time is sandwiched between the
R̃i = 1/4 and Ri = 1/4 times.
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Figure 7. N sin β to (dashed line) and N sin β ts (solid line) as a function of
the slope angle γ. ε = 0.3.

4.3. The non-critical case

We now turn to the case in which the incident wave is not precisely critical so that
σ 6= 0. We continue with the assumption that the fluid is inviscid (% = 0) and that the
incident wave envelope is A(t2) = 1 if t2 > 0.

In this case (3.20) has a steady solution which satisfies the boundary condition at
ξ = 0:

S = 1− e−iξ/σ. (4.9)

This steady solution is an approximate version of the linearly reflected wave identified
by Phillips (1966). Notice how the scale of the oscillations is reduced as σ → 0. Thus,
when the incidence is nearly critical, one expects to see an initial reduction in scale
which is the t−1 behaviour identified in (3.20). But this scale reduction is arrested at
time t2 = O(1/|σ|) when the Phillips solution in (4.9) is established as a steady state.

In order to understand the details of how the steady solution in (4.9) emerges we
can use the solution of the initial value problem given in (4.1):

S =

∫ 2
√
ξt2

0

eiσu2/4ξJ1(u) du, (4.10a)

[Ψ0,W0] = [Re, Im]

∫ 2
√
ξt2

0

J1(u) ei(t+(σu2/4ξ)−x) du, (4.10b)

[U0, B0] = [−Re, Im]

∫ t2

0

J0(2
√
ξτ)ei(t+στ−x) dτ, (4.10c)

[U1, B1] = 1
2
[−Re, Im][e2i(t−x)

(SSξξ −S2
ξ

)
+
(S?Sξ

)
ξ
], (4.10d)

H = −σ−1 sin σt2 e−iσt2 . (4.10e)

At early times, the streamfunction in figure 8 is similar to the critical case in
figure 5. However, as time progresses, the steady solution in (4.9) is set up first in
the neighbourhood of the wall, and then this cellular pattern expands outwards.
Figure 9 shows that the region in which the flow becomes steady is characterized
by regular pattern of vortices. Figure 10 shows the isopycnals at a given time: the
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Figure 8. Streamfunction for four different times in the near-critical case: β = 22.58◦; γ = 17.42◦;
σ = −1; ε = 0.3. (a–d) N sin β t = 5, 10, 15 and 20. The dimensions of the panel are λ/ sin α in the
x-direction by λ/2 sin α in the z-direction.

pattern is similar to experimental results reported in figure 12 of Thorpe (1987) (see
also McPhee 1998).

As in the critical case, one can compute to and ts for different values of σ. Again,
the instability is convectively driven and initiated at the wall; to is plotted in figure 11
as a function of the slope angle γ for different values of σ. An interesting point is
that, for a given value of γ, the positive values of σ leads to an earlier appearance of
the instability. This point is rationalized by noticing that, once γ is given, a positive
σ corresponds to a smaller value for α. As the expression (4.6) is an increasing value
of the angle α = 2γ, near-critical up-slope (respectively downslope) reflections are
unstable slightly before (respectively after) critical reflections. Indeed, plotted as a
function of α, to and ts are almost independent of σ.

This is consistent with the observations reported by De Silva et al. (1997) that for
moderately supercritical waves the instabilities developed near the bed. They have,
however, also studied experimentally the variation of the boundary layer thickness as
the incident waves become far from critical, and their results show that the instability
is initiated away from the bed. In the framework of this near-critical reflection theory
(i.e. for small values of ε and σ), we found that the wave overturning always starts
on the slope; however as time continues the unstable region extends away from the
boundary (for example, see the unstable region in figure 10). For strongly subcritical
and supercritical cases, internal wave reflection from the sloping bed should be
interpreted as wave–wave interaction between the incident and the reflected waves
since, as shown by De Silva et al. (1997), the area of interaction region increases
progressively as the waves depart from critical condition.
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γ

Figure 9. Streamfunction in the near-critical case at N sin β t = 100: β = 22.58◦; γ = 17.42◦;
σ = −1; ε = 0.3. The dimensions of the panel are λ/ sin α in the x-direction by λ/2 sin α in the
z-direction.

γ

Figure 10. Buoyancy field at N sin β t = 20 in the near-critical case β = 22.58◦; γ = 17.42◦ and
ε = 0.3. The dimensions of the panel are λ/ sin α in the x-direction by λ/5 sin α in the z-direction.

5. Viscous effects
In the viscous case, % 6= 0, there is a steady solution of (3.20) even if the forcing is

precisely critical. For the sake of simplicity, consider the case in which % 6= 0, σ = 0,
and the incident wave envelope is A(t2) = 1 if t2 > 0 (this is a typical experimental
switch on). The steady solution of (3.20) which satisfies the no-mass-flux and no-slip
boundary conditions at ξ = 0 is analogous to the western meridional boundary layer,
also called the Munk layer (see for example Pedlosky 1987). It reads

S = 1− 2√
3

sin

(√
3ξ

2%2/3
+
π

3

)
e−ξ/2%

2/3

(5.1)

(we continue to assume that κ = 0 and discard the no-buoyancy-flux boundary
condition at ξ = 0). The solution above, presented in figure 12 in the extremely
viscous case ` = 1, shows that 2%2/3 is the viscous boundary layer thickness in the
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Figure 11. N sin β to against the slope angle γ. σ = 0 (solid curve), σ = 1 (dotted curve), σ = −1
(dashed curve). ε = 0.3.

γ

Figure 12. Final steady-state solution in the critical case: β = 32.58◦; γ = 27.42◦; σ = −1; ε = 0.3.
The dimensions of the panel are λ/ sin α in the x-direction by λ/4 sin α in the z-direction.

terms of ξ; in dimensional variables this boundary layer thickness is

` =

(
ν + κ

KN sin β

)1/3(
4

1 + cos α

)1/3

. (5.2)

Thus, in the steady state, the viscous boundary layer thickness is a decreasing function
of the slope angle.

The steady-state solution is probably irrelevant in many experimental systems
because % � 1 (see table 1) and one expects that turbulent transition occurs before
the steady state is approached. In this case with %� 1, we can again use asymptotic
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Figure 13. Schematic view of the different regions used in the matched asymptotic expansion.

matching to develop an approximate solution of the initial value problem. There is an
interior region in which the effect of viscosity is small and the solution is approximated
by (4.1). However this interior solution of § 4 does not satisfy the no-slip condition
and so it is necessary to include a viscous sublayer close to the topography (see
figure 13 for a schematic representation of the different regions).

The details of this matching problem are in the Appendix. The solution in the
interior region is

S(ξ, t2) =

∫ t2

0

A∗(t2 − τ) eiστ

√
ξ

τ
J1

(
2
√
ξτ
)

dτ

+%

∫ t2

0

(
S′

1?(t2 − τ)− iσS1?(t2 − τ)
)
J0

(
2
√
ξτ
)

dτ+ O(%2) (5.3)

where

S1?(t2) = − 2√
π

∫ t2

0

√
t2 − τ eiσ(t2−τ) A∗(τ)dτ (5.4)

and J0 is the Bessel function of the first kind of order 0.
In the viscous sublayer the solution is

S(ξ, t2) = ξ

∫ t2

0

eiσ(t2−τ)A∗(τ) dτ

+%

[
S1?(ξ, t2) +

∫ t2

0

du
e−ξ2/4%2u

√
πu

∫ t2−u

0

A∗(τ)eiσ(t2−τ)dτ

]
+ O(%2). (5.5)

In the critical case with σ = 0 and A(t2) = 1, if t2 > 1, the integrals above can be
simplified. The interior solution is

S(ξ, t2) = 1− J0(2
√
ξt2)− %

2
√
πξ3/2

(
sin 2

√
ξt2 − 2

√
ξt2 cos 2

√
ξt2

)
+ O(%2) (5.6)
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Figure 14. Function f against the distance normal to the slope z at time t = 1 and for % = 0.1, in
the critical case. In the inset, we plot the viscous sublayer solution valid only very close to the wall,
i.e. z � 1.

and in the viscous sublayer, the solution is

S(ξ, t2) = ξt2 − %t
3/2
2√
π

[
4

3
+

∫ 1

0

du
u− 1√
u

e−ξ
2/4%2t2u

]
+ O(%2). (5.7)

Both functions are plotted against z in figure 14 in the typical case % = 0.1 and
ε = 0.3. It is clear that the region where the viscous effects are important corresponds
only to a very thin region along the slope.

6. Conclusion and discussion
The thrust of this paper has been to study the weakly nonlinear and nearly critical

incidence of internal waves onto a slope. The scalings of §§ 2 and 3 amount to taking
the distinguished limit |β − γ| → 0 with a ∝ |β − γ|3/2 (a is the amplitude parameter
in (2.12)). At leading order, these assumptions give the linear oscillator equation
(3.12a) in which the coordinate normal to the slope, ξ, appears only parametrically.
Thus, the buoyancy oscillations along the slope are uncoupled at leading order. The
weak coupling between oscillations at different ξ is uncovered by higher orders in
the expansion scheme and is apparent in the forced dispersive wave equation (3.20).
One can then view the incident internal wave as a nearly resonant forcing of this
continuum of weakly coupled (and weakly damped if % 6= 0) oscillators.

The scenario above describes the initial evolutionary stages of nearly critical in-
cidence. However the limitations of this approach become apparent when the oscil-
lations become so extreme that they either overturn the buoyancy field, or strongly
violate the Miles–Howard stability condition (see figure 6c). In either case, we expect
a rapid transition to turbulence, dramatically enhanced mixing in the neighbourhood
of the slope, and the production of intrusive layers (e.g. Ivey & Nokes 1989; De Silva
1997; McPhee 1998).

Within the present framework the most interesting complication that can be in-
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cluded is oblique incidence. Experimental data by Eriksen (1998) and theoretical work
by Thorpe (1997) have recently emphasized the importance of alongslope currents in
the reflection process for obliquely incident waves in a uniformly stratified rotating
fluid. We speculate that the weakly nonlinear term will have interesting consequences,
such as mean flow induction, if the incidence is oblique.
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Appendix. Derivation of the solution in the viscous case
Defining

f(ξ, t2) =S(ξ, t2) e−iσt2 and g(t2) = A∗(t2) e−iσt2 , (A 1a, b)

(3.20) becomes

ft2ξ + f − %2 fξξξ = g (A 2)

with the four conditions

f(0, t2) = fξ(0, t2) = fξξ(0, t2) = 0 and lim
ξ→∞ f(ξ, t2) = g(t2). (A 3a–d)

A.1. Interior region

In the interior region, the solution of (A 2) is obtained by expanding f in powers of
%:

f(ξ, t2) = f0(ξ, t2) + % f1(ξ, t2) + O(%2). (A 4)

The substitution of (A 4) into (A 2) leads to the following hierarchy:

%0 : f0t2ξ + f0 = g, (A 5a)

%1 : f1t2ξ + f1 = 0. (A 5b)

At leading order, %0, the solution of (A 5a) should satisfy the two conditions

f0(0, t2) = 0 and lim
ξ→∞ f0(ξ, t2) = g(t2). (A 6a, b)

The solution can be obtained using the Laplace transform and we get

f0(ξ, t2) =

∫ t2

0

g(t2 − τ)
√
ξ

τ
J1

(
2
√
ξτ
)

dτ (A 7)

where J1 is the Bessel function of the first kind of order 1.
At order %, (A 5b) with the conditions

f1(0, t2) = f1?(t2) and lim
ξ→∞ f1(ξ, t2) = 0, (A 8a, b)

leads to the solution

f1(ξ, t2) =

∫ t2

0

f
′
1?(t2 − τ) J0

(
2
√
ξτ
)

dτ. (A 9)

The unknown function f1?(t2) will be determined by matching the viscous sublayer
solution.
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A.2. Viscous sublayer

In the viscous sublayer, using the stretched coordinate η = ξ/% and h(η, t2) =
f(ξ, t2)/%, (A 2) becomes

ht2η − hηηη + % h = g. (A 10)

Expanding h in powers of %, the leading-order solution is

h0(η, t2) = f1?(t2) + η

∫ t2

0

g(τ)dτ+ r(η, t2), (A 11)

where r(η, t2) satisfies the diffusion equation

rt2 = rηη, (A 12)

with the three conditions

rη(0, t2) = −
∫ t2

0

g(τ)dτ, lim
ξ→∞ r = 0 and r(0, t2) = −f1?(t2). (A 13a–c)

Let us stress that the two first conditions define completely the solution of (A 12),
whereas the last one determines f1?(t2) in terms of g(t2).

Using the Laplace transform, one obtains the solution of (A 12) and we finally get
not only the function

f1?(t2) = − 2√
π

∫ t2

0

√
t2 − τ g(τ)dτ (A 14)

but also the the general solution in the viscous sublayer given by

f(ξ, t2) = ξ

∫ t2

0

g(τ)dτ+ %

[
f1?(t2) +

∫ t2

0

du
e−ξ2/4%2u

√
πu

∫ t2−u

0

g(τ)dτ

]
+ O(%2). (A 15)
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