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Radiation of internal waves from groups of
surface gravity waves
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(Received 30 January 2017; revised 29 July 2017; accepted 30 July 2017)

Groups of surface gravity waves induce horizontally varying Stokes drift that drives
convergence of water ahead of the group and divergence behind. The mass flux
divergence associated with spatially variable Stokes drift pumps water downwards in
front of the group and upwards in the rear. This ‘Stokes pumping’ creates a deep
Eulerian return flow that sets the isopycnals below the wave group in motion and
generates a trailing wake of internal gravity waves. We compute the energy flux
from surface to internal waves by finding solutions of the wave-averaged Boussinesq
equations in two and three dimensions forced by Stokes pumping at the surface. The
two-dimensional (2-D) case is distinct from the 3-D case in that the stratification
must be very strong, or the surface waves very slow for any internal wave (IW)
radiation at all. On the other hand, in three dimensions, IW radiation always occurs,
but with a larger energy flux as the stratification and surface wave (SW) amplitude
increase or as the SW period is shorter. Specifically, the energy flux from SWs to
IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency,
and is inversely proportional to the fifth power of the SW period. Using parameters
typical of short period swell (e.g. 8 s SW period with 1 m amplitude) we find that
the energy flux is small compared to both the total energy in a typical SW group
and compared to the total IW energy. Therefore this coupling between SWs and IWs
is not a significant sink of energy for the SWs nor a source for IWs. In an extreme
case (e.g. 4 m amplitude 20 s period SWs) this coupling is a significant source of
energy for IWs with frequency close to the buoyancy frequency.

Key words: internal waves, stratified flows, surface gravity waves

1. Introduction

Surface gravity waves induce a horizontal Lagrangian mass flux known as the
Stokes drift. The Stokes drift is proportional to the square of the amplitude of the
waves and thus a slowly varying wave group has a spatially variable horizontal mass
transport. The Stokes drift vanishes, as the waves do, at the edges of the group,
thereby inducing a horizontal divergence of the vertically integrated Lagrangian
transport. The converging Lagrangian mass flux at the front of the group drives
water downward, while divergent Lagrangian mass flux at the rear of the group

† Email address for correspondence: shaney@ucsd.edu
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FIGURE 1. (a) The streamfunction of the deep return flow beneath the Gaussian SW group
in (A 1) with an unstratified interior. (b) Constant N = 7× 10−3 s−1. The dashed contours
indicate negative values of the streamfunction, and the contour interval is 0.05 m2 s−1. In
both panels, the SW group is moving to the right with group speed c/2 with c=

√
g/k.

The SW amplitude is exaggerated by orders of magnitude in order to visualize the group;
in this illustration of a ‘two-dimensional’ group `x/d= 0.07 and `y=∞ where `x and `y
are the horizontal length scales of the Gaussian packet in (A 1).

lifts it up. This ‘Stokes pumping’ drives a deep Eulerian return flow, first shown by
Longuet-Higgins & Stewart (1964), discussed further by McIntyre (1981) and van
den Bremer & Taylor (2015) and depicted in figure 1(a).

The deep return flow beneath a surface wave (SW) group in an unstratified fluid
is shown in figure 1(a). The positive momentum contained in the vertically integrated
Stokes drift is balanced by the momentum in the deep Eulerian return flow so that the
total momentum in a large volume is zero (McIntyre 1981). The structure of the deep
return flow can be understood with an electrostatic analogy in which the streamlines
are lines of force induced by the dipolar Stokes pumping, essentially at the surface
z= 0. Consequently, in the two-dimensional (2-D) case, the velocity of the deep return
flow decays slowly with depth, z, as z−2 below the group so that the bottom at z=−d
has important effects even in very deep water. In the three-dimensional (3-D) case,
some of the return flow may go around rather than underneath the SWs. Thus in the
3-D case the decay of deep currents is faster, but still algebraic as z−3 (van den
Bremer & Taylor 2015).
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282 S. Haney and W. R. Young

Here we investigate the effects of stratification on the structure of the Eulerian
mean return flow beneath a group of SWs. As anticipated by McIntyre (1981), stable
stratification greatly modifies the form of the return flow by exciting internal gravity
waves as the SW group passes above: see figure 1(b).

To make a direct comparison with the unstratified return flow in figure 1(a) we
have also shown the streamfunction in figure 1(b). However, with typical oceanic
stratification, the 2-D and 3-D situations are strikingly different. In the 2-D case,
the phase speed of the internal waves (IWs) is necessarily in the same direction as
that of SW propagation: in figure 1(b) the x-phase speed of the IW train is equal to
the SW group velocity, c/2 with c =

√
g/k. The group speed of swell with typical

wavelengths of 100 m or greater exceeds 5 m s−1. But Chelton et al. (1998) show
that the IW phase speed in the ocean never exceeds 3.2 m s−1. Thus the radiation
of IWs by strictly two-dimensional SWs – the situation shown in figure 1(b) – does
not occur in Earth’s ocean. In other words, ocean stratification is so weak that in the
2-D case IWs cannot keep up with swell and there is no radiation. But in the 3-D
case, in which the SW packet has finite extent in the spanwise (y) direction, radiated
IWs can propagate obliquely to the direction of propagation (the x-axis) of the SW
group. With oblique propagation the phase speed of IWs along the x-axis can equal
c/2 even in a weakly stratified ocean. Thus IW radiation from SW groups is much
more efficient in three than in two dimensions.

The coupling of SWs and IWs has been explored previously in oceanography as a
possible mechanism for energizing the ocean IW field. The recent paper by Olbers
& Eden (2016) reviews this oceanographic literature, starting with the first estimates
of the strength of SW driving of IWs (Watson, West & Cohen 1976; Olbers &
Herterich 1979). These estimates are based on resonant triad theory and employ a
spectral characterization of the SW field. But resonant triad theory does not directly
reveal the effect of stratification on the situation in figure 1(b) in which the deep
return flow associated with a narrow-band group of ocean swell shakes the deep,
stable stratification of the ocean.

However there is a connection between IW radiation from the SW group in
figure 1(b) and resonant triad theory: radiation of IWs requires that the phase speed
of the IW must match the speed of the forcing, which is the group speed of the
SWs. This condition is a special case of triad resonance in which the SW group
constitutes two members of the triad with close wavenumbers k and k+ δk, and the
radiated IW is the third member of the triad with wavenumber δk� k. In this paper
we are isolating this particular triad interaction as it applies directly to situation in
figure 1(b) and showing the connection to Stokes drift and the associated deep return
flow.

In § 2 we recall the first order in wave amplitude solution in terms of the standard
velocity potential; considering the second order in wave amplitude, we perform a
phase average to obtain the IW equation forced by the divergence of the mean wave
momentum at the surface. In § 3 we solve the surface forced IW equation to obtain
the wave-averaged vertical velocity and pressure. In § 4 we obtain an expression for
the energy flux from SWs to IWs; we show that our estimate of energy flux is in
quantitative agreement with the resonant triad estimate of Olbers & Eden (2016).
In § 5 we discuss the 2-D limit of the 3-D energy flux solution. Section 6 is the
discussion and conclusion.
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2. Formulation

We decompose the density as

ρ = ρ0

[
1+

1
g

(∫ 0

z
N2(z′) dz′ − b

)]
, (2.1)

where ρ0 is the average density, g is the gravitational acceleration acting in the
negative z-direction, N2(z) is the buoyancy frequency and b(x, y, z, t) is the buoyancy
(e.g. Phillips 1977). The Boussinesq equations are

ut + u · ∇u+∇p= bẑ, (2.2)
bt + u · ∇b+wN2

= 0, (2.3)
∇ · u= 0, (2.4)

where the velocity is u= ux̂+ vŷ+wẑ and p is the non-hydrostatic constituent of the
pressure divided by the average density ρ0.

We denote the magnitude of the free-surface displacement by amax, the wavenumber
of the primary SW by k and the horizontal length scale of the SW group in the x-
direction by `x. Using these scales the wave steepness and scale separation parameters
are

ε
def
= amaxk, and µ

def
=

1
k`x
. (2.5a,b)

We assume that ε and µ are both small and we neglect the direct effects of
stratification in the shallow wave zone where kz is order one. This assumption
is justified provided that the wave frequency

√
gk is much greater than N(z) in this

region. In the along-crest (y) direction, the SW group has length `y; we treat `y/`x

as order one.
Denoting the free-surface displacement by h(x, y, t), the surface boundary conditions,

correct to second order in wave steepness ε, are

at z= 0 : ht + (uh)x + (vh)y =w, (2.6)

and
at z= 0 : p+ hpz = gh+N2 1

2 h2, (2.7)

where ( )x indicates an x-derivative, and similarly for y, z, and t derivatives. In (2.6)
and (2.7) we have transferred the surface boundary conditions from the moving free
surface z=h to the flat surface z=0 using the Stokes expansion. The bottom boundary
condition is w(x, y,−d, t)= 0. We confine attention to deep water waves, kd� 1, so
that the bottom boundary condition is important only for the deep return flow beneath
the SW group.

Scaling time with the wave frequency
√

gk and length with the wavenumber k sets
g→ 1. One then expands all variables in powers of wave steepness ε; for example

p= εp1 + ε
2p2 + · · · . (2.8)

While we are guided by this scheme when choosing to neglect or retain terms, for
clarity we develop the expansion using the original dimensional variables.
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284 S. Haney and W. R. Young

2.1. The solution at first order
In the first-order equations we neglect the small buoyancy force b1ẑ on the right of
the momentum equation (2.2). With this approximation the classic first-order solution
is irrotational and is expressed using the familiar velocity potential φ(x, y, z, t):

u1 =∇φ, and p1 =−φt. (2.9a,b)

The problem then reduces to the solution of the 3-D Laplace equation φxx + φyy +

φzz= 0 with the surface boundary condition φtt + gφz= 0 at z= 0 and the deep water
condition that φ(x, y, −∞, t) = 0. Correct to leading order in the scale separation
parameter µ, the first-order solution for an SW group is

h1 =
1
2 a(x̃, y, 0) exp[ik(x− ct)] + c.c., (2.10)

φ =− 1
2 ica(x̃, y, z) exp[ik(x− ct)+ kz] + c.c., (2.11)

where a(x̃, y, z) is the slowly varying envelope, c=
√

g/k is the SW phase speed, c.c.
denotes the complex conjugate, and

x̃ def
= x− 1

2 ct, (2.12)

is the wave group coordinate; c/2 in (2.12) is the deep water group velocity. We
neglect dispersive spreading of the group (see van den Bremer & Taylor 2016).

2.2. Quadratic properties of the first-order solution
At next order we need several quadratic properties of the first-order solution, some
of which are expressed most easily using the first-order wave displacement ξ1 defined
via

ξ1t = u1 =∇φ. (2.13)

At z = 0 the vertical displacement ζ1(x, y, z, t) = ẑ · ξ1 is the same as the first-order
displacement of the free surface h1(x, y, t); the dynamically negligible buoyancy
perturbation in the wave zone is diagnosed as b1 =−N2ζ1.

Denoting a running phase average over the fast oscillation of the primary wave by
an overbar, the Stokes drift in the x-direction is

uS def
= ξ1 · ∇u1 = ck2

|a|2e2kz. (2.14)

The mean wave momentum per unit area in the x-direction is ρ0M, where

M def
= u1ζ1|0 =

1
2 ck|a|2, (2.15)

with |0 indicating evaluation at z= 0. The identity

M =
∫ 0

−∞

uS dz (2.16)

shows that uS can be interpreted as the vertical distribution of the mean wave
momentum (e.g. Phillips 1977). The chain of identities

ζ1p1z =−ζ1w1t =w2
1 =

1
2 |u1|

2 =
1
2 cuS (2.17)

is useful at next order. The identities in (2.17) express all important wave-averaged
quantities in terms of the Stokes drift in (2.14).
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2.3. The second-order wave-averaged equations of motion
To write the phase-averaged second-order equations compactly we introduce the
Bernoulli function

$
def
= p̄2 +

1
2 |u1|

2. (2.18)

Using $ , the phase-averaged second-order equations are

ū2t +∇$ = b̄2ẑ, (2.19)
b̄2t +w2N2

= 0, (2.20)
∇ · ū2 = 0. (2.21)

We have neglected the term u1 · ∇b1 in (2.20) because this term decays exponentially
with depth over a layer of depth (2k)−1. This term is important for mixed layer
dynamics, but not for the deep return flow or wake of radiated IWs. Although the
buoyancy force bẑ has a negligible effect on the SW group it does affect the deep flow
and therefore it is essential to retain b̄2ẑ in (2.19). Because of the buoyancy force, the
deep flow beneath the SW group is not irrotational and thus it is not possible to use
a velocity potential to represent the solution of (2.19)–(2.21). Instead the system can
be combined to obtain the IW equation for the second-order wave-averaged vertical
velocity

[∂2
t (∂

2
x + ∂

2
y + ∂

2
z )+N2(∂2

x + ∂
2
y )]w̄2 = 0. (2.22)

Combining (2.20) with the vertical part of (2.19), the pressure $ can be expressed
in terms of the second-order vertical velocity as

$zt =−(∂
2
t +N2)w̄2. (2.23)

The wave-averaged second-order surface boundary conditions following from (2.6)
and (2.7) are

at z= 0 : h̄2t +Mx =w2, (2.24)

and
at z= 0 : $ = gh̄2 +N2 1

2 h2
1. (2.25)

Identity (2.17) has been used to express the surface boundary condition (2.25) in
terms of $ . Following earlier authors (e.g. Longuet-Higgins & Stewart 1964; van den
Bremer & Taylor 2015), we make the ‘rigid-lid approximation’ by neglecting h̄2t in
(2.24) so that the surface boundary condition simplifies to

at z= 0 : w̄2 ≈Mx. (2.26)

Note that neglecting the mean sea surface displacement, h̄2, is only valid in deep
water (see van den Bremer & Taylor 2015). If required, the mean surface displacement
h̄2 can be diagnosed from (2.25) as h̄2 ≈ g−1$ |0. The bottom boundary condition is
w̄2 = 0.
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286 S. Haney and W. R. Young

3. Radiating solutions of the second-order wave-averaged equations
Solving the IW equation (2.22) for w̄2, we encounter a well-known issue in radiation

problems: there are zero denominators related to the resonance condition that the IW
phase speed in the x-direction must be equal to the SW group speed c/2. The physical
resolution of this mathematical problem is the correct application of the causality
condition, also known as the Sommerfeld radiation condition, that the internal gravity
waves are outgoing from the SW packet. To implement the Sommerfeld condition, we
follow the method of Lighthill (1967, 1978) and assume that the SW group has been
growing very slowly from t=−∞ at a rate δ. The quasi-steady solution is found by
taking the limit δ→ 0 though positive real values. Thus the boundary condition (2.26)
is modified to

at z= 0 : w̄2 = eδtMx, (3.1)

with δ > 0.

3.1. Projection onto vertical modes and Fourier transform
With uniform N we express the solution of the IW equation (2.22) and the pressure
equation (2.23) as a sum of orthonormal vertical modes:

w̄2 =

∞∑
n=1

wn(x, y, t)
√

2 sin mnz, and $ =

∞∑
n=1

$n(x, y, t)
√

2 cos mnz, (3.2a,b)

where the vertical wavenumber is

mn
def
= nπ/d. (3.3)

The modal amplitudes in (3.2) are given by

(wn, $n)=
1
d

∫ 0

−d
(w, $)

√
2(sin mnz, cos mnz) dz. (3.4)

Projecting the IW equation (2.22) onto the sine modes we obtain

[∂2
t (∂

2
x + ∂

2
y −m2

n)+N2(∂2
x + ∂

2
y )]wn =

√
2mn

d
∂2

t ∂xeδtM. (3.5)

The forcing on the right-hand side of (3.5) comes from handling the z-derivatives in
(2.22) with integration by parts.

Moving with the SW group, we look for a solution of (3.5) of the form eδtwn(x̃, y)
where x̃ is the group coordinate defined in (2.12). Using the Fourier transform

ŵn(q, s) def
=

∫∫
e−i(qx̃+sy)wn(x̃, y) dx̃ dy, (3.6)

the solution of (3.5) is

ŵn =−

√
2mn

d
iq(q+ iη)2M̂(q, s)

(q+ iη)2(q2 + s2 +m2
n)− q2

max(q2 + s2)
, (3.7)

where
qmax

def
= 2N/c, and η

def
= 2δ/c. (3.8a,b)
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Parameter Typical forcing Extreme forcing

Wavenumber k 2π/(100 m) 2π/(625 m)
Frequency

√
gk 2π/(8 s) 2π/(20 s)

Phase speed c=
√

g/k, 12.5 m s−1 31 m s−1

Wave amplitude amax 1 m 4 m
Number of waves per group nSW 5 5
Group length `x =πnSW/k 250 m 1.56 km
Group width `y 3`x = 750 m 3`x = 4.69 km
Depth d 2000 m 2000 m
Depth-averaged buoyancy frequency N 2π/(2000 s) 2π/(1333 s)
qmax = 2N/c 2π/(12.5 km) 2π/(20.8 km)
(SW group speed)/(IW phase speed) m1∗ = cπ/2Nd 3.125 5.2
SW slope ε = amaxk 0.0625 0.064
Scale separation µ= (k`x)

−1 0.06 0.06

TABLE 1. Numerical values characteristic of swell and stratification; g= 9.81 m s−2 and
ρ0= 1000 kg m−3. Here we have picked parameters for short period, 1 m amplitude swell
as a typical example, and long period 4 m amplitude swell as an example of extreme
forcing. The depth-averaged stratification, N, is consistent with the phase speed of the first
baroclinic mode for a depth d= 2000 m. Figure 5 of Chelton et al. (1998) shows that the
average phase speed of the first baroclinic mode varies with latitude between approximately
1.5 m s−1–3 m s−1. The surface group length, `x, is based on the assumption that a group
is comprised of nSW consecutive waves that are at least half as high as the tallest in
the group. While observations of wave group statistics in the North Sea (Battjes & Van
Vledder 1984, figure 3b) and in coastal regions (Elgar, Guza & Seymour 1984) show that
groups of one or two waves are far more likely, five wave groups are possible.

Projecting the pressure equation (2.23) onto the sine basis functions and then
Fourier transforming, one finds that the modal amplitudes of the pressure field in
(3.2) are

$̂n =
ic

2mn

q2
max − (q+ iη)2

(q+ iη)
ŵn. (3.9)

The inverse Fourier transform of (3.7)

wn =

∫∫
∞

−∞

ŵnei(qx̃+sy) dq ds
(2π)2

, (3.10)

=

∫∫
(q,s)>0

cos(sy)Re[ŵneiqx̃
] dq ds. (3.11)

In passing from (3.10) to (3.11) we have exploited the symmetries ŵn(q, s)= ŵn(q,−s)
and ŵn(q, s)= ŵ?

n(−q, s), where ? indicates the complex conjugate, to write the inverse
Fourier transform as an integral over the first quarter of the wavenumber plane. Here
we have assumed that M̂ has these same symmetries.

The vertical velocity is obtained by numerical integration of (3.11) and for
illustration we use the typical SW and stratification parameters given in table 1, and
choose δ = 3.1 × 10−5 s−1 for our slow growth parameter. The horizontal structure
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FIGURE 2. (Colour online) Common logarithm of |wn| for the first four modes. Dashed
contours indicate negative vertical velocities. The SW group is centred at the origin. The
SW and stratification parameters are given for the typical case in table 1. The thin black
line is the contour where the vertical velocity vanishes. The red dash-dot line is the
theoretical prediction for maximum wake angle given by (3.18).

of the first four vertical modes is shown in figure 2. Each mode shows a wake of
IWs trailing behind the SW group, which is centred at the origin. Figure 3 shows the
full vertical velocity for IWs radiated from an SW group passing over a uniformly
stratified ocean. Figure 3 shows a strong Eulerian return flow in the forcing region
with weaker vertical velocities associated with IWs trailing behind the forcing region.
The solution is dominated by the first vertical mode.

3.2. The singular curves
Returning to (3.7), we see the problem of zero divisors if we set η = 0. With small
non-zero η the solution is concentrated in wavenumber space on the ‘singular curve’
where the denominator of (3.7) is close to zero. These curves are shown in the first
quadrant of the (q, s)-plane in figure 4 for a few values of stratification, depth, and
SW group speed. The singular curves are defined by the zeros of the function

γ (q, s) def
= q− qmax

√
q2 + s2

q2 + s2 +m2
n

. (3.12)

The structure of these curves depends on the crucial non-dimensional parameter

mn∗
def
=

mn

qmax
=

cnπ

2Nd
, (3.13)
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FIGURE 3. (Colour online) Common logarithm of |w̄2|. The SW group is centred at the
origin and propagates in the positive x-direction. Dashed contours indicate negative vertical
velocities. The typical SW and stratification parameters used are given in table 1. The
solution shown is a numerical solution of (3.11) with δ= 3.1× 10−5 s−1, with 200 vertical
modes near the forcing region [−0.1qmaxx : 0.1qmaxx] and 20 vertical modes in the rest of
the domain.

0.2 0.4 0.6 0.8 1.00
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FIGURE 4. The singular curves defined by γ (q, s)= 0 in the first quadrant of the (q∗, s∗)-
plane, where q∗ = q/qmax, s∗ = s/qmax, and mn∗ = mn/qmax. If mn∗ > 1 the curve passes
through the origin. The curve for mn∗ = 1 is the thick black line.

which is the ratio of the SW group speed to the approximate IW phase speed of
vertical mode n. Figure 4 shows that the case where mn∗6 1 is very different from the
case mn∗ > 1. In particular, in 2-D (s= 0), only cases with mn∗ < 1 will radiate IWs,
because only those singular curves intersect the q-axis. Further discussion of the 2-D
problem is in § 5. The solution shown in figures 2 and 3 has mn∗ > 1 for all vertical
mode numbers n.
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Using the definition of qmax, the condition γ (q, s)= 0 can be re-arranged as

c
2
=

N
q

√
q2 + s2

q2 + s2 +m2
n

. (3.14)

Recalling the IW dispersion relation for vertical mode n, namely ω2
= N2(q2

+ s2)
/(q2
+ s2
+m2

n), we identify the right-hand side of (3.14) as the IW phase speed in the
x-direction. Thus the singular curve (3.14) is the resonance condition that the x-phase
speed of the IWs matches the group velocity c/2 of the SWs. Combining the IW
dispersion relation and (3.14) we see that

ω

N
=

q
qmax

. (3.15)

This relation shows there is an upper bound on the values of q relevant for IW
radiation: because ω<N, wavenumbers with q> qmax cannot radiate.

3.3. The wake angle
The stratification in the ocean is not sufficiently strong to support IWs that propagate
at the SW group speed. However, if the radiated IWs propagate obliquely to the
direction of SW group propagation then the point of intersection between the IW
crest and the SW group can move with the SW group speed. To illustrate this, we
will put ourselves in the reference frame moving with the SW group. Then the
surrounding water is flowing backward at speed c/2. As shown in figure 5, the
component of this backward flow that is parallel to the IW phase velocity must be
equal in magnitude to the IW phase velocity. This geometric condition recovers the
resonance condition

c
2

cos χn =
ω√

q2 + s2
. (3.16)

The wake angle θn is related to the direction of the phase velocity, χn, by θn =

π/2− χn, so that cos χn = sin θn. Therefore the wake angle is given by

sin θn =
2N

c
√

q2 + s2 +m2
n

, (3.17)

where we have used the IW dispersion relation for ω(q, s). To find the widest possible
wake angle θn, we maximize the right-hand side of (3.17) over all wavenumbers by
taking q= s= 0 to find

max
∀(q,s)

(sin θn)=
2N
cmn
=

2Nd
nπc
=

1
mn∗

. (3.18)

The maximum wake angle is determined by the stratification, depth, and SW group
speed. The first four modal constituents of vertical velocity wn(x̃, y) are shown in
figure 2. The dashed red line at the angle determined by (3.18) is parallel to the
zero contour (the solid, black line), indicating that wake angle predicted by (3.18) is
accurate. (Recall in figure 2 that mn∗ > 1 for all n.)

The maximum wake angle in (3.17) is undefined if mn∗< 1. This is the case if the
stratification is strong so the fastest radiated IWs are moving at the SW group speed.
Choosing even smaller values of mn∗ (larger N, larger d, or smaller c/2) does not
change the wake angle beyond θn =π/2.
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Internal wave crest
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t

Surface wave group

x

y

FIGURE 5. (Colour online) Schematic of the IW wake in the reference frame where the
SW group is stationary. The surrounding water rushes backward (to the left) at the group
speed (c/2). The IW crest intersects the x-axis at an angle θn, while the phase velocity of
the IW, which is perpendicular to its crest, is at an angle of χn =π/2− θn to the x-axis.
The condition in (3.16) is that the IW crest is stationary because the advance of phase
normal to the crest is halted by the normal component, (c/2) cosχn, of the water velocity.

4. Energy flux into the IW field

The radiation of IWs from an SW group raises two questions: (i) Is the radiation
of IWs a significant energy sink for the SWs? And (ii) is this radiation a significant
source of energy for the IWs? In this section we compute the energy flux, and answer
these questions with: (i) no and (ii) probably no, except maybe for strong stratification
and large amplitude SWs.

4.1. The radiation integral

From (2.19)–(2.21) we obtain the second-order energy conservation equation

∂t
1
2(|u2|

2
+N−2b̄2

2)+∇ · ($u2)= 0. (4.1)

Thus the vertical component of the energy flux at the surface is $ w̄2|0; the total flux
of energy out of the SW group and into the IW field in Watts is therefore ρ0J where

J def
=

∫∫
Mx$

∣∣∣∣
0

dx dy. (4.2)
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292 S. Haney and W. R. Young

In (4.2) the surface boundary condition in (2.26) has been used for w̄2|0. Using the
modal expansion for $ in (3.2) the right-hand side of (4.2) is

J =
∞∑

n=1

∫∫
∞

−∞

Mx$n

∣∣∣∣
0

dx dy︸ ︷︷ ︸
def
=Jn

, (4.3)

where Jn is the energy flux into vertical mode n.
With Parseval’s theorem, we can express Jn in terms of the Fourier transforms M̂

and $̂n as

Jn =

∫∫
∞

−∞

iqM̂$̂ ?
n

∣∣∣∣
0

dq ds
(2π)2

. (4.4)

The Fourier transform $̂n is given by (3.9) and thus the energy flux into vertical mode
n is ρ0Jn where

Jn =
c
2

√
2

d

∫∫
∞

−∞

iq2
[q2

max − (q− iη)2](q+ iη)|M̂|2

(q− iη)2(q2 + s2 +m2
n)− q2

max(q2 + s2)

dq ds
(2π)2

. (4.5)

It is helpful to define

cos2 ϑn =
m2

n

q2 + s2 +m2
n

, sin2 ϑn =
q2
+ s2

q2 + s2 +m2
n

, (4.6a,b)

so that the partial fraction decomposition of (4.5) can be written as

Jn =
c
2

√
2

d

∫∫
∞

−∞

iq2
|M̂|2

q2 + s2 +m2
n

×

[
q+ iη−

1
2

q2
max cos2 ϑn

q− iη+ qmax sin ϑn
−

1
2

q2
max cos2 ϑn

q− iη− qmax sin ϑn

]
dq ds
(2π)2

. (4.7)

We can drop the term q+ iη in the square bracket above: the q is an odd function that
integrates to zero and the iη is a non-singular term that vanishes in the limit η→ 0.
The remaining terms in the integral are even in both q and s and taking advantage of
these symmetries we can restrict the integration to the first quadrant to obtain

Jn =−
c
2

4πq2
maxm

2
n

√
2d

∫∫
(q,s)>0

q2
|M̂|2

(q2 + s2 +m2
n)

2

1
π

η

(q− qmax sin ϑn)2 + η2

dq ds
(2π)2

. (4.8)

Taking the limit η→ 0 in (4.8) using the result in appendix B, we find that the double
integral is concentrated on the singular curves given by the zeros of γ (q, s) in (3.12),
and shown in figure 4. Thus, after the limit η→ 0 the double integral in (4.8) is
reduced to a single integral with respect to q:

Jn =−
c
2

1
√

2πd

∫ qmax

qmin

q2
|M̂(q, sn(q))|2

√
q2

max − q2

m2
n − q2

max + q2
dq. (4.9)
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In the second argument of M̂ in (4.9), the singular curves defined by γ (s, q)= 0, with
γ (s, q) in (3.12), are parameterized by q as s= sn(q), where

sn(q)
def
= q

√
m2

n − q2
max + q2

q2
max − q2

. (4.10)

The upper limit of integration in (4.9) is qmax = 2N/c and the lower limit is

qmin
def
=

{
0, if qmax 6 mn;√

q2
max −m2

n, if qmax > mn.
(4.11)

The definition of qmin above corresponds to the distinction between the curves in
figure 4 corresponding to mn∗ > 1, which pass through the origin, and those curves
with mn∗ < 1 which cross the q axis at

√
q2

max −m2
n. Both types of curves asymptote

to s =∞ as q→ qmax: this asymptote corresponds to the upper limit of integration
in (4.9). In physical terms there is a ‘cutoff’ wavenumber qmax because IWs have
frequencies less than N: wavenumbers q> qmax correspond the non-existent IWs with
frequencies greater than N.

The ‘radiation integral’ on the right of (4.9) is our most general expression for
the energy lost to mode-n internal gravity waves from the SW group. We make
approximations to (4.9) assuming realistic SW and stratification parameters in § 4.3.

4.2. Energy transfer between a Gaussian SW group and the IW wake
To make a simple estimate of the energy loss from surface gravity waves we adopt the
Gaussian model from appendix A and use numerical values in table 1. Since energy
in the SWs is partitioned equally between kinetic and potential, the energy density of
an SW train is given by gh2

1 (Phillips 1977). Then using h1 in (2.10) and the Gaussian
wave envelope in (A 1) the total energy of the packet is ρ0E, in Joules, where

E=
∫∫

gh2
1 dx dy=

π

2
ga2

max`x`y. (4.12)

Next we non-dimensionalize (4.9) as before using q∗ = q/qmax and mn∗ = mn/qmax

and replace |M̂|2 by the Gaussian expression (A 3). Using c2k= g, we find

Jn = −
q3

max

2
√

2πcd

(π

2
ga2

max`x`y

)2

×

∫ 1

qmin∗

q2
∗

exp

[
−

1
2
(qmax`x)

2q2
∗

(
1+

m2
n∗ − 1+ q2

∗

1− q2
∗

`2
y

`2
x

)]√
1− q2

∗

m2
n∗ − 1+ q2

∗

dq∗︸ ︷︷ ︸
Jn(qmax`x,`y/`x,mn∗)

,

(4.13)

where

qmin∗ =

{√
1−m2

n∗, if mn∗ < 1;
0, if mn∗ > 1.

(4.14)

Using the values in table 1, qmin∗ = 0.
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Now we consider the slow time evolution of the SWs and assume that only the IW
radiation affects the energy tendency:

Et =

∞∑
n=1

Jn, (4.15)

= −
q3

max

2
√

2πcd

∞∑
n=1

Jn︸ ︷︷ ︸
def
=α

(π

2
ga2

max`x`y

)2

︸ ︷︷ ︸
E2

. (4.16)

In (4.16) we have expressed the energy flux in terms of the energy in the wave group,
and the factor α. We assume that α is constant as E ∝ a2

max slowly decreases due to
radiative damping. Then the solution of the differential equation (4.16) is

E=
E0

1+ αE0t
, (4.17)

where E0 is the initial energy corresponding to the initial amax. Therefore the half-life
of a group of SWs is given by

t1/2 =
1
αE0
=

c4d
√

2gN3a2
max`x`y

∞∑
n=1

Jn

=−
E0
∞∑

n=1

Jn

, (4.18)

where amax and Jn above are evaluated at t= 0. Equation (4.18) highlights that faster
waves in a deeper ocean survive longer, while larger waves, larger wave groups and
stronger stratification damp the wave group more quickly.

Computing the energy flux from SWs to IWs by numerical evaluation of the
integral for Jn in (4.13) we find that the radiated energy into the first 5 vertical
modes is approximately 0.2 W for typical forcing and approximately 100 W for
extreme forcing in table 1. In the extreme forcing case, it would take over 100 000
days (and much more for the typical case) for the SWs to lose half their energy.
In this time the wave group would have travelled more than 1000 times around the
Earth. We can safely say that this is a small loss of energy from the SWs.

Might this small energy flux be a significant energy source for the IW field? The
ocean IW spectrum has two peaks: the near-inertial spectral peak and a secondary
peak at frequencies close to the buoyancy frequency N (Pinkel 1975). As Olbers &
Eden (2016) note, the energy flux from SWs to IWs is small compared to the energy
flux from the wind into near-inertial waves. However, figure 6 (which is discussed
in more detail in § 4.3) shows that the majority of the energy radiated from SWs
goes into near-N IWs. The amplitude of the near-N spectral peak is much smaller
than that of the near-inertial spectral peak, so the energy flux estimated above may
be significant for near-N IWs while also negligible compared to the energy flux due
to wind forcing. From figure 6 of Pinkel (1975) we estimate this peak in isotherm
displacement squared ζ ′2 to be 0.5 m2 (cycles per hour)−1 in amplitude, and 2 cycles
per hour wide. Then we can estimate the near-N IW energy density as ρN2

pycζ
′2d,

where Npyc=2π/(900 s) is a typical stratification in the pycnocline. The power density
of IW radiation from SW forcing is ρ0

∑5
n=1 Jn/`x`y. Then a time scale of forcing, τ ,

can be obtained by dividing observations of energy density by the power density to
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FIGURE 6. (Colour online) The energy flux spectral density for the typical SW and
stratification parameters in table 1. The solid lines show the exact integrand in (4.13),
and the dashed lines show the approximation in (4.20) for the first three vertical modes
as a function of normalized horizontal wavenumber, q/qmax, which is equivalent to the IW
frequency, ω, normalized by the buoyancy frequency N.

find τ ≈ 500 days in the typical case and τ ≈ 1 day in the extreme case. This implies
that one day of extreme forcing by SW groups with these parameters would produce
the measured amount of near-N IW energy. Therefore, this mechanism is likely not a
source of near-N IWs under typical SW forcing, but may be significant during extreme
forcing.

4.3. The limit of weak stratification and fast SWs
Figure 2 of Chelton et al. (1998), shows a global map of the fastest possible IW phase
speed based on observations of the vertically integrated stratification,

∫ 0
−d N(z) dz and

assuming hydrostatic IWs. The hydrostatic approximation results in an overestimate of
the IW phase speed, so these estimates are used as an upper bound. The map shows
that IW phase speeds never exceed 3.2 m s−1, and generally range from 1 to 3 m s−1

for the first baroclinic mode. If we consider swell with periods of 8 or larger, then

mn∗ =
cnπ

2Nd
& 2. (4.19)

In other words, for SWs with periods of 8 or longer, the SW group speed is always
significantly greater than the IW phase speed. In this sense the ocean stratification is
weak, IWs are slow, and the SWs are fast. Thus the relevant case in (4.14) is mn∗> 1
and qmin∗= 0. The other case, mn∗< 1 and qmin∗=

√
1−m2

n∗, is not relevant for Earth’s
oceans.

Equation (4.13) is opaque: the dependence of Jn on key parameters is buried inside
a difficult integral. We will exploit the weak stratification and fast SWs to approximate
(4.13), and reveal the dependence of Jn on the stratification and SW parameters. After
systematic simplification of the integrand in (4.13) assuming m2

n∗� 1, and `y>`x, we
have

Jn ≈−
1
n

√
2

c
(Namax)

4(k`x`y)
2
∫ 1

0
q2
∗

exp
[
−

q2
∗

1− q2
∗

(mn`y)
2

2

]√
1− q2

∗
dq∗︸ ︷︷ ︸

Kn(mn`y)

. (4.20)
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FIGURE 7. (Colour online) The approximate dimensionless integral Kn (dashed) compared
with exact solutions Jnmn∗ (solid) over a range of the control parameters mn`y. The
approximation agrees well in two cases where the assumptions (m2

n∗� 1 and `y > `x) are
met (blue and green). The approximation is very poor when the assumptions are not met
(orange and red).

Above, Kn is an m2
n∗ � 1 approximation to the integral mn∗Jn in (4.13). Using

the typical wave and stratification parameters assumed in table 1, the approximate
integrand in (4.20), is very close to the exact integrand in (4.13): see figure 6. Note
that while the exact Jn in (4.13) depends on three parameters, the approximation Kn
in (4.20) contains only the single parameter mn`y, which is equal to the product of
the three parameters in Jn. Therefore

J ≈−

√
2

c
(Namax)

4(k`x`y)
2
∞∑

n=1

1
n
Kn(mn`y), (4.21)

provided that m2
n∗� 1 and `y/`x > 1.

Figure 7 shows the dependence of the integral Kn on the control parameter mn`y.
The dashed line is Kn, and the solid lines are exact solutions Jnmn∗ from (4.13). The
approximation agrees well with the two exact solutions with parameters that satisfy
the assumptions m2

n∗� 1 and `y > `x, and very poorly with cases that do not satisfy
these assumptions.

We see from (4.21) and from figure 7 that the energy flux decreases quickly with
increasing n. This is also clear in figure 6. Therefore, neglecting all but the first mode,
the energy flux becomes

J ≈ J1 ≈−
32
√

2π5

g3

(Namax)
4

T5
(`x`y)

2K1(m1`y), (4.22)

where we have replaced the wavenumber k and phase speed c with an expression
including g and the SW period T using the deep water dispersion relation. Using
a spectrum of waves, Olbers & Eden (2016) recover the same dependence on
stratification, SW period and nearly the same dependence on SW amplitude. (Olbers
& Eden (2016) present their results in terms of the wind speed. The energy flux
in their equation (35) varies as wind speed to the seventh power, and they assume
a parametrization in which the wave amplitude is proportional to the wind speed
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squared. Not included in their paper is a non-dimensional form of the radiative
transfer which recovers the T−5 dependence as well, Dirk Olbers 2017, personal
communication.) From (4.22) it is clear that the SW amplitude, stratification, and
wave period are the strongest controlling parameters. Thus even small changes in T ,
amax, or N can drastically change the rate of energy flux from SWs to IWs.

4.4. Long-crested SWs
An even simpler approximation is obtained if mn`y is large: as mn`y→∞ we have
Kn∼ 2−1/2π−5/2(d/n`y)

3. In this case, with long-crested wave groups, (4.21) simplifies
to

J ≈−
d3

π5/2c`y
(Namax)

4(k`x)
2
∞∑

n=1

1
n3︸ ︷︷ ︸

≈1.2

, (4.23)

provided m2
n∗� 1, `y>`x and mn`y� 1. Note that (4.23) is a very poor approximation

for our assumed typical parameters (mn`y ≈ 1), but the range of validity of this
approximation is not far from the assumed parameter values. Nevertheless, the
mn`y� 1 approximation is valid for high vertical modes n� 1. This approximation
highlights the weak dependence of the energy flux on the width of the group `y and
the strong dependence on the depth d.

5. The two-dimensional case
The 2-D problem, with no dependence on y, is significantly simpler than the 3-D

problem discussed in the previous sections. In two dimensions, the streamfunction–
vorticity formulation provides a compact solution of the second-order wave-averaged
equations of motion. Moreover, strictly in two dimensions, Lighthill (1978) in § 3.9
and Lamb (1932) in § 249, provide a resolution of the radiation condition that avoids
the technicalities of zero divisors and the η→ 0 limit in appendix B. Furthermore,
although the 2-D case can be recovered as a special case of our previous 3-D results
by taking `y → ∞, the limit requires evaluation of some singular integrals and is
difficult to extract. Thus in this section we solve the 2-D problem from the beginning
and then show how these result can be recovered from the 3-D solution as a special
case. This alternative derivation provides a significant check on the 3-D solution.

5.1. Solution of the 2-D problem
With no y dependence the IW equation for vertical velocity (2.22) is

[∂2
t (∂

2
x + ∂

2
z )+N2∂2

x ]w̄2 = 0. (5.1)

It will be convenient to introduce the streamfunction ψ , such that w̄2 = ψx, and
ū2 =−ψz. Replacing w̄2 by ψ and moving into the wave group frame, we have

(∂2
x̃ + ∂

2
z + q2

max)ψ = 0, (5.2)

where recall qmax = 2N/c. The surface boundary condition in (2.26) is equivalent to
ψ(x̃, 0)=M(x̃). Then projecting (5.2) onto the sine modes defined in (3.4), we find
that the evolution equation for amplitude of mode n is

[∂2
x̃ + q2

max(1−m2
n∗)︸ ︷︷ ︸

def
=q2

min

]ψn =

√
2mn

d
M1D, (5.3)
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298 S. Haney and W. R. Young

with mn∗ =mn/qmax and M1D(x̃) is the one-dimensional Gaussian envelope in (A 4). In
this 2-D case we do not need to consider a slowly growing wave group in order to
implement the radiation condition i.e. M1D on the right of (5.3) is not growing.

Notice that (5.3) further elucidates the importance of the critical parameter mn∗. In
two dimensions, when mn∗ < 1, solutions to (5.3) are propagating waves. This case
corresponds to the singular curves that intersect the q-axis at q= qmin in figure 4. On
the other hand, if mn∗ > 1 then solutions of (5.3) are evanescent i.e. exponentially
trapped around the forcing M1D. This case corresponds to a return flow comprised of
the evanescent modes similar to the unstratified case depicted in figure 1(a). Because
mn∗∝ n, in two dimensions there is a vertical mode number nrad above which mn∗> 1
i.e. modes with n> nrad are evanescent and contribute to the return flow and not to
radiation of IWs. If the stratification is weak (and the stratification of the ocean is
weak in this sense) then nrad < 1 and all vertical modes are evanescent. (Whereas in
three dimensions all modes are radiate.)

To solve (5.3) we employ Green’s functions. First consider the radiating modes with
q2

min > 0. The Green’s function G(x̃) is defined by

(∂2
x̃ + q2

min)Gn = δ(x̃), (5.4)

with solution

Gn(x̃)=−
sin qminx̃

qmin
H(−x̃), (5.5)

where H(−x̃) is Heaviside step function. The factor H(−x̃) ensures that the solution in
(5.5) satisfies the radiation condition: radiated IWs trail behind (x̃< 0) the SW forcing.
This choice of Heaviside function is analogous to choosing the sign of δ in (3.1).
Using this Green’s function the streamfunction for radiating modes with 1 6 n 6 nrad

is

ψn(x̃)=−

√
2mn

qmind

∫
∞

x̃
M1D(x′) sin[qmin(x̃− x′)] dx′. (5.6)

Turning to the evanescent modes with q2
min < 0, we introduce β2

n =−q2
min > 0. Then

the relevant solution of (5.4) is

Gn(x̃)=−
e−βn|x̃|

2βn
, (5.7)

and the streamfunction for evanescent modes with n> nrad is

ψn(x̃)=−

√
2mn

2βnd

∫
∞

−∞

M1D(x′)e−βn|x̃−x′| dx′. (5.8)

To compute the energy flux, we first consider the solutions in (5.6) and (5.8) far
in the wake of the SW packet i.e. as x̃→−∞. In the wake, the evanescent modal
amplitudes in (5.8) have decayed to zero and one is left with only the radiating modes
with n 6 nrad. Moreover, the integral in (5.6) is simplified by taking the lower limit
to −∞ so that

ψn =−

√
2mn

qmind
Im[M̂1D(qmin)eiqmin x̃

], (5.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

53
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
D

 L
ib

ra
ri

es
, o

n 
25

 S
ep

 2
01

7 
at

 1
7:

29
:2

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.536
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Radiation of internal waves 299

–4 –3 –2 –1 0 1
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

FIGURE 8. The flow as in figure 1(b) is used here to illustrate the energy flux calculation
(5.13)–(5.14). The thick rectangle defines a ‘control box’. The left edge of this box (at
x/d≈−4) is fixed far from the SW group. The right edge of the box moves with the SW
group at speed c/2. Energy from previously generated IWs is carried into the box through
the left edge at a rate Enυn. Energy also enters the box via a downward flux from the
SW group.

where M̂1D(qmin) is the Fourier transform of M1D(x̃) evaluated at the wavenumber qmin
and Im is the imaginary part. Thus in the wake

〈ψ2
n 〉 =

1
2

(√
2mn

qmind

)2

|M̂1D(qmin)|
2, (5.10)

where 〈 〉 denotes a phase average of the IW i.e. an integral in x̃ over one wavelength
2π/qmin. The potential energy density is b2/N2

= q2
maxψ

2, so the IW energy density in
the wake of the SW packet is therefore

1
2

∫ 0

−d
〈ψ2

x̃ +ψ
2
z + q2

maxψ
2
〉 dz=

nrad∑
n=1

En, (5.11)

where the energy density of mode n is

En =
1
2

(√
2mn

qmind

)2

|M̂1D(qmin)|
2

︸ ︷︷ ︸
〈ψ2

n 〉

q2
maxd. (5.12)

We can relate the energy density of the nth mode to the radiative flux using an
argument given by Lamb (1932) in the context of SW resistance to a moving body.
Figure 8 shows the wake of IWs behind an SW group as in figure 1(b). To compute
the energy flux we first consider the total energy inside a box with left edge fixed
far from the SW forcing region, and with the right edge of the box just in front of,
and moving along with, the SW group at speed c/2. The energy in this ‘control box’
for the nth mode is EnL(t), where L(t) is the length of the box. Then the energy flux
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300 S. Haney and W. R. Young

into this box can be written as a sum of the energy flux from the SW forcing J2D
n ,

and the energy flux from IWs as they propagate through the left side of the box with
their group speed υn. Thus the energy conservation equation for the control box is

∂t(EnL)= J2D
n + Enυn. (5.13)

Now L = ct/2, where t is the time since the SW group entered the box by passing
through the left edge and so from (5.13) we obtain Lamb’s result

J2D
n = En(

1
2 c− υn). (5.14)

The IW group velocity υn in (5.14) can be expressed in terms of the IW phase
speed for a radiating wave, c/2, and the critical parameter mn∗ as

υn =
c
2

m2
n∗. (5.15)

Using expression (5.15) for the group velocity υn, the radiative flux for the nth vertical
mode given by (5.14) is

J2D
n =

cm2
n

2d
|M̂1D(qmin)|

2. (5.16)

In the illustrative case of a Gaussian envelope in (A 4) and (A 5), the radiation flux
in (5.16) is

J2D
n =−

m2
n

2cd

(√
π

2
ga2

max`x

)2

e−(qmin`x)
2/2. (5.17)

5.2. The `y→∞ limit of the 3-D solution illustrated with a Gaussian wave packet
Throughout this section, we assume that mn∗ < 1 so that qmin in (5.3) is real. This
condition is necessary for the radiation of IW energy: with s = 0 the resonance
condition for vertical mode n is that c/2 is equal to N/

√
q2 +m2

n, or equivalently
that q is equal to qmin in (4.9) and figure 4. The results of Chelton et al. (1998)
indicate that throughout Earth’s ocean the SW group speed, c/2, for swell is likely
greater than the IW phase speed N/mn for all n. In which case qmin in (5.3) is
imaginary and there is no radiation.

Nonetheless, as a consistency check on the previous 3-D calculations, it is
interesting to suppose that qmin is real and show that the 2-D result in (5.17) is
recovered by taking the limit `y→∞ in the 3-D radiation integral (4.9). The `y→∞

limit is tricky e.g. as `y → ∞, M̂(q, s) ∝ δ(s) and a straightforward calculation
using (4.9) requires consideration of |M̂|2 ∝ δ[sn(q)]2. The argument of the squared
δ-function, sn(q), is zero at q = qmin. But at this same point the big square root in
(4.9) has an integrable singularity.

To avoid involvement with these duelling singularities, we first insert |M|2 in (A 3)
into (4.9) and then consider `y→∞:

Jn = −
1

2πcd

(π

2
ga2

max`x

)2√
π`y

×

∫ qmax

qmin

q2e−(q`x)
2/2

√
q2

max − q2

m2
n − q2

max + q2︸ ︷︷ ︸
q/sn(q)

lim
`y→∞

`y
√

2

1
√

π
e−(sn(q)`y)

2/2︸ ︷︷ ︸
→δ[sn(q)]

dq. (5.18)
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The factor `y left outside the integral in (5.18) is expected on physical grounds: the
radiation should be linearly proportional to the length in y of the SW packet.

Now recall that sn(q) is defined in (4.10), and observe that sn(qmin) = 0. We can
now simplify the integrand in (5.18) using a standard results for δ-functions:

q
sn(q)

δ[sn(q)] =
q

sn(q)
δ(q− qmin)

dsn/dq
, (5.19)

=
m2

n

q2
min
δ(q− qmin). (5.20)

Evaluating (5.18) with the δ-function in (5.20) we obtain

Jn =
√

π`yJ2D
n , (5.21)

where J2D
n is given by (5.17) and

√
π`y is the effective length in y of the SW packet.

6. Discussion

As SW groups pass over the ocean, water is pumped downward in front of the
group and lifted in the rear of the group, inducing a deep return flow. This Stokes
pumping is a result of stronger Stokes drift in the centre of the group than at the
edges, producing a divergence in the mass flux. Without stratification, this produces
the deep return flow with momentum equal in magnitude but opposite in direction
to the momentum of the shallow Stokes drift. As these wave groups pass over a
uniformly stratified ocean, the isopycnals are set into motion by the return flow,
generating a trailing wake of internal gravity waves.

The pattern of radiated IWs is stationary in the frame of reference of the SW group,
just as ship wake waves are stationary relative to the ship. Because the stratification
in the ocean is relatively weak, there are rarely if ever IWs that propagate with phase
speeds as fast as the group speed of swell (& 6 m s−1). Thus radiated IWs must
propagate obliquely to the direction of SW propagation so that the IW phase speed
in the SW direction is much faster than the IW phase speed normal to the wave
crests.

The wake angle can be predicted as a function of the vertical mode number,
stratification, SW group speed, and ocean depth. The full wake solution shows a
wake at nearly the angle appropriate for a mode one wave. This is consistent with
the fact that most of the radiated energy is put into mode one IWs at frequencies
near the buoyancy frequency.

Using typical parameters for SWs, and ocean stratification, we find that the total
energy transfer from SWs to IWs is insignificant. However, when the SWs have very
large amplitude, and when the stratification is strong, the radiation of IWs may be a
significant source for near-N IWs. Pinkel (1975) observed a near-N spectral peak of
IW energy. The energy content of this peak divided by the energy flux from SWs
to IWs, under extreme forcing, gives a time scale of approximately one day. This
implies that this forcing mechanism acting over a day would generate IWs at near-N
frequencies with the observed amount of energy. Therefore, although the very large
amplitude swell assumed in this estimate is not present everywhere all of the time, it
suggests that SW forcing may at least contribute to the observed near-N peak in IW
energy.
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Appendix A. A Gaussian envelope
For illustrative purposes we use the Gaussian envelope function

a= amax exp

(
−

x̃2

2`2
x

−
y2

2`2
y

)
, (A 1)

where x̃ is the group coordinate in (2.12). With the envelope in (A 1) the wave
momentum (2.15) is

M(x̃, y)=
1
2

cka2
max exp

(
−

x̃2

`2
x

−
y2

`2
y

)
. (A 2)

Using the Fourier transform defined in (3.6) we have

M̂(q, s)=
1
2

cka2
max`x`yπ exp

[
−

(
q`x

2

)2

−

(
s`y

2

)2
]
. (A 3)

In the radiation integral for Jn in (4.9) we have |M̂|2.
In § 5 we consider the 2-D problem with a Gaussian envelope

M1D(x̃)= 1
2 cka2

maxe
−x̃2/`2

x , (A 4)

with Fourier transform

M̂1D(q)= 1
2 cka2

max

√
π`xe−(`xq/2)2 . (A 5)

Appendix B. A δ-function limit
The radiation integral in (4.8) has the form

I def
= lim

η→0

∫∫
F(q, s)

1
π

η

γ (q, s)2 + η2
dq ds, (B 1)

where the function γ (q, s) defined in (3.12) is zero on the ‘singular curve’ C. In the
limit η→ 0, the double integral in (B 1) can be reduced to the single integral

I =
∫
C

F(q(`), s(`))
|∇γ (q(`), s(`))|

d`, (B 2)

where ` is arclength along C. (The result above assumes that in (B 1) η→ 0 through
positive values: the sign is flipped if η→ 0 through negative values.)

To prove (B 2), note that in terms of intrinsic coordinates (`, n)

dq ds= d` dn=
d` dγ
|∇γ |

, (B 3)
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where n is the normal distance from C. Using (B 3) to convert (B 1) to a (γ , `)-integral
and ∫

∞

−∞

1
π

η

γ 2 + η2
dγ = 1, (B 4)

to perform the integration over the coordinate γ , we obtain (B 2).
Now suppose that C is a graph and can therefore be parameterized as s= f (q). The

element of arclength is

d`=
√

1+ f ′2 dq=
|∇γ |

|γs|
dq. (B 5)

Thus, using q to parameterize C, the integral in (B 2) becomes

I =
∫

F(q, f (q))
|γs(q, s(q))|

dq. (B 6)
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