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Abstract

We show that the geophysicateffect strongly affects the linear stability of a sinusoidal Kolmogorov flow. denotes
the angle between the flow direction and the planetary vorticity gradient then the critical Reynolds’ nRgdes,), is zero
for B # 0, provided that sin@ # 0. In particular, the smaj$ limit is discontinuous: lim_.o Rc(er, ) = 0, rather than the
classical valueR¢(e, 0) = /2. Moreover, though the Kolmogorov flow is non-zonal, the most unstable modes are large-scale
quasizonal flows. These results are obtained using asymptotic analysis and confirmed by numerical solution. The simulations
show the saturating effects of nonlinearities. © 2002 Elsevier Science B.V. All rights reserved.

PACS 92.10.Ei; 47.15.Fe; 47.20.Ky
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1. Introduction

The inverse energy cascade is a distinctive characteristic of two-dimensional fluid mechanics. Because of this
behavior, small-scale forcing is an effective means of generating larger-scale two-dimensional turbulence in a
viscous fluid [1-3]. Sivashinsky and Yakhot [4] and Gama et al. [5] have emphasized that the inverse cascade car
be regarded as an example of the large-scale instability of a set of eddies sustained against viscosity by externz
forcing. In this situation multiple-scale techniques can be employed to obtain an analytical characterization of the
instability.

One of the simplest flows that can generate large-scale instabilities is the much-studied [4,6—9] Kolmogorov flow,
whose streamfunction representation is

¥ = —Yp COSMX. 1)

With our sign convention, the velocity {g, v) = (0, m¥p sinmx). The Reynolds’ number of the Kolmogorov flow
is defined ask = ¥y/v, wherev is the viscosity. Without complicating factors, the flow in (1) is linearly unstable
to large-scale perturbationsf is greater than the critical value & = /2 [8].
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This paper is concerned with the consequences of the geophgsidtct for the instability of the Kolmogorov
flow in (1). We show that even in the limit — O the generic effect g8 is to reduce the critical Reynolds’ number
from +/2 to zero. “Generic” means that if the planetary rotation is

f = fo+ Bycosu + Bxsina 2)

then the critical Reynolds’ number is zero provided that &i20. The angler allows for an arbitrary orientation
between theév f and the direction of the sinusoidal shear flow in (1). Specificallis the angle by whiclv f is
rotated clockwise from the-axis of the coordinate system used in (1). Notice that since the ‘zonal’ direction is
defined as the direction of constghtin the coordinate system used in this work thaxis does not correspond to the
zonal direction unlesg = 0. Interms of the coordinate system in (2), the streamfunction of a zonal flow has the form:

Yzonal = @ function of (x sina + y cosa). (3)

The linear stability of the geophysical Kolmogorov flow has been studied by previous authors. Lorenz [10] and Gill
[11] considered the stability of this flow when= 0 in the inviscid case. In the viscous case, Frisch et al. [12,13]
tooka = /2, while Manfroi and Young [14] considered= 0. In these works asymptotic approximations based

on smallg and small(k, /) were used. Dolzhanskiy [15] considered the aase 0 when friction from an Ekman

layer is present. Stuhne [16] considered the ease 0 in full spherical geometry. These earlier works miss the
large-scaleR. = 0 instability which occurs provided that sin 24 0.

Our initial motivation for considering general was to understand the transition between the ecase 0
considered in [14,15] and the case= 7/2 in [12,13]. The discovery of a new mode of large-scale instability with
Rc = 0 at intermediate values afwas confusing and surprising.

In geophysical problems the choicemflepends on the physical interpretation of the small-scale Kolmogorov
flow. One scenario is that the small-scale forced flow represents baroclinic disturbances, while the large-scale
instability models the zonal jets which develop as a response which is secondary to baroclinic instability [17]. In
other words, baroclinic instability creates disturbances whose length scale is the Rossby deformation radius and in
many applications this is small-scale forcing. Via the inverse cascade, baroclinic eddies supply energy to larger-scale
barotropic flows, with scales of several Rossby deformation radii, which develop into planetary-scale zonal jets
[18-20]. For our purposes, the main point is that the orientation of maximally unstable baroclinic waves does not
generally correspond to either= 0 nor toa = /2 [21]. On the other hand, most observed large-scale geophysical
jets are zonal (e.g., the Antarctic Circumpolar Current, the atmospheric jet stream, or the banded structure of
the Jovian atmosphere). Therefore, an important motivation for this work is to understand the consequences of
applying small-scale forcing at an arbitrary orientation with respect to the gradient of planetary rotation, and how
the large-scale response can be selectively zonal given a non-zonal small-scale forcing.

Much of this paper deals with the intricate linear stability problem resulting from the horizontal anisotropy
introduced by both the sinusoidal flow in (1) and planetary vorticity gradient in (2). But we will make occasional
excursions into the nonlinear regime. As an indication of the importaneeafi g in the nonlinear regime, Fig. 1
shows numerical simulations of the instabilities of (1) with various values; o all cases the basic state has
m = 32 and the oscillations along thedirection betray the underlying small-scale forcing. Panel (a) shows the
cases = 0; the large-scale streamfunction is mostly disorganized. The other three panels show the gffed of
and various values af. In the three cases with # 0 the large-scale flow is organized so that the streamlines are
aligned along the lines of constayit as in (3). In other words, the large-scale streamfunction is zonal no matter
how the small-scale forcing is oriented.

The formulation of the stability problem for the Kolmogorov flow is presented in Section 2. This section also
gives an overview of the main results. Detailed analysis of the stability for0, 0 < o« < 7/2, anda = /2 are
presented in Sections 3-5, respectively. Section 6 presents concluding remarks.
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(b) Streamfunctionfor=1;0=0

y/32
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x /32 x /32

Fig. 1. Perturbation streamfunctiof, for four configurations of differential rotation: (8)= O; (b) 8 # 0 andx = 0; (¢) 8 # 0 andx = 7/6;

(d) B # 0 ande = 7/2. The Reynolds’ number i = 5+/2 in all cases. Darker lines indicate positive valuesyofin all three cases with

B # 0 the large-scale flow is zonal, as in (3). The perturbation streamfunction is obtained by numerical solution of (4) with forcing at mode
(32, 0); the small-scale oscillations, or “wiggles”, in thedirection are a result of this forcing. More details on the numerical method are given

in Section 3.3.

2. Formulation and overview

We write the total streamfunction of a forced two-dimensional flow &s) in (1) plus a perturbatiog (x, y, 7).
The forcing is such tha? is a steady-state solution of the forced problem. One then obtains the following
non-dimensionalized equation fer.

VY, + Rsinx[VZy + ], + J (¥, V29) + B cosay, — Bsinay, = Vi — uv2y, (4)

where the Reynolds’ number &= ¥p/v, with v representing the viscosity. The effect of the forcing/ors given
by the coupling with the Kolmogorov flow in the terms proportionaRoln (4), 1 is a non-dimensional bottom
drag, and the terms with result from advection of the planetary vorticity in (2). The results shown in Fig. 1 are
obtained by numerical solution of (4) with a resolution of 26@56.

The stability of solutions of the linear problem associated with (4) will be the main focus of this work. The primary
tool for this study is a multiple-scale analysis approach, basegl lm#ing small orR being slightly supercritical.
The details of these calculations are given in Sections 3-5 and in Appendix B.
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A complementary approach will be used to check and amplify the analytical results. Using a numerical eigensolver
we study (4) as a Floquet problem [6,9]. This amounts to substituting

o
v = eikx+i|y-|-m bn einx 5

n;m ®)
into the linearized version of (4). In (%)and! are the wavenumbers in the and y-directions, respectively, and
o = o, + io; is the growth rate, which is a function &f/, R, «, andg. Because one can replakdy k + 1 by
shifting the index in the infinite sum is periodic ink, with period 1. Without loss of generality then, we can
confine our attention te% <k < % We also selr = 0, since in the linear problem the effect of the bottom drag
is to rigidly move the spectrum in the direction of stability. Although the value of the critical Reynolds’ number
does depend op, the methods presented here can easily be extended to theg eask Substituting (5) into (4)
we obtain an eigenvalue problem, see (A.1), with eigenvadugSiven values ofy, 8 and R, we definey (k, I)
as the largest, for each wavenumbgk, [). We then define the ‘region of instability’ or ‘unstable region’ in the
(k, 1)-plane as the ensemble of wavenumbers for wirich 0. The method used to numerically solve the eigenvalue
problem is presented in Appendix A.

Before descending into the details of the stability analysis we now summarize the main conclusions so as to give
the reader a global understanding of this stability problem. The detailed analysis supporting these results is given
in Sections 3-5.

The most important result is the critical Reynolds’ number, which is a function ofdatids: R = Rc(a, B).

If R < R¢(e, B) then the flow is stable, while faR > Rc(«, 8) the flow is unstable. The classical result foe= 0
[8]is

Re(e, 0) = V2. (6)

The most surprising result in this work is that in the lirit> 0 the critical Reynolds’ number is generally ng.
In fact,

V2 if a=0,
fl}imoRC(a, B=410 if 0<a<m/2, )
V2 ifa=m/2

It is important to note that thg — O limit above is taken in an infinite domain. We show below that if ghe> O
limit is taken with the domain sizd,, fixed, then we recover (6).

Comparing (6) with (7), we see that there is generally a discontinuity in the valRg fof 8 — 0 andg = 0.
A similar discontinuity was observed in [7], where it was shown #Rafor the flow¥ = sinx + sinky tends to
1 in the limit« — 0 and not toy/'2, the critical Reynolds’ number far = 0. The conclusion in [7] was that the
flows with« # 0 and withk = 0 are “absolutely different in their instability”. The same conclusion is drawn here
for the flows withg # 0 andg = 0.

Fig. 2 shows the = 0 andr /2 critical curvesinthég, R) parameter plane. We present an analytic expression for
R:(0, B)inEqQ. (17). Forx = 7r/2, we can obtain an analytical expression only for small valugs &¢(r /2, 8) =
V2 + +/6|B| + O(B?). For a generic value of with « = /2 it is necessary to solve numerically the eigenvalue
problem.

The shape of the unstable region in thel)-plane depends sensitively anFig. 3 shows as shaded the regions
of instability with four choices of the parameteis, 8, R). The regions of instability shown in this and the next
figure are obtained from the numerical solution of the eigenproblem (A.1). Panel (a) shows the case of no differential
rotation,8 = 0. This is the classical case studied in [8] and the value isfirrelevant. The value oR is slightly
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FlC vs. B fora = 0. F{C vs. B for o = /2.
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Fig. 2. Critical Reynolds’ numbeR:(«, ) of the Kolmogorov flow fore = 0 andn/2. (a) R¢(0, B) is calculated from the analytical
result (17). The dot-dashed line is the asymptotic valug/df3 obtained for8 — oo. For 8 — 0, Rc(0, ) — 4+/2/5. (b) For the case
« = /2, Re(/2, B) is calculated numerically by solving the eigenvalue problem. In this cage-as0, Rc(r/2, 0) — /2. The circles
indicate numerical values and the dotted line is an interpolatiorR{@®, ) and R¢(x /2, ) on the same plot; notice the very small variation
of R¢(0, B).

above the critical value of/2 and the most unstable wavenumber has 0. In panel (b)(«, 8) = (0, 0.05), and
R is slightly above 4/2/5. The crucial point is that in this case the most unstable wavenumber $#aé and
Rc — 4\/5/5 < /2 for g — 0. Panel (c) shows the case fof, 8) = (;r/6, 0.05) andR = 0.5. The critical value
of the Reynolds’ number is zero for this case, for ghy- 0. The unstable region is a sliver tangent to the line
k = ltana and the most unstable wavenumber has batimd y dependence. Finally, panel (d) shows the case for
(a, B) = (r/2,0.05). This case is similar to th8 = 0 case in panel (a) because the most unstable wavenumber
hask = 0; the most important difference is that with= /2 there is no instability adjacent to the origin of the
(k, I)-plane.

The region of instability for O< o < 7/2 is presented in Fig. 4 for various valuesaofThis shows the effect
of varyinga while keeping8 andR fixed. The unstable sliver is tangent to the line- / tana at the origin of the
(k, 1)-plane. Therefore, from (3), these growing disturbances are close to, but not exactly, zonal flows. We use the
term “quasizonal flows”. A&z — 0 ora — /2 the area of the sliver reduces to zero, which is vigyis larger
than O for these cases.

Note thatin three of the four cases in Fig. 3, the growth rate has mirror symmetry with respect to bedithend
thel-axis. This means that there is a quartet of unstable wavenumbers. The exception is panel (c), wit 8in 2
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Fig. 3. Contour plots of the linear growth rate, as a function of wavenumbec, /) for four sets of parameters. The regions of instability,
where the growth rate is positive, are shaded,f(a} 0, R = 1.05,/2; for this case the value of is irrelevant. (b)8 = 0.05,« = 0, and

R = 1.01 x 4/2/5; in this caseR, — 4+/2/5 for g — 0. (c) 8 = 0.05,« = 7/6, andR = 0.5; for 0 < « < 7/2 the critical Reynolds’
numberis 0. (dB = 0.05,« = 7/2, andR = 1.14/2; for this caseR. — /2 asg — 0.

for which the growth rate is only symmetric with respect to the origin. In this case there is an unstable pair of
wavenumbers. This different symmetry has a profound effect on the form of the marginally unstable disturbances.
In the casex = 0 the most unstable disturbance is a cellular pattern, like(lopsos(ly), which can be formed

using four wavenumbers. But if sikZ# 0 the most unstable disturbance is a parallel shear flow, likékzasly),

which can be formed using two wavenumbers. This parallel flow is inclined at a slight angle to the zonal direction,
and consequently it is really a slowing propagating Rossby wave. More details are given in Section 4.

In a finite domain, i.e. withL finite, the(k, /) wavenumbers are discretized. In both cases shown in Fig. 3(b) and
(c), and in Fig. 4, the regions of instability, which have: 0, decrease in size f@gr — 0. Wheng is small enough
none of thek # 0 discrete wavenumbers falls inside these unstable regions. Then the most unstable wavenumbers
are those wittk = 0 and (6) is recovered. In other words, because of quantization, the BraitsO andL — oo
do not commute.

Thus, withoe andg there are complicated changes in the Kolmogorov stability problem. A complete understanding
of this problem requires analysis of the linear problem associated with (4) (using multiple-scale techniques) coupled
with numerical solutions of the eigenvalue problem (A.1) (see Appendix A). As a check on these calculations we
also make comparisons with numerical solutions of the full two-dimensional nonlinear equation (4). As in Fig. 1,
this lets us glimpse the nonlinear saturation of the instabilities.
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x 10 Regions of instability for = 0.1; R= 0.6 22,
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Fig. 4. Regions of instability fog = 0.1, R = 0.6+/2, and different values af. The region of instability is always tangent to the dashed lines
k = ltana and vanishes as sia2— 0.

3. Linear stability for ¢ =0

We first consider the case = 0. In this configuration the gradient of planetary vorticity is aligned with the
velocity of the Kolmogorov flow; equivalently the basic state velocity is purely meridional. Fig. 5 shows the regions
of instability for 8 = 1 and various values @t. Because of the symmetries pf only the first quadrant is shown.

As shown above, fox = 0 andg # 0, the most unstable modes lie in a small teardrop shaped region, which
protrudes from the origin of thé, /)-plane (see Fig. 5(a)). Increasing the Reynolds’ number increases the size of
this teardrop. When the Reynolds’ number is large enough, the modeg with also become unstable. So for

B # 0 the critical Reynolds’ number is less than the classical valugdénd the most unstable modes are not the
same as fop = 0. ForR — oo the region of instability expands and eventually encompasses all wavenumbers
with k% + 12 < 1.

It is also useful to plot the region of instability for a fixed valuefofind different values g8, as in Fig. 6 with
R = 24/2. For = 0 the most unstable wavenumbers areifes 0 and/ small but finite, as shown in panel (a).
Wheng > 0 but small, the region of instability shows a small ‘bump’ for srhahd!, as in panel (b). This ‘bump’
then grows withg, while the region of unstable wavenumbers centeréd=atd contracts. For large values gf as
in panels (g) and (h), the unstable region is a teardrop. In other weidstabilizing for the wavenumbers around
k = 0, which are the most unstable f8r= 0. Butg is also destabilizing for wavenumbers in the teardrop region
with k = 0. As 8 increases the teardrop wikh=#% 0 becomes increasingly narrow. But there is always an unstable
region in the(k, I)-plane.
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Fig. 5. Contour plots of the linear growth raje,as a function of wavenumbegk, /) for 8 = 1 and various values at. For 8 = 1 the critical
Reynolds’ number is© 0.81+/2. The regions of instability, where the growth rate is positive, are shaded.o\WitH0 we only show the first
guadrant of thek, /)-plane, because the growth rate is symmetrical to the transformatiens-k and/ — —[.

3.1. Sightly supercritical Reynolds' number with @ = 0 and 8 unrestricted

In this section, we present some analytic resultssfes 0 obtained with multiple-scale asymptotics. We take
advantage of the fact that the most unstable wavenumbers lie close to the origiri/afithelane and we use this
observation to calculat®:(0, 8). Thus, we introduce a small parametdsy writing the Reynolds’ number in the
form R = (1+€?)Rc(0, B), i.e., R is just above the critical Reynolds’ numbgg(0, 8). The numerical solution of
the eigenproblem motivates the multiscale expansion:

0y — 0y + 6235, dy — €9y, oy — 0 + 628,2 + 648[4. (8)

The perturbation streamfunction is also expanded in ordees ¢f = Yo + €Y1 + €2yo + - - -. With the above
substitutions, one can solve the linear equation associated with (4) and the corresponding solvability condition at
each order o€. Here, only the main results are presented and the details are given in Appendix B.

At order Q) the perturbation expansion gives

Lo =0, )
where the operatof is defined as
LY = Yoox — B¥x — Yixx- (10)

A solution of (9) isyg, = 0.



216 A.J. Manfroi, WR. Young/ Physica D 162 (2002) 208232

(a) R=2(@)"%p=0 (b) R=2(2)"%p=01 (¢) R=2(2)"2%p=02 (d) R=2(2)"%p=04
7 . 0.7 - < 0.7 - 0.7

0.6
0.5
0.4
0.3
0.2
0.1

0 0.1 0.2 0 0.1 0.2 0.1 0.2
k k k k

0

€ R=2@"%p=10 (@ R=2(2)"%p=4 () R=2(@"%p=10
0.7 0.7

0.6
0.5

0.4
03
0.2

N

0.1

0 0.1 0.2 0 0.1 0.2

k k k k

[=]

0.1 0.2

Fig. 6. Contour plots of the linear growth rate, as a function of wavenumbet, /) for R = 2./2 and various values ¢f. The regions of
instability, where the growth rate is positive, are shaded.
From the solvability condition at order(€”) one has
Ir/IOtnn + /31/’05 = 07 (11)

where an overbar indicates an average in the fast space variablee Rossby-like wave equation (11) can be
solved with

Vo= B(t2, ta) E(§, 1, 1) + C.C., (12)
where
E = exp(iké +iln —iwt), (13)

and the dispersion relatian= — gk /.
The first equation for the amplitud& (2, 74) is obtained from the order @?) terms of the solvability condition:

B, = 02B, (14)
whereos is a function ofk, [, 8, andR¢, see (B.13).
The critical Reynolds’ numbeR. can be obtained by setting to zero the real pas0fThis gives

w4_ (2’32 _ 3)0)2 +ﬂ2+ﬂ4

2 _
RZ=2+2 LT 7

(15)
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In this form it is evident that i = 0 andh = k/I? # oo thenR? = 2. On the other hand, suppose we consider
B # 0 and minimizeR, by varyingh = k/[2. The value of: that minimizesR. is
—1-B242,/984+ 1382+ 4
582 '
Unpleasantly, if8 — 0, thenhc(8) — oo. Indeed, putting (16) into (15) one has

RZ(0, B) = 2+ 5(8,/9* + 1362 + 4 — 34— 24p?), (17)

which was plotted in Fig. 2. It follows from (17) that &s— 0, Rc(0, 8) — 4+/2/5, and a8 — oo, Rc(0, ) —
J/4/3. RemarkablyR.(0, B) varies only by 1% over the entire range.

Having determined; it is now possible to obtain the amplitude equation foat the time scale;. From the
O(e*) terms of the solvability condition one has

B[4 = 043 (18)

(16)

h2(B) =

with o4(k, I, B, Rc) given in (B.17). The real part afs4, denoted ag, is the growth rate of the solution (12) at
ordere®,

3.2. Small g witha = 0 and R unrestricted

Let us now consider the confusing case of sngalh more detail. Using (16) and (17) we can maximize the
growth ratey as a function of. For smallg one obtains that

Ymax= 3B%+O(BY),  1Zax= 382+ O(BY, (19)

wherelmaxis the value of for whichy has the maximum valugnax. Therefore, whep is smallymaxis proportional
to 82 and the correct scaling for the wavenumbgrg) in the region of instability isk, /) = O(B). The scaling
for k follows from he = k¢/ 12 being Q1) as seen in (16).

These results suggest a different scaling in the limit of spalhd unrestricted. If one considerg = §81,
whereé is small and positive, the suggested slow variable substitutions are

Oy — y +80:, By —> 88y, & — & + 6%y, (20)

Comparing (20) with (8), one important difference is that (20) uses an isotropic scaling for the space variables. One
also anticipates useful results at the time seglevhich is a non-trivial advantage over the previous case. Finally,
in (20) the expansion parameter is regdlyso that without loss of generality we could git= 1. However, we
prefer to retaing; as a flag which tags the effect of differential rotation.

The perturbation expansion can be carried out in analogy with the previous section. Only notable differences are
presented here. The operatdis now defined as

LY = oo — Yo (21)

The term proportional t@ is relegated to a higher order. The expansioo$ v = o + 81 + 8%y + - - -.
The solution foryyg is

Yo = B(t2)E(§,n,1) +CC., (22)
whereE is still defined as in (13) but now with = —1k/ (k2 +12). The solvability condition at order @?) gives
B[z = 02B7 (23)

whereos is now a function ok, I, 81, andR.
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The stability of B is determined by = o3,. We find

12 — Tk? 4+ 5w?(k? 4 12)
= —(k? +1%) + I?R? 24
y=-E++ 202 + 1)1+ ?)?2 (24)
If we call R,, the Reynolds’ number for which = 0 then
2 k2 12 2 1 2\2
R2 (k*+19)°(1+ ) (25)

YT P2 — T2+ 502(2 + )]

One recovers the results of the previous section by taking the linkit-ef O with g1 finite, and then minimizing
R, with respect td/[2. The result is again thalc = 4v/2/5. In other words, there is a region of overlap in which
(17) and (25) are both valid.

Eqg. (24) describes the growth rate for smaland unrestricteR. Fig. 7 shows a comparison of (24) with the
growth rate calculated from the eigenvalue problem. The agreement is obviously better the smaller the value of
B. Note also how the scaling (20) can be inferred by the scaling of the region of instability in Fig. 7 for different
values of8.
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Fig. 7. Region of instability for three small values®fvith « = 0 andR = 1.025R... The solid lines are obtained from the numerical solution
of the eigenvalue problem (A.1). The dash-dotted lines are obtained from (24). The position of the wavenumber with maximum growth rate for
each of the three cases is indicated by asterisks. The value of the maximum growth rate is given on the plot.
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3.3. Two-dimensional nonlinear simulations and saturation of the instability for « = 0

So far we have reached good agreement between the perturbation expansion and the numerical solution of the
eigenvalue problem in the cage= 0. The next step is to compare these results with numerical solutions of the full
two-dimensional nonlinear perturbation equation (4).

We have numerically integrated (4) with periodic boundary conditions using a spectral code with a resolution of
256 x 256. The nonlinear terms are calculated in real space and the code is dealiased. The domain of integration is
L x L whereL = 64r. In the non-dimensional notation of (4), the forcing has wavenurtéy = (1, 0), while
the gravest wavenumber allowed in the domain of integratiomjd.2= 1/32. Since we prefer to use an integer
notation, we define the mode number as3&, ), where(k, 1) is the wavenumber. For example, the gravest mode
has mode numbet., 0) and the forcing is at mode numbg2, 0). The numerical code has enough modes to well
resolve the forcing and the smaller scale nonlinear terms.

A random small-scale initial condition is used for the disturbance streamfungtidinere is no bottom drag,

u = 0, in all the simulations presented in this paper, with the exception of a run shown in Section 6.

The first results we present are shown in Fig. 8. For this run we have chosed, 8 = 4, R = 1.25R.. With

these parameters only one quantized mode, naeB), falls inside the region of linear instability, as shown in

(a) Region of instability foroao=0; =4; R=1.25 RC.

0.25 T T T T T
* *
02 | i
*
0.15 ¥ * -
- * *
01 & % ,
* *
0.05 F o i
*o *
1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06
k
(b) Growth rate comparison.
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Fig. 8. Numerical simulations of the two-dimensional nonlinear perturbation equation @)#$00, 8 = 4, andR = 1.25R.. (a) The region

of linear instability derived from (A.1). The modes allowed by quantization are indicatedsb¥nly mode(1, 6) falls inside the region of
instability. (b) Growth of the amplitude of modé, 6) from the solution of the nonlinear problem (solid curve) and from linear theory (dashed
line). (c) Disturbance streamfunctiotf,, at the end of run; modél, 6) is dominant. The small-scale oscillations are due to the forcing at
mode 32.
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panel (a) of Fig. 8. We therefore expect to have only mddé) grow initially, at least until nonlinearities take over.
Panel (b) shows the growth of the amplitude of m@tle6), as a log-plot, calculated in two ways: the predicted
amplitude from the growth rate for modg, 6) calculated from the linear eigenvalue problem (dashed line) and
from the numerical integration of the nonlinear equation (4) (solid line). The agreement is gratifying for the first
part of the run. Nonlinearities become important at arourd 12 000, and the amplitude of the mode reaches
an equilibrium. Nonlinearities have saturated the instability. The streamfunction of the perturpasiehown in

panel (c) at the end of the ruin >~ 42 600. The small oscillations are the effect of the forcing at mode 32. The
large-scale flow is dominated by the four unstable madels +6).

4. Linear stability for O<a<m/2

We now turn to the case & o < 7/2. The most striking difference from the previous cése= 0) is that
Rc(a, B) = 0, provided only that sin@ # 0. The shape of the region of instability is also different as seen in Fig. 9.
First, notice that the growth raje(k, I) has only the single symmetp(k, [) = y (—k, —I). Thus, it is necessary to
plot y (k, [) in a half-plane, instead of a single quadrant.

Fig. 9(a) shows that the most unstable modes lie in a teardrop protruding from the origin of the wavenumber
plane. The unstable teardrop is present evat as 0 and wavenumbers in the teardrop havg 0. If one increases
the Reynolds’ number, another region of instability appears, as seen in panel (b). This second region of instability
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Fig. 9. Contour plots of the linear growth raje,as a function of wavenumbegk, /) for « = 7/6, 8 = 5 and various values at. The critical
Reynolds’ number is 0. The regions of instability, where the growth rate is positive, are shaded.
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has a higher threshold Reynolds’ number and includeg theD wavenumbers. Increasing the Reynolds’ number
further leads to the merger of these two regions of instability. When the Reynolds’ number is very large, as in panel
(f), the region of instability encloses almost all wavenumbers for which 12 < 1.

41. Small Bwith0 < @ < /2

To make analytical progress we confine our attention to the case of gmiallthis limit the analysis can be
carried over with few modifications from the analysis of Section 3.2, and our presentation will be limited to the
main results.

We consideB = §81 and the substitutions

Oy = dy + 80, By —> 88y, & — & + 6%y, (26)

We also defing8, = picose andp, = Bisina. The first-order perturbatiogg is still given by (22) but the
frequencyw is noww = (Bl — Brk)/(k? 4 12).

The solvability condition at ordei? gives the amplitude equatiaB, = o2B, and the Reynolds’ number for
which the real part of» is zero is given by

R2_ 2(k? +1%)2(1 + w?)?
VP12 = Tk? + 0?(k? + 12) — 4Byke]’
which reduces to (25) i = 0.

As illustrated previously in Fig. 4, the largest unstable modes havé tana. This suggests the introduction of
a rotated coordinate system:

(27)

p = kcosa — I sina, q = ksina + [ cosa. (28)

The effect of this rotation is illustrated in Fig. 10 in which the same region of instability is shown ii theand

(p, q) reference frames. With (28) is now given byw = —B1p/(p? + ¢2) as expected. It is also evident from
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Fig. 10. Contour plots of the linear growth raje,for 8 = 0.05,« = 7/6, andR = 0.5: (a) in the(k, [)-plane; (b) in th& p, ¢)-plane defined
in (28). The regions of instability, where the growth rate is positive, are shaded.



222 AJ. Manfroi, WR. Young/ Physica D 162 (2002) 208232

Fig. 10 that the unstable wavenumbers have ¢ < 1 and more precisely that ~ ¢2 <« 1. If we use this
approximation in (27), we have
g1+ w?)?
R~ 29
4 w Sin 2o cosa? (29)

wherew = O(1) and negative fop > 0. The critical Reynolds’ number is given by the minimummf, which
(29) shows to be zero far — 0. We conclude thaR; = 0for0 < o < 7 /2.

4.2. Two-dimensional nonlinear simulations and saturation of theinstability for 0 < o < 7 /2

We turn to two-dimensional nonlinear simulations of (4) to check the results of our analysis. We consider the
valuesae = /8, 8 = 1, andR = 1. This choice is such that that there is only one quantized wavenumber in the
region of instability, namely modél, 2), as shown in Fig. 11(a). Panel (b) shows the amplitude of nithd2)
as predicted by the growth rate obtained from the eigenvalue problem (A.1) (dashed line) and the results of the
simulation (solid line). The agreement is again very good for the first part of the simulation. In the second part of
the run, the growth of modél, 2) nonlinearly saturates. Panel (c) shows the streamfunction at the end of the run.
The small-scale oscillations are the result of the forcing at ni88e0), and the large scale is dominated by mode

(a) Region of instability fora.= /8, B=1,and R=1.
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(b) Growth rate comparison. (c) Streamfunction at end of run.
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Fig. 11. Numerical simulations of the two-dimensional nonlinear perturbation equation @)%orr/8, 8 = 1, andR = 1. (a) Region of
instability obtained from the solution of the eigenproblem (A.1) and a few numerical modes (asterisks). OnliLj2p s inside the region

of instability. (b) Growth of the amplitude of mod#, 2) from the solution of the nonlinear problem (solid line) and from the eigenvalue problem
(dashed line). (c) Disturbance streamfunctignat the end of run. Modél, 2) is the dominant large-scale mode. The small-scale oscillations
are due to the forcing at mode 32.



A.J. Manfroi, WR. Young/ Physica D 162 (2002) 208232 223

(1, 2) as expected. Note that the streamlines in Fig. 11(c) are open while the streamlines in Fig. 8(c) have closed
eddies. The difference is due to the symmetries of the system in theecasg@ and O< « < n/2. In the former
case, all four modegt1, +6) are unstable. In the case presented here only mdd@sand(—1, —2) are unstable.

We emphasized in Section 2 that when sin2 0 the most unstable disturbances are close to being zonal flows.
Recall that in Fig. 4, the unstable region is tangent to the &ine [ tan«, which implies that the disturbance
streamfunction comes close to satisfying the condition for a zonal flow in (3). This point is illustrated by panel (c) of
Fig. 11. The large-scale parallel flow, corresponding to mdda), makes an angle of 28 with the x-axis while
a true zonal flow would form an angle of 2. The main physical point here is that if sia 24 0 then large-scale
instabilities are the “quasizonal flows” discussed in Section 2.

5. Linear stability for « =m/2

We now turn to the case = /2 originally studied by Frisch et al. [12]. As shown in Fig. 3, this case is intuitive
in that the critical Reynolds’ number ig2 in the limit of 8 — 0. Moreover, ifg is not too large, the most unstable
wavenumbers have = 0. Nonetheless, the linear stability problem is complicated by the existence of multiple
instabilities and singular limits.

Fig. 12 shows the region of instability fg#¢ = 2, « = 7/2 and various values oR. Using the symme-
tries of the growth rate we plot only the first quadrant of thel)-plane. In Fig. 12(a) the Reynolds’ number
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Fig. 12. Contour plots of the linear growth raje,as a function of wavenumbét, /) for 8 = 2, « = /2, and various values a@t. Forg = 2
the critical Reynolds’ number is around8B+/2. The regions of instability, where the growth rate is positive, are shaded.
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Fig. 13. Contour plots of the linear growth rajg,as a function of wavenumbetk, [) for R = 10v/2, « = /2 and various values ¢. The
regions of instability, where the growth rate is positive, are shaded.

is supercritical and there is a small region of instability centered aréusdO. IncreasingR increases the size
of the region of instability. WherR is above a particular threshold value, another region of instability appears,
centered ak = 0.5, as in panel (c). The two shaded unstable regions expand Whisrincreased until they
merge as in panel (e). For very large valueskafhe region of instability occupies almost all wavenumbers with
k> +1%2 < 1.

In Fig. 13 the region of instability foR = 10/2 and various values of is shown. The unstable part of the
(k, I)-plane contracts a8 is increased fromg = 2 as in panel (a) tg = 13 in panel (f). In panel (dp is
large enough that the two regions of instability, the one centeréd-atO, and the other at = 0.5, become
separated. Increasing the valueffurther reduces the size of these regions and in panel (f) the only instabil-
ity is the one centered & = 0.5. Thus, for certain values ¢ the most unstable wavenumbers are around
k= 0.5.

Fig. 14(a) shows the neutral curves in ttfe R) plane for the instability centered dn= 0 (circles) and for
the second instability centered @an= 0.5 (triangles). If8 is smaller than about 4 then the critical Reynolds’
number of thek = 0 instability is lower than the critical Reynolds’ number of the= 0.5 instability. The
two neutral curves intersect negt, R) = (4, 6) and for larger values of the instability centered oh = 0.5
is the most dangerous. The curves shown in Fig. 14 have been obtained numerically, by solving repeatedly the
eigenvalue problem. We cannot exclude the possibility that the stability curves may cross again for larger values
of 8.
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(a) Rc vs.Bfora=n/2,k=0and k=0.5 (b) log( IC )vs. log(B)foroa=m/2; k=0

0 2 4 6 -3 25 -2 -15 -1  -05
B log(B)

Fig. 14. (a) Critical Reynolds’ number as a functiongofor « = /2 and for wavenumbers with = O (circles) andk = 0.5 (triangles).R¢

has been obtained numerically from the eigenvalue problem (A.1) for the valesoofesponding to the circles or the triangles. The solid line
connects the numerical data. (p¥or « = 0 andR = R as a function o8 (k = 0). The asterisks are numerical data and the solid line shows
the /2 slope.

51 Small Banda = /2

In this section, we give an analytic expression for the neutral curve of tae0 wavenumber in thg — 0
limit. As seen in Figs. 12 and 14(a),ffis small then the most unstable wavenumberiasO. If R = R there
is only one neutral wavenumber, which we indicate w@hic). All other wavenumbers have negative growth rate.
Fig. 14(b) shows the value & for different values ofg obtained from the solution of the eigenvalue problem
(asterisks). The solid line shows that for smathe most unstable wavenumber lias g%/2. This numerical result
suggests a multiple-scale expansion witk= §81 andn = §1/2y. However, it turns out that a more general result
can be obtained at smalwith the scaling; = 8y. Thel ~ Y2 instability is then recovered as a particular case.
Thus, we consider the expansion:

3y — O, 3y — 89y, d — 0 + 8%0,, + 8%y, (30)

with 8 = §81. We do not introduce a slow variable in thedirection because we are limiting the analysis of this
section to thet = 0 wavenumbers. The streamfunction is expandefl sy + §v1 + 8%y + - - - .

Given these substitutions the perturbation expansion proceeds in a similar wayras forand O< o < /2.
We will point out the important differences. The operafois now

Ll/f = Yxoox — Vixxs (31)
and the leading order solution is given by
Yo = B(t2,14)E(n, 1) + C.C., (32)

whereE = exp(iln — iwt), andw = B1/1.
The solvability condition at orde¥? gives an amplitude equation fér at ther, time scale:

B, = 02B (33)
with oo = I12(R?/2p — 1) andp = 1 — iw.
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The amplitude equation at thgtime scale is obtained at ordéft:

Bl4 = U4B,

whereoy is
2,4

R4l
04 = —F(RZ +2p+ 2,02)~
0

(34)

(35)

We can write the growth rate for the wavenumbers with = 0 up to ordes? by reconstituting the expansion as
¥ = 8%y> + 8%y4, wherey, is the real part of,. By reabsorbing a factor éffor each/, we have

R2
V=12[

21+ w?)

B 41+ w

R4 2 2 2
1} A g ol R =307 + 4+ 07,

(36)

The approximation in (36) is plotted as a dashed line in Fig. 15(a); the numerical solution of the eigenvalue
problem is shown as a solid line. The agreement is very good for small valuesubfstarts to fail at around

[ =0.15.

With the approximation foy in (36) we would like to derive an analytic expression frandlc, but the algebra
is too unwieldy. Instead, we resort to the approximation suggested by Fig. 14(b) and cansidet’? for g
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Fig. 15. (a) Comparison of the growth rate for the wavenumbers with0 for 8 = 0.01 andR = 1.034/2: from the numerical solution of
the eigenvalue problem (solid line), from the analytical expression in (36) (dashed line), and for the analytical approximation (37) (dash-dotted
line). (b) and (c) Analytical approximations f@&; andi; as functions ofs from (37) (solid lines) compared to the numerical results (circles).
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small, which also leads te ~ g%2. Thus, we reduce (36) by keeping only the terms ujftar equivalently
p:

ﬂsz R2 R214

Ya=——5—+1? [7 - 1} - IR +4) (37)

This simplified approximation is plotted in Fig. 15(a) as a dash-dotted line. Note that while (37) approximates the
numerical solution near the most unstable wavenumber, it fallsa<0. In other words, (37) works providéds
small, but not too small. The advantage of (37) is that it is easy to calcR{saed/. as a series i:

Re =2+ /6|8 + O(B?), (38)
lc = sgnB)[3~Y481Y2 — 1373418132 + 0(8%?)]. (39)

These approximations have been plotted in Fig. 15(b) and (c) against the numerical resultg, &udl, are well
approximated for small values gt

(a) Region of instability for o = n/2, B = 0.088, and R = 1.142 (2)2
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Fig. 16. Numerical simulations of the two-dimensional nonlinear perturbation equation @)=forr /2, 8 = 0.088, andR = 1.142//2. (a)
Region of instability derived from (A.1) and a few numerical modes (asterisks). Only (Bpdgfalls inside the region of instability. (b) Growth

of the amplitude of mod€), 7) from the solution of the nonlinear problem (solid line) and from the eigenvalue problem (dashed line). Nonlinear
saturation occur for > 25 000. (c) Disturbance streamfunctian, at the end of run (the large-scale flow is meridional, not zonal). Large scales
are dominated by mod@®, 7). The small-scale oscillations are due to the forcing at mode 32.
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5.2. Two-dimensional nonlinear simulations and saturation of the instability for « = /2

We now turn to numerical simulations of the fully nonlinear equation (4) to test the results of the linear analysis
presented above. As for the cases witi# /2, we choose the values frandg so that there is only one numerical
mode that is linearly unstable. We set= 1.142,/2 andg = 0.088. As Fig. 16(a) shows, for this choice only
modes(0, 7) and (0, —7) are linearly unstable. The time evolution of the amplitude of m@j&) is plotted in
Fig. 16(b) as derived from the numerical solution of (4) (solid line) and from the solution of the linear stability
problem (dashed line). The growth of mo@e 7) is in very good agreement with the linear stability theory up to the
point when nonlinearities become important (aroure 25 000). Fig. 16(c) shows the disturbance streamfunction,
¥, at the end of the run. While the small scales are dominated by the forcing at@@d®, the large scales are
dominated by mod€0, 7) as predicted. Note that because= /2 the large-scale flow in panel (c) of Fig. 16 is
meridional (that is, the flow is perpendicular to the zonal direction).

6. Discussion and conclusions

There are two sources of anisotropy in the system that we have studied. One is the anisotropy of the instability of
the Kolmogorov flow with8 = 0: the most unstable mode is a flow perpendicular to the velocity of the basic state
(in our notation the most unstable wavenumberias0). The second anisotropy is due to fheffect: as shown
by Rhines [22] differential rotation tends to align streamlines in the zonal direction, along lines of cghdtattitis
work the anglex controls the relative orientation of these two anisotropies.ofer 0 the two anisotropic effects
reinforce each other, while far = /2 there is maximum competition since they are orthogonal. In the latter case,
the anisotropy of the flow will be determined by the relative strength of these two effects, Reatys.

This explains the stark difference between the streamfunction in Fig. 16(c) and the one in Fig. 1(d), although
for both cases = /2. In Fig. 1(d), withR = 5v/2 andg = 1, the dominant anisotropic effect is given Byso
that the flow is zonal. In Fig. 16(c), on the other hand, with= 1.142/2 andp = 0.088, the flow is just slightly
supercritical angB is small enough that the streamlines reflect the dominance of the slightly unstable (@.0tes
and(0, —7) and not the anisotropy due g In this case the large-scale flow is meridional.

Our results have also important implications for the studies by Frisch et al. [12] and Manfroi and Young [14] of
the weakly nonlinear problem. Both studies assumed that the eff@gcoofthe linear stability problem was mild
and this is true only if the domain is not too large.

In [12], for whicha = 7/2, the growth rate along the= 0 axis was unmodified by the effect 8f Specifically,
the term—%ﬂsz on the right-hand side of (37) was neglected becgusas assumed to be very small. Thus, even
wavenumbers with — 0 were unstable. But as seen in Figs. 3 and 15(d) ang &gbilizes the wavenumbers with
[ very small. In other words, the results in [12] are valid as long as the domain is not too larges, net too small.

In [14], for whicha = 0, it was assumed that lign,o Re(a, B) = V2 and that the most unstable wavenumber
hask = 0. Both these assumptions are valid only if none of the discrete wavenumbers #ithare contained in
the region of instability shown in Fig. 3(b). In this case, the most unstable discrete wavenumbets=h@vand
their critical Reynolds’ number is/2 for 8 — 0. Again, these assumptions are justified provided that the domain
is not too large.

It is worth repeating that we have neglected any effect of bottom drag in this work, i.e. we have assumed that
w = 0in (4). Indeed the effect of bottom drag on theear stability is straightforward, bottom drag decreases
the value of the growth rate(k, I) by the constani.. Nonetheless, if. is large, this rigid shift of the growth rate
significantly modifies the critical curve for instability, as noted in [15]. ok 1, the new critical Reynolds’
number for each of the cases presented in Sections 3-5 can be determined with few modifications.
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Fig. 17. Two runs with = 0, 8 = 0.25, R = 1.25V/2, andu = 0 for (a) and (b), angk = 0.01 for (c) and (d). The theoretical growth rate,

y(k, 1), for u = 0 is shown in panel (a). The shaded region indicates positive growth rate. The asterisks mark the discrete modes allowed in the
domain of integration. (b) The disturbance streamfunctipratz ~ 58 000 from the numerical solution of (4). (c) Theoretical growth rate for

u = 0.01. (d) Disturbance streamfunctiof, atr ~ 58 000 foru = 0.01. The small-scale oscillations in (b) and (d) are due to the forcing at
mode 32.

On the other hand, bottom drag has non-trivial effects on the nonlinear problem as shown by Manfroi and Young
[14] and Sukoriansky et al. [23,24]. As an example we present in Fig. 17, the results of two simulatiomswith
B = 0.25 andR = 1.25/2, and withx = 0 andu. = 0.01. Panel (a) shows the linear growth ratek, ), for
u = 0. The shaded region indicates positive growth rate. The asterisks mark the discrete modes that are allowed by
the domain used in the numerical simulations. Only the discrete modes that fall into the plot have been shown: the
numerical simulations have 256256 modes. There are many modes that are linearly unstable. Panel (b) shows the
disturbance streamfunctiott, at the end of the runr (& 58 000). At large scales; is dominated by modél, 3),
which is one of the linearly unstable modes, although energy is present in other modes as well. Panel (c) shows
the linear growth rate for = 0.01. This small bottom drag does not significantly alter the linear growth yate:
in panel (a) is very close tp in panel (c). But as seen in panel (d), which shows the disturbance streamfunction
for the same timér ~ 58 000 as in panel (b)yr is dominated by modé€0, 5). Indeed, throughout the run with
u = 0 the streamfunction has strong zonal dependence/asdiominated by modes with one zonal variation. On
the other hand, there is nedependence in the run wifla = 0.01 besides the forcing at mode 32. Thus, a small
bottom drag significantly affects the nonlinear problem and has a deciding influence on the nonlinear competition
among the linearly unstable modes.
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Appendix A. Numerical solution of the Floquet problem

To solve the eigenvalue problem obtained by substituting the Floquet type solution (5) into (4) we use the
MATLAB routine “eig”. For this purpose we must limit the sum in (5) taV < n < N. While we mostly use
N = 16, we have performed several calculations with= 32 to evaluate the effects of this necessary truncation.
The calculations withV = 32 introduced changes only at the ninth significant digit to the eigenvalues. We will
therefore only show results from the fasiér= 16 calculations.

Thus, we have a matrix problem with the eigenveéiy} and eigenvalue :

Pn+¢n+l + Endn + P,:qbn—l =0, (Al)

withn € [-N, N] and

cosa(n + k) — sinal
(n+ k)% + 12

bt R(ntl+k?4+12-1

" 2 n+k)?2+12

E,=ip —(n+k)? =12 (A.2)

(A.3)

The truncation iy = P~ = 0.

In general, for any given value ©£, [), the eigenproblem (A.1) has\2+ 1 solutions fow, the eigenvalues. For
each(k, I) we calls (k, 1) the eigenvalue with the largest real part, and construct a fungiibrY) given by the real
part ofG (k, 1). The functiony (k, [) is therefore the growth rate of the most unstable mode of (4) and is a parametric
function of«, 8 andR.

Appendix B. Linear perturbation expansion: slightly supercritical Rand ¢ =0

A perturbative approach can be used to study the stability of the linear problem associated with (4). Given a value
of B, we considerR = (1 + €2)Rc, wheree is a small number. As discussed in Section 3.1, we introduce slow
variables and consider the following substitutions:

O — Oy + €2, Oy = €dy, & — O + €20, + €%y, (B.1)
With these substitutions the linear problem fiois given by
(0 + €20y, + €0, )[02 + €2(20,9¢ + 02) + €*9Z]Y + (€ + € Resinx[0?
+ 1+ 2200 + 02) + €021y + Pk + 2B
= [0F + €%(4020; + 0707) + €*(6020F + 40,997 + 0 + €°(40,07 + 20707) + €%0¢]y. (B.2)

It is also useful to consider arraverage of (B.2) which gives the following solvability condition (after simplifying
a factore?):
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(B + €201, + €%01,) (02 + €20D) W + (€ + € Re(SINX Yy — 2COSX Vg + €2 SiNxPgey) + P
= Py + 26 Veeny + *Peee, (B.3)

where the overbar indicates theaverage.

We then expand the perturbation streamfunctjor= v + €1 + €?y2 + --- and solve (B.2) and (B.3) at
each order oé.

From (B.2) at @<°) we get

Ly =0, (B.4)
where the operatof is defined as
LY = Yroox — BYx — Yo (B.5)

and can be solved witlg, = 0.
From (B.3) at Q<%) we have

Yoy + Boe =0, (B.6)
which is a Rossbhy-like wave equation that we solve with

Vo = B(r2, 14) E(§, 1, 1) +C.C., (B.7)
where

E = exp(iké + iln — iwt), (B.8)

andw is given by the dispersion relation= —pk/I?.
The Q) terms of (B.2) are

L1 = ReSinxyrgy, (B.9)

which is solved by

Y1 = s1BEsinx + c.c. + ¢1BEcosx + c.c. (B.10)
with
iIR:
3 =5 5 ) B.ll
(s1, 1) pEan ﬁz(p B) (B.11)
andp =1-iw.

There are no terms of ©) in (B.3).

The Q(e?) terms of (B.2) giveLy» = 0 so that we can just set; = 0. (Note that if we were considering also
the nonlinear terms, this would not be the case éyd: 0.)

From the Qe?) terms of (B.3) we have

B, = 02B (B.12)
with

k?  2ipk+1%p 2 2

Z 27 e N

o) =iw
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The terms at @3) of (B.2) are
L3 = (—2c1kw — 5102 + il (1 — %) Re — dikey — 2511%)BEsinx + c.c.
+ (2s1kw — c102 + 4iksy — 2¢11?)BE cosx + c.C., (B.14)
and we write the solution as
Y3 = s3BEsinx + c.c. + csBEcosx + c.c. (B.15)

There are no terms of @3) in (B.3), and the @*) terms of (B.2) simply give that is proportional to sin2 and
Cos .
Finally, the Qe*) terms of (B.3) give the amplitude equation

with
k2 k 1l k?
04 = =702+ T(ca+ c)Re — i (53 + 51 R — i 51 Ro — 2. (B.17)
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