
steepness of the refractive index profile is maintained at the
same value throughout the stack. Thick stacks of a constant
small slope are equivalent to thin stacks of a constant large
slope. This greatly eases the requirements for close control
of the growth process.
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A simple method is presented for finding the modes on those optical waveguides with a cladding
refractive index that differs only slightly from the refractive index of the core. The method applies
to waveguides of arbitrary refractive index profile, arbitrary number of propagating modes, and
arbitrary cross section. The resulting modal fields and their progagation constants display the polari-
zation properties of the waveguide contained within the V E term of the vector wave equation.
Examples include modes on waveguides with circular symmetry and waveguides with two preferred
axes of symmetry, e.g., an elliptical core. Only a minute amount of eccentricity is necessary for the
well-known LP modes to be stable on an elliptical core, while the circle modes couple power among
themselves.

1. INTRODUCTION

We present a simple method for determining the modes
of an optical waveguide with a cladding refractive index n~j
that differs only slightly from the maximum refractive index
of the core nc. The analysis does not require the waveguide
to be multimoded or the refractive index profile to vary
"slowly." Our procedure, called the ne,,- nci method, applies
to waveguides of arbitrary cross section and arbitrary profile
grading. It is a direct generalization of the n0 n- n~j ap-
proximation' for modes of the step profile, circularly sym-
metric waveguide and provides results consistent with the
generalized properties of graded profiles previously re-
ported.2 -4

The n, -_ n~j method synthesizes the vector modal fields
from linear combinations of solutions to the scalar wave
equation. The appropriate linear combinatons are dictated
by properties of the VE terms in the vector wave equation.
Failure to account for the VE terms, however small, will in
general lead to "pseudo-modes" with the property that their
cross sectional intensity and polarization pattern changes as
the mode propagates. 5' 6 The LP modes5 of circularly sym-
metric waveguides are an example of pseudo-modes.

We briefly review several fundamental concepts required
for the paper: when the permittivity E(x,y) of the medium
has cylindrical (not necessarily circular) symmetry, e.g. see
Fig. 1, the modal electric E and magnetic H vector fields have

297 J. Opt. Soc. Am., Vol. 68, No. 3, March 1978 0030-3941/78/6803-0297$00.50 � 1978 Optical Society of America 297



r

(b)
FIG. 1. (a) A waveguide with cylindrical symmetry. (b) The refractive index
profile in some arbitrary cross section.

the form

E(x,y,z) = e(x,y)ei(z = (et + ez)ei,3z, (la)

H(x,y,z) = h(x,y)eiflz = (ht + hz)eilz, (lb)

assuming an eiwt time dependence. The fields et are solu-
tions of the reduced wave equation

V'et + (k2 - fl2)et = -Vt(et - Vt Inf), (2)

where

Vt = V - i(b/bz), (3)

V2 is the transverse vector Laplacian,7 2 is a unit vector in the
axial direction,

k(x,y) = W[gE(X,y)]1/ 2 = 27rn(x,y)/X, (4)

f = con 2 and Eo is the permittivity of free space. The re-
maining field components are determined from et using
Maxwell's equations. The allowed values of 3 result by de-
manding only that solutions of Eq. (2) be bounded, since ef-
fects of any discontinuities in e are fully contained within the
Vt (lne) term. For bound modes 3 is real and restricted to the
range8' 9

kc, < kco) (5)

where kci = 27rncl/X, kc( = 2wrnc,/X, nc,0 is the maximum re-
fractive index of the core, and ncl is the refractive index of the
cladding. Because of the Vt lne terms in the vector wave

equation, the modal fields are in general hybrid, possessing
both e, and h, components. Furthermore, the bound modes
of a lossless structure can always 9 be written with et, ht real
and ez, h, imaginary.

II. THE n,,0 - ncj METHOD FOR DERIVING
MODES: MOTIVATION

In this section we derive approximations for modal fields
and their propagation constants on waveguides with n =- n~
(see Fig. 1). The motivation' for our approximation begins
by noting that the fields of optical waveguides can be ex-
pressed in terms of three parameters: The first is the com-
plement of the critical angle Oc, where

X "I

n

nco

nci
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sin0c = 1- n' 1/n' 11/2 '-..C

(a)
(6)

0 )
0 p

The second parameter is the well-known dimensionless
waveguide parameter V where

V = pik - k2 11/2 = kc0p sin0c, (7)

p is one, of perhaps many, characteristic dimensions of the
waveguide cross section, e.g., the core radius for circularly
symmetric waveguides, k, 0 = 27rnco/X.

The third parameter describes the cross sectional geometry
and the refractive index profile of the core; however, given Oc
and V, this parameter is redundant for the step refractive
index waveguide of either planer or circular geometry. We
make no explicit reference to this last parameter in our present
analysis because it is not a function of Oc.

When 0, << 1, the fields of optical waveguides can be ex-
panded as a power series in O,, treating V and 0c as indepen-
dent variables,' e.g.,

e(V,0c) = eo(V,O) + Ocel(V,O) + 02e 2 VO) ....

It is found that e(V,O) is an excellent approximation to e(V,0c),
i.e., the fields have only a weak explicit dependence on 0,. We
emphasize that V is arbitrary even though nco = ncl. It is
interesting that a waveguide with n,0 = nI and specific cross
sectional core dimensions is unphysical because the wave-
length X of the exciting source must be zero in order to have
V arbitrary. Furthermore, as a consequence of X = 0, Eq. (5)
shows that the modal propagation constant f is infinite.
Thus, the fields of the nco = ncl waveguide, although un-
physical, nevertheless provide an excellent approximation to
the physical nc0 ncl waveguide. This paper is based on this
last fact. Incidentally, the nco = ncl approximation is analo-
gous to the point dipole approximation of physical di-
poles.' 0

Our purpose is to develop a direct method for finding ex-
pression for the nc,, ncl waveguide because exact expressions
are known for a few special cases only and even in these special
cases the expressions tend to be algebraically complex com-
pared to the n, 0 nncl forms. One method of derivation is to
use standard perturbation techniques on Eq. (2), expanding
e(V,0,,) in powers of 0c; however, we prefer to use a more
physical approach starting with an intuitive derivation of the
nco = ncl waveguide.

A. The nc0 = ncl waveguide
We begin by finding the modes of optical waveguides in the
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artificial limit when the maximum refractive index of the core
equals that of the cladding refractive index, i.e., when

n= ncl. (8)

By itself, this condition would appear to assume that the
medium is homogeneous and incapable of guiding energy.
However, to avoid the trivial consequences of this unintended
assumption, we impose the crucial constraint' that the guiding
properties of the structure remain unchanged, i.e., that the
waveguide parameter V of Eq. (7) be an arbitrary constant.
We next investigate the properties of modes on an nco = nci
waveguide.

B. TEM modes of the nco = n.i waveguide (LP modes)
Because bound modes are restricted to the range of values

in Eq. (5), the limit nco = nc0 = n demands that

= co= k=k = 27rn/X. (9)

This condition is satisfied only by a z-directed transverse
electromagnetic (TEM) wave, i.e., by a wave for which the
electric and magnetic field vectors lie in a plane that is
transverse to the axis of the waveguide. Accordingly, the
modal fields of the nco = ncl waveguide are

h, = C-, = 0, (10)

ht= (e/p) 2 £ X et, (11)
where A is the magnetic permeability of the media and a is
used to indicate quantities shown below to be associated with
the scalar wave equation.

Because nco = ncl, all polarization-dependent properties
of the structure are removed. If this is not obvious, then recall
that as n 0 -c ncl, TE and TM waves undergo identical re-
flection at an interface between two semi-infinite media or at
a caustic.9 "'1 Since the Vt lnE term in the vector wave equa-
tion Eq. (2) is solely responsible for the polarization properties
of modes, it is omitted solving for the e fields of the nco = ncl
waveguide. In other words, the fields of the nco = nci wave-
guide are solutions to the scalar wave equation. These vector
modal fields can then be expressed in rectangular coordinates
as

asymptotic methods are not applicable. The values of a de-
termined from Eq. (13) are shown later to include the first-
order effects of finite 0,, even though , - k -a as nco - nci.
Because F = k when nco = ncl, it may also appear that k2 

- T32
= 0 in Eq. (13). However, because V is arbitrary. k2 

- d2 is

a finite constant which is one of a set of constants determined
from Eq. (13). Consider the mathematically equivalent
problem of y 2 

- X2 = C
2 in the limit x - -, where c is inde-

pendent of x. Then y - x while y2 
- X2= C2. As a final re-

mark, the modal fields of nco - n~j step profile waveguides
with circular symmetry are often called LP or uniformly po-
larized modes. 5' 6

We next show how the solutions of the scalar wave equation
e and S can be used to construct accurate representation of
e and /3, which are themselves solutions of the vector wave
equation, Eq. (2).

C. Modes on the nco- nn =- n waveguide: no - nc
modes

The significant consequence of having n,0 different from
nc1 is that the waveguide has polarization properties. The
polarization properties are contained within the Vt e term of
the wave equation. The modes of such a waveguide must
exhibit these properties and therefore they must be solutions
of the vector wave equation. However, since the term
Vt (et.Vt lnE) is zero when nco = ncl, it must have a small,'2 but
nevertheless a very important effect for nco - ncl. The modes
of the nco - nci waveguide can then be approximated by linear
combinations of the modal fields e of the nco = ncl waveguide.
The proper linear combinations are dictated by the sym-
metries of the waveguide which are fully contained within the
Vte term of the vector wave equation. The method of con-
structing the linear combination is simple and is discussed in
Sec. III.

Because 3 k on the nco - nci waveguide, the transverse
fields obey the approximate relationship

(14)

The longitudinal fields are then found from Maxwell's di-
vergence equations, leading to

C-,,= :, i�,e = 69,

where x and y are unit vectors, 4' is a solution to

{V2 + k 2
- p214 = 0,

(12)

(13)

and V2 is the transverse portion of the scalar Laplacian op-
erator. The solutions 4' must be bounded everywhere and
have the well-known property of the scalar wave equation that
4 and its normal derivative are everywhere continuous. These
constraints lead to an eigenvalue equation from which the
allowed values of 7 are found, where ,B is distinguished from
/ by being an eigenvalue of Eq. (13) rather than Eq. (2).

This completes our discussion of the nco = n~j waveguide.
Before continuing our development, we first anticipate pos-
sible misunderstanding. The nco = ncl waveguide is un-
physical because X = 0 and hence / =- in order for V to be
arbitrary. Nevertheless, as we show later, the fields of the nc0
= ncl waveguide are the building blocks for the ncoe cl
waveguide. The nco = nci waveguide is, in general, unrelated
to a multimoded (V >> 1) waveguide so that geometrical or

h2 = (i/,B)Vt ht.

e. = (i/3)1Vt - et + (Vt lne) - et),

-(i/ )Vt - et.

(15)

(16a)

(16b)

Equation (16b) is sufficiently accurate for our purposes.' 2

When nco - ncl we know that p/ >> 1 so that Eqs. (14)-(16)
show that the modes of an nco - ncl waveguide are nearly
TEM waves.

The propagation constant /3 for the nco - nci modes nearly
equals 7 determined from Eq. (13). To include small polar-
ization effects one uses a standard method presented in Ap-
pendix A, leading to

/32- 2 SA-
2k

t * Vt (et - Vt lne) dA

(17)

2k f -t * et dA

where k = 2urn/X, ,B and et are defined by Eqs. (12) and (13),
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and et and 3 are defined by Eq. (2). A is the infinite cross
section. Once et is approximated by a linear combination of
e fields, Eq. (17) is used to calculate A, where et in Eq. (17) is
any one of the e's used to approximate et. For a step-index
profile Eq. (17) is simplified by using a result of Appendix
A,

Jbet * Vt (et * Vt lnE) dA = 02 me (Vt - et) (et - h) dl
fA core

(18a)

= iOc/3 (ez -)(eet - h) dl, (18b)
core

where f core is a line integral around the core-cladding inter-
face, and h is the outward normal to that interface. The small
correction to $ obtained from Eq. (17) is necessary to separate
the erroneous degenerate d's found by solving the scalar wave
equation rather than the vector wave equation. For example,
Eq. (17) includes the small polarization-dependent effects
necessary to distinguish the /3 of a TM from a TE wave.

In summary, the modal fields of the nco - ncl waveguide are
nearly TEM waves obeying Eqs. (14)-(16), with corrected
propagation constants obtained from Eq. (17). The
transverse fields are synthesized from linear combinations of
the n, 0 = ncl fields defined by Eqs. (12) and (13).

Ill. CONSTRUCTION OF VECTOR MODAL FIELDS
USING THE nc,0  nc, METHOD

We now discuss the problem of constructing approxima-
tions of the vector modal fields by linearly combining nco =
nci fields. While it is possible to provide a general mathe-
matical prescription for forming the linear combinations, e.g.,
see Appendix A, in this section we follow a physically intuitive
argument. The philosophy of the method is based on the fact
that modal fields must satisfy the symmetry properties of the
waveguide. These symmetry properties are contained within
the Vt e term of the vector wave equation and therefore they
are automatically included in solutions of this equation.
However, it is often possible to guess the appropriate sym-
metry conditions without solving the vector wave equation.
We next provide some examples beginning with circularly
symmetric waveguides and then waveguides with two pre-
ferred axes of symmetry.

A. Waveguides with circular symmetry
The nco = ncl modes are given by Eq. (12) in terms of the

scalar function A. By virtue of the circular symmetry, there
are in general two solutions of the scalar wave Eq. (13) for each
allowed value of ,. One solution, 4e, has even symmetry while
the other, f', has odd symmetry:

eye = f1(r) cos(l-P)y, 6,. = fl(r) sin(10)'. (21b)

We now discuss how to linearly combine these e modal
fields to form approximate modal fields of the nco nci
waveguide.

1. The fundamental (1 = 0) modes
When I = 0, there are only two nco = nci modes, exe and eye.

These fields exist at all frequencies and depend only on r. By
virtue of the circular symmetry any linear combination of
these two fields must be a modal field of the nco - nci wave-
guide. Also, from circular symmetry, the nco - ncs waveguide
has two fundamental modes with equal /3's [as can be verified
from Eq. (17)]. We can take one mode to be polarized in the
x direction (ex) and the other to be polarized in the y direction
(ey):

ex = fo(r)i, ey = fo(r)k, (22)

where fo(r) is the solution of Eq. (20) with I = 0.

The two fundamental modes of the circular symmetric nco
nci waveguide are exceptional in that they are the same as

the fundamental modes on the nco = ncl waveguide, i.e., they
are uniformly polarized throughout the cross section and have
the same /3's.

2. Higher-order modes (i.e., I > 1)
We showed at the beginning of this section that the circu-

larly symmetric waveguide has four nco = ncl modes when 1
# 0. Unlike the fundamental modes, none of the nc. = nci
fields for I > 1 are individually modal fields of the nco n~ j
waveguide. This can be proved' 3 from symmetry consider-
ations together with Eq. (17). Thus we require linear com-
binations of exe, Zxo, eye, and 6yo to form the higher-order
modes.

To form the correct linear combinations, we combine those
modes which have the same properties under a rotation by 900
and under reflections in the x and y axes. [It may help at this
point to consider a specific example, say the 1 = 1 modes
shown in Fig. 2(a).] Thus exe is combined with Eyo because

exe

(a) I

ix0 eye &yO

t.Hi}<tfi x'i. 6I::

Ae(ro) = fl(r) coslk, o(ro) = fl(r) sinlo. (19)

In Eq. (19), k is the azimuthal angle and fi(r) is a solution
of

2 + d+ (r)_2 2) fi(r) =O (20)
kdr2 r drr2

Thus the nco = ncl waveguide of Sec. II A has four modes for
each allowed value of /, i.e.,

exe = fj(r) cos(10)k, 6.o = fj(r) sin(bk) , (21a)

W

e, = exe+eyo e 2 = exe - eyO

(Even EHom = TMO,) (Even HE21)

e3 = exO+ eye e4 = Ixo- eye

(Odd HE21) (Odd EHom =TEO,)

FIG. 2. (a) The ncO = %c or LP modes for / = 1. Note that exe and e", are
symmetric under reflections in the x and y axes, while e, and bye are an-
tisymmetric. If any one of the above fields is rotated through an arbitrary
angle it transforms into a linear combination of all four. Note also that apart
from normalization, ex = e1 + e2, 6xO = e3 - e4, 6 ye = e3 + e4 and eve
= 01 - e2, where the e's are shown in (b). (b) The nco - nc modes for /
= 1. Under an arbitrary reflection and rotation, el and e4 are unchanged,
while either e2 or e4 transform into linear combinations of e2 and e4.
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which propagate for all values of frequency, have electric fields
that are polarized along one of these two axes of symmetry.
Thus the nco = n,1 modal fields are the proper approximations
of the fundamental fields of the nco nic waveguide provided
the x and y directions of Eq. (12) are aligned with the direction
of the symmetry axes. Therefore the fundamental mode has
vector fields of the form

ncl
Fiber 1 Fiber 2

n = + e2 sin 20 0

(b) p(1 +e26cos2r

minor axis
e major axis|

FIG, 3. Waveguides with preferred axes of symmetry. (a) Composite,
two-parallel-waveguide system, and (b) an elliptical core.

one rotates into the other, while 6x, is combined with eye be-
cause one rotates into minus the other. Taking symmetric
and antisymmetric combinations leads to the 4 modes of the
nco _- nc waveguide:

et, = exe + 6yo, et 2 = exe - 6yo, (23a)

et3 = kxo + eye, et 4 = kxo - eye, (23b)

Using conventional nomenclature,'14" 5 modes 1-4 refer to the
even EHi-im, even HE1+1,m, odd HEI+im, and odd EH1-1,m
modes, respectively. Figure 2(b) illustrates the modes for 1
= 1. These combinations can be shown to be consistent with
the symmetry properties of the waveguide. By placing etl in
Eq. (17) for et and exe for 6t we obtain / for mode 1 and sim-
ilarly for the other three modes. In general, the ,B's of the EH
and HE modes differ from one another. This difference gives
rise to a beat phenomenon causing a rotation of the n,0 = nc,
or LP patterns as the mode advances. The stability of the LP
mode patterns is set by the difference I OHE - IEHI in the
propagation constants of the two different mode types that
form an LP pattern. When flHE = #EH, the n,0 = nci modes
are also modes of the nc. n n waveguide.

B. Waveguides with two preferred axes of symmetry
Many structures of practical interest have a pair of pre-

ferred orthogonal axes of symmetry, e.g., the ellipse and the
composite two cylinder waveguide of Fig. 3. When nco - ncl,
the modes of these waveguides can be formed by linear com-
binations of the nc0 = ncl modal fields. We now show how to
form these combinations, beginning with the fundamental
modes.

1. Fundamental modes
It is intuitive that the fundamental modes, those modes

Ex= exeilxz = Ieifxzi,

Ey= eyei
3
Yz = lei6yzy,

(24a)

(24b)

where A is the fundamental solution of the scalar wave equa-
tion, Eq. (13). The modal propagation constant O., is found
by substituting et = t = ex into Eq. (17), while #y is found
by substituting et = t = ey into Eq. (17). We have now fully
specified the general characteristics of the fundamental modes
on waveguides with a pair of preferred orthogonal symmetry
axes. The details depend on knowing the solution to the
scalar equation. It is apparent that the transmission prop-
erties of such waveguides, when propagating only the funda-
mental modes, are similar to those of anisotropic crystals in
that the waveguide has a pair of optical axes.17

2. Higher-order modes on waveguides with preferred
axes of symmetry

In general, the fields of higher-order modes of structures
with two preferred axes of symmetry are more complicated
than the fundamental modes. In order to appreciate this
complication we begin by considering the ellipse. It is clear
that for a sufficiently large eccentricity the field of any par-
ticular n,,0  n,1 mode is represented by Eq. (24), so that the
only difference between it and a fundamental mode is in the
values of 4A and 3. However, it is equally clear that for a suf-
ficiently small eccentricity, this same mode resembles a modal
field of a circularly symmetric waveguide, with x and S parallel
to the symmetry axes of the ellipse. This transition is
sketched in Fig. 4. We can associate each ellipse mode with
the fields of a distorted circle mode. For example, the ellipse
mode that corresponds to distorting either et, or et2 of Fig. 2
is formed by a linear combination of exe and 6yo, where these
e's are now solutions to the scalar wave equation in elliptical
geometry. Consequently, the fields of the ellipse modes et,
and et2 are

et, = ai4'ek + bi4oy = aikxe + bieyo, (25)

where i = 1 or 2, 4 e and 4', are solutions of the scalar wave
equation in elliptical geometry and are analogous to Vle and
4' given by Eq. (19) for the scalar wave equation in circular
cylindrical geometry. Figure 5 provides an example of P'e and
4'0. The propagation constants associated with 4 e and 0'O are
denoted e and FO, respectively. These f's are different; the
difference increases as eccentricity increases.

A heuristic argument can be used for determining the
minimum eccentricity necessary for the 1 > 1 ellipse modes
to be uniformly polarized, i.e., to have the form given by Eq.
(24). Anticipating that only a slight eccentricity is necessary,
the fields of the ellipse can be approximated by linear com-
binations of the circle nco = nci fields exe and eyo as far as the
present discussion is concerned. Thus uniformly polarized
ellipse modes are nearly the nc. = ncl or LP modes of the circle.
We now recall our discussion of Sec. III B 2 in which we stated
that the rate that LP modes rotate into one another depends
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c INCREASING ECCENTRICITY $) C = J exe *Vt(6yo * Vt lE) dA/Jf 1,eI12 dA

(a)

e,

(b) _

e2

(c)

e3

(d) (

e4

:�;7t7;

� /
/__

A *�

-'. �*'

ey.

exe

eyo

I (

FIG. 4. Transition from circle to ellipse modes for I = 1 modes. An
electric field vector maintains its orientation to the interface, i.e., if it was
initially perpendicular it remains perpendicular, as the eccentricity increases.
Using this heuristic principle one can anticipate the way in which a particular
circle mode changes s the eccentricity increases.

upon I OEH - #HE 1, where /3EH,/3HE are the /3's of the circular
waveguide. When this difference is zero the LP modes are
stable, i.e., they are proper modes of the nco - n~j waveguide.
The stability of circle modes on an ellipse depends upon fse-

/0 as implied in the preceding paragraph, where /e,/3o are the
O's for the ellipse determined from the scalar wave equation.
Consequently, the parameter A is influential in determining
the limiting behavior of ellipse fields, where

A = (Oe - o)/(/3EH - /HE), (26)

/EH = /1 and /HE = /32 for the particular ellipse modes et, and
et2 given by Eq. (25). When IAI >> 1, the fields of the ellipse
are uniformly polarized. When I << 1, the ellipse modal
fields are the fields of modes on a circularly symmetric
waveguide.

The argument given above is tantamount to determining
the limiting behavior of ai/bi of Eq. (25). It is elementary to
find an exact expression for this ratio as a consequence of
finding / for ellipse modes. The /3 associated with the ellipse
vector modal field Eq. (25) is found by substituting et, in Eq.
(17) for et and substituting either exe or Eyo in Eq. (17) for et.
The fact that we have two expressions for the same /3 gives us
two equations which, when taken together, determine the ratio
ai/bi of Eq. (25) in addition to /3i. The algebra is left to Ap-
pendix A. For small eccentricity,

ailbi = A + (A2 + 1)1/2

ffl = [(it + it)/2] + ff(p2 - :2)/212 + C21}/,

(29a)

(29b)

where A1, 02 are for circle modes 1 and 2, exe and 6yo are the
fields given by Eq. (23) for the circular fiber and k = 27rn/X.
We have used Eq. (17) to deduce Eq. (29b). The parameter
A is

A = (i3 / - (2eC - o)/(e31 - /2), (30)

which is the same as Eq. (26), derived intuitively for small
ellipticity. Thus, the composition of a mode depends only on
the parameter A. When A = 0, the modes are essentially circle
modes. When A >> 1 the modes are nearly uniformly polar-
ized. Equations (27)-(30) are for modes 1 and 2 of the ellipse,
when 1 3 1. The two other ellipse modes are found analo-
gously.

Identical arguments can be applied to all structures with
two preferred axes of symmetry, e.g., the composite two par-
allel waveguide systems of Fig. 3. Furthermore, the procedure
can clearly be generalized to other classes of symmetry.

IV. EXAMPLES: STEP REFRACTIVE INDEX
WAVEGUIDES

Sections II and III show how to construct the vector modal
fields e,h and their propagation constants /3 from linear
combination of solutions A to the scalar wave equation, Eq.
(13). Thus when i6 is known the modes are fully specified.
We first determine the modes of a step profile waveguide with
circular symmetry, since our results can then be compared
with the exact forms. Next, we consider a waveguide with an
elliptical core and then a composite two parallel cylinder
waveguide. These last two examples exhibit several inter-
esting physical properties which our method readily dis-
plays.

A. Step-index waveguide with circular symmetry
The radial function fl (r) for a step profile is found from Eq.

(20) and can be written

fj(r) = Jj(Ur/p)/JI(U), r < p

fj(r) = Kj(Wr/p)/KI(W), r > p

(31a)

(31b)

where the notation indicates that they are derived from the
scalar wave equation, J1 is a Bessel function and K1 is a

CIRCULAR CORE

(27)

(28)

ELLIPTICAL CORE

Odd Z

Even -

where i = 1 is associated with (+), while i = 2 is associated with
(-) and lea To are from the scalar equation for the ellipse. The
parameter C is

FIG. 5. An example of a solution of the scalar wave equation corre-
sponding to the / = 1 mode. The /3's of the even and odd circle mode are
identical unlike the /3's for the even and odd modes of the elliptical core.
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TABLE I. Modal parameters for a step profile, circularly symmetric waveguide when nc. - ncl.

Mode 1 Mode 4
Even EHi-im Mode 2 Mode 3 Odd EH1-im

(even EHO,m = TMom) Even HE,+,,m Odd HEt+i,m (odd EH0 ,m = TEom)

Transverse fields et

= Jj(Ur/p)/Jj(U), r : p etI = -ex + koy et2 = Cex - koy et3 = ox + 6ey et4 =ox o- ey
fj(r) = Kj(Wr/p)/Kt(Wr/p), r >_ = {x coslk + S sinlofi(r) = J coslk - k sinlolfi(r) ={ sinlo + k coslo ifi(r) = J* sinlk + S' cosloJf1 (r)

Longitudinal fields e,

= -ip0c(Vt . et)/V (i/V)0cg7 (r) cos(l - 1)0 - (iiV)0cgt+(r) cos(1 + 1)0 - (i1V)Ogt (r) sin(l + l)k (i/V)0,g7 (r) sin(l -1)

g'(r) =UJi:hi(Ur/p)/Jj(U), r < p
WKi±,(Wr/p)/Kj(W), r > p

Propagation constants fi

Poc fA 6t - Vt (et - Vt Ine) dA O3CJ2WK1(V)
- f Aw CUW

22 =2 - CZ/p2 V3
C

2WKj(W) 12 - 03 2pV
3Kj,-( W) p04-4 - U K,(W)

U/p2 V2pV 3Kj+j(w)

2pV1KjjW(1 #1)

(1 # 1)

modified Hankel function. Note that 1 = 0 is for the funda-
mental mode, 1 = 1 for the second mode, and so on. The re-
quirement that fi (r) and dfi (r)/dr be continuous at r = p gives
the eigenvalue equation

CJj1+ 1(U)Kj(W) = WK1+,(W)J1 (U), (32)

after using the recursion relations for Bessel functions, where
CU and W are related to the dimensionless parameter V de-
fined by Eq. (7) as

V2 = U2 + W2 . (33)

The propagation constant S is defined

(pO)2 = (pk co)2-U 2 = (ph cI)2 + W2, (34)

where kco and kc1 are defined in relation to Eq. (5). The vector
modal fields can then be formed as discussed in Sec. III and
are listed in Table I. The propagation constants / are found
by substituting the expressions for et in Table I into Eq. (17)
for et and substituting either of the two e fields used to form
et into Eq. (17) for et. The details are presented in Appendix
C with results listed in Table I. Our present approach
streamlines the original derivation' and in addition provides
a simple analytic expression for improving : by accounting
for the VtE term in the vector wave equation. Discarding
terms of order O2 from the exact expression for et leads to the
results of Table I, while discarding terms of order O0 leads to
e2 . The expressions for U ignore 05 terms. We emphasize
that because the step profile is the most rapidly varying e(x,y)
possible, it is therefore the profile most sensitive to polariza-
tion effects, i.e., most sensitive to the influence of the VtE term
in the vector wave equation. Thus the step profile provides
a stringent test of the nco - ncl method. When the profile is
graded, the theoretical procedure for finding modes follows
that for the step profile.

1. Stability of LP modes
The nco = ncl or LP modes are not modes of an nco 5f ncl

waveguide. The reason is that each LP mode is formed by

combining two proper modes, an HE1+1,m and EHI-im mode,
and these proper modes have different propagation constants,
OHE and OEH. Because of the beat phenomenon, when OHE

- OEH #d 0, the modes appear1 8 to rotate or fade into each
other, e.g., e of Fig. 2 after propagating a distance ir/1 0 2 -

01 1, which equals half the beat length, appears like 6yo of Fig.
2. The greater I OHE - OEH 1, the shorter the beat length and
hence the more rapidly the LP modes fade into one another.
Using the results of Table I and recursion relations for the K1
functions leads to expressions for the difference in /'s: For
I = 1 modes

1 - 02 = 03 ,U2 K2(W) 2 - WKo( W)
2p \V 3 / Ko(W)K 2 (W) [ Kj(W) J*

(35)

The differences /4 - 03 for 1 = 1 is found from Eq. (35) by re-
placing (-) in the I I quantity by (+). For 1 > 2,

0p3 K (W)
/3-/3- kV3) Kj1 ,(W)K 1 +1 (W)' (36)

which also equals 03 - 04. The results for 1 = 1 are shown in
Fig. 6. Note the special characteristic that at V - 3.8 the exe
and 6yo patterns of Fig. 2(a), i.e., the nco = ncl or LP modes,
are true modes of the nco #d nci waveguide, since at this fre-
quency /1 = /2. In contrast, 4 - 03 -3 0.2503/p at V - 3.8
corresponding to a half beat length (7rp/0.2503) 1.3 X 104 p
for a typical value of 0c = 0.1. Thus near V - 3.8, the mode
patterns xe and 6y, should appear stable compared to the
other two patterns of Fig. 2(a). When V >> 1, I1/1 - 021 213
- /41- 03U2/2pV 2.

From Eq. (36), we learn that the /'s are never equal for I >
2, so that these LP modes are never modes of the circularly
symmetric waveguide. Furthermore, the greater 1, the greater
I1/ - /21 which approximately equals C031U2 /2pV 3 for 1 >> 1.
Consequently, for fixed V, the greater 1, the less stable the LP
modes. Knowledge of the stability of LP modes is useful
when considering waveguides with two preferred symmetry
axes. It is also useful for a critical determination of V as well
as a sensitive indicator of asymmetrics.
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V

FIG. 6. The difference in (3's for I = 1 modes of the circularly symmetric,
step profile waveguide. Each LP mode of Fig 2(a) is formed by linear
combination of fll, 12 modes or 03, 14 modes.

B. Step-index ellipse
We showed in Fig. 4 that a slight elliptical deviation from

circular symmetry leads to new modes which appear' 8 like the
uniformly polarized (or LP) modes of the n, 0 = ncl circularly
symmetric waveguide shown in Fig. 2(a), except that e must
be parallel to one of the two symmetry axes. Now it is inter-
esting to determine the minimum amount of eccentricity for
the n,0 = ncl or LP modes of Fig. 2(a) to be good approxima-
tion of the proper ellipse modes. On a waveguide with this
minimum eccentricity the modes of a circularly symmetric
waveguide are unstable, i.e., they couple power among
themselves as they propagate, while the n,0 = n~j or LP modes
of the circularly symmetric fiber are stable. We have shown
in Sec. III B 2 that the effect of eccentricity depends crucially
upon the parameter A, where

A = (ke - ko)/(AlEH - /3HE), (37)

where flEH, SHE are the propagation constants for the two
mode types on a waveguide with circular symmetry [Sec. IV
A, Eqs. (35) and (36)], while e, SO are the even and odd
propagation constants of the two mode types on an ellipse
obtained by solving the scalar wave equation, Eq. (13), in el-
liptic geometry. When A >> 1, the fields of the ellipse corre-
spond approximately to the nco = ncl or LP modes, while when
A << 1 the fields are approximately those of the true modes of
a circularly symmetric waveguide.

1. 1 = 1 ellipse modes

We have previously determined OEH - SHE as stated by Eqs.
(35) and (36). Anticipating that only a small eccentricity is
necessary for the LP modes of the circle to resemble ellipse
modes, we can determine ke - Wh from the scalar wave equa-
tion in circular geometry using elementary perturbation
methods presented in Appendix B and D leading to

(0ce
2 /4p)(CJ2/V) 2(W)

-10 Ko(W)K 2(W) ' (8

where U and W are found from Eq. (32). Consequently, the
important parameter A of Eq. (37) becomes

A = (1/2)(e/Oc)2 V2 12 A WK 0 (W)/K,(W)j-1, (39)

where the negative sign is for ATM, i.e., for OEH - SHE in Eq.

(37) to be ATM - SHE, while the positive sign applies to ATE,
i.e., for OTE - OHE. Equation (39) exhibits the sensitivity of
A to eccentricity e, defined in Fig. 3, and refractive-index
difference Oc, defined by Eq. (8). For fixed V, the smaller O0,
the less eccentricity is necessary for the LP modes of the cir-
cular cylinder to resemble stable modes of the ellipse. Figure
7 provides a graph of (Oc/e) 2A vs V. Remembering that when
A >> 1, the LP circle modes are the approximate modes of the
ellipse, while when A << 1 the circle modes are approximate
modes of the ellipse; we see that no eccentricity is required for
the LP exe and ey. modes to resemble ellipse modes at V - 3.8.
This is anticipated from Fig. 6, since these LP modes are then
true modes of the circular cylinder without any perturbation.
Since the minimum value for A - 2(e/OC) 2, only a minute ec-
centricity (e > 20c) is required for the LP circle modes to be
stable. The higher-order ellipse modes can be determined
in a similar fashion. They should appear more like AE than
ATM, since PHE - OEH is nonzero as discussed in Sec. IV A.

2. Fundamental or 1 = 0 modes of the ellipse
In Sec. III B 1 we noted that the transmission properties of

an elliptical waveguide propagating only the two fundamental
modes are similar to those of an anisotropic crystal, i.e., they
both have orthogonal optical axes. The anisotropic properties
of the waveguide depend upon the difference in propagation
constants fXy of the x and y polarized ellipse modes, re-
spectively, where1 9

A KO(W)Ji(U)} (40)

assuming e2 << 1, where U and W are found from the s'olution
of Eq. (32) for the fundamental, 1 = 0 or HE,1 mode. If the
fiber is illuminated by linearly polarized light at 450 to the
optical or symmetry axes, then both fundamental modes are
excited equally and the wave becomes elliptically polarized
as it propagates. Because of the beat phenomenon, the E
vector appears to rotate. The length for a 3600 rotation is
27rI j -fy I -1. In Fig. 8 we have plotted O,-f as a func-
tion of V.

C. Two identical parallel step-index waveguides with
circular symmetry

The determination of modes on the composite two wave-
guide system of Fig. 3 is completely analogous to that of the
ellipse as outlined in Sec. III B, except that the scalar solution
AP for the two-cylinder geometry is now required. There is no
exact solution for ,6. Instead, i is approximated in the usual
manner by a symmetric and antisymmetric superposition of
the fields of the waveguides in isolation, while a is approxi-
mated using the same perturbation method on the scalar wave
equation as with the ellipse. The procedure is discussed in
Appendixes B and E, where all of the following results are
derived.

1. Fundamental modes
There are four fundamental modes as shown in Fig. 9, each

with a different 13 and each having et parallel to one of the two
axes of symmetry. It is well known14 ,20 that under the ap-
propriate excitation conditions, identical parallel waveguides
interchange all power between each other in length 1 = 7r/(fl+
- 1-), where I is half the beat length, 0+,O- are the propaga-
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FIG. 7. The parameter A defined
by Eq. (39) determines the ratio
aIb, of the ellipse / = 1 fields, Eq.
(25). When AI >> 1, the modes
are uniformly polarized (LP
modes), while when IAl << 1 the
modal fields are those of a circular
core.
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tion constants of the symmetric and antisymmetric modes,
respectively, and fl+ -/- d+ - A-, where

- - 2OC U2Ko(Wd/p) (41)
pV3  2j(W

for either x - or y -polarized modes, d is the center-to-center
separation, and U, W are found from Eq. (32). This result
agrees with that found20 from Maxwell's equation when 0, <<
1. Since the d's are solutions of the scalar wave equation, the
power transfer between parallel cylinders is essentially a scalar
phenomenon. However, like the ellipse, unless et is parallel
to one of the symmetry axes, it appears to rotate as the field
propagates along the cylinders. The length required for an
apparent 1800 rotation is 7r/(Ox - fly) when E is initially 450
to the symmetry axes, where

1.4 I I I , , I I

1.2- -

1.0 - 0-

p(Px- Py)
2 3e e

0.8

0.6

0.4

0.2

0 .

V

FIG. 8. The difference in O's of the x- and y-polarized, fundamental ellipse
modes.

d - - o= U Ko(ld/p) [1 2-I(W)K1(W)]p V3
K2(W)

(42)

for either symmetric or antisymmetric modes, where 11(W)
is a modified Bessel function. It is interesting to determine
the amount a' in degrees that E rotates in the length neces-
sary for total power transfer between the cylinder. This is
given by 1800 times the ratio

ox - 6= 2 02[1 - 2I(W)K1 (W)] (- V-
4 - ~_ 2 c2 ( ,

(43)

Thus the angular rotation is less than a' = 62 (900), i.e., less
than about 10 in a length required for total power transfer for
a typical fiber with Oc = 0.1.

2. 1 = 1 modes
There are in general 8 mode types on the two cylinder

waveguide, i.e., an even and an odd mode for each of the con-
figurations shown in Fig. 9. The dependence of higher-order
modes on the center-to-center separation distance d is directly
analogous to the dependence of the ellipse modes on eccen-
tricity. When the fibers are sufficiently close, the modes of
the two-cylinder system are well approximated by fields of the
nO = nci fiber, i.e., the LP modes of each fiber in isolation, but
with E parallel to the axes of symmetry. When the fibers are
sufficiently separated, the modes are approximated by the
fields of the nc f- nci waveguides in isolation but with et again
parallel to the symmetry axes. The situation is illustrated in
Fig. 11 for one of the I = 1 modes of the two waveguide system.

SYMMETRIC ( + I MODES

e.+

(3 (3

ANTISYMMETRIC I - ) MODES

I3 Xex-

ey-

FIG. 9. The four fundamental modes of the two-parallel-waveguide system
shown in Fig. 3(a).
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= SEPARATION

FIG. 10. The transition of an / = 1 mode of the two-parallel-waveguide
system as the separation increases. When the fibers are close, the
composite mode appears like a superposition of two v,,e modes of Fig. 2(a).
When the fibers are well separated, the composite mode appears like a
superposition of the e2 model of Fig. 2(b).

In other words, large eccentricity in the ellipse is analogous
to small separation distance between the two cylinders. The
modes of the two waveguide system are formed by a linear
combination of the same modes as for the ellipse. Accord-
ingly, the logic of Sec. III B 2 applies directly so that the pa-
rameter A is again important in establishing the limiting be-
havior of the modal fields. As in the ellipse

A = (de - ,o)/GEH - OHE), (44)

where 03
EH - OHE are given by Eqs. (35) and (36) and -e

is the difference between the scalar Ol's of an even and odd
mode, both symmetric on antisymmetric. From Appendix
B and E,

e- o = OC U2 K 2 (Wd/P)
p VIKO(W)K2 (W) (5

where U and iV are found from Eq. (32). Substituting Eqs.
(45) and (35) or (36) into Eq. (44) leads to

An important property of circularly symmetric waveguides
with n0 -_ nI is that the slightest asymmetry causes dramatic
changes in the form of the modal fields. When the asymmetry
has a preferred axis, the nco = ncl or LP modes become stable,
i.e., they become the approximate modes of the deformed
structure.

Although the perturbation theory of this paper requires
only that nco - n,1, we have nevertheless used an example of
small eccentricity to illustrate the mechanics of the method
without resorting to special functions. This problem can also
be solved using a perturbation method in which the only small
parameter is eccentricity, assuming the fields of the circularly
symmetric waveguide are known exactly.

Cautionary note on using LP modes as the modes for cir-
cularly symmetric waveguides. Many authors have used n,0
= ncl or LP modes as if they were the proper modes of circu-
larly symmetric waveguides. In general, however, the in-
tensity pattern and the plane of polarization of the LP modes
rotates as the mode propagates. Consequently, investigations
(e.g., by coupled-mode theory) of those loss and coupling
mechanisms that lack circular symmetry are subject to error
when using LP modes. This problem does not arise using the
proper nco - nI modes derived here and elsewhere.1 In other
words, the fields of a perturbed waveguide need be repre-
sented by a complete set of the proper modes of the unper-
turbed waveguide and not by the LP psuedo-modes. How-
ever, as we pointed out above, there are highly specialized

(46)

The negative sign in Eq. (46) applies for IEH - IHE = ATM -

OHE, which is shown in Fig. 11, while the positive sign is for ATE

- IHE. When A >> 1, the modes of the two-cylinder wave-
guide are formed by an nco = ncl or LP mode on each of the
two cylinders. When A << 1, the modes of the two-cylinder
waveguide are approximated by a mode of the circularly
symmetric waveguide on each of the two cylinders. When the
cylinders are well electromagnetically separated, i.e., when
d > 5p or when K >> 1 the individual cylinders support the
modes of a circularly symmetric waveguide in isolation.
When the cylinders are strongly coupled, e.g., when d - 2p or
V - 2.4 (I = 1 cutoff V), the LP exe or 6,0 modes of Fig. 2 are
stable on each cylinder. When V - 3.8, we have already
learned from Fig. 6 that these LP modes are proper modes of
the individual cylinders. The other A is not shown but we
know that it lacks the singularity at V - 3.8 as predicted from
Fig. 6.

V. DISCUSSION

Our objective was to approximate the vector fields and their
propagation constants for modes of those optical waveguides
with nco - nci. The transverse vector fields are synthesized
from simple linear combinations of solutions to the scalar wave
equation. The VE terms of the vector wave equation set the
correct linear combinations and separate erroneous degen-
eracies introduced by solving only the scalar wave equation.
We account for this effect using the symmetry of the wave-
guide cross section and an elementary perturbation meth-
od.

02JAIeC

FIG. 11. The parameter A
composition of I = 1 modes.
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perturbations for which the fields of LP modes, properly
oriented with respect to the symmetry axes of the deforma-
tion, are a good approximation to the modes of the perturbed
structure. On multimoded waveguides the inaccuracies of
LP modes are smoothed out, but such problems are better
suited to a ray analysis. 9
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APPENDIX A. MATHEMATICAL DETAILS OF THE
n, ~_- nC METHOD

j Correction Formula
The fundamental result of the n,0  n i method, Eq. (17),

is proved by a deviation of the method used to obtain modal
orthogonality. The exact field et satisfies

[VI + (k 2 
- /32)]et =-Vt(et - Vt InE), (Al)

while an n,- nai field satisfies

[Vt + (k2 - d2)]et = 0. (A2)

Dot product Eq. (Al) with et and Eq. (A2) with et, subtract
the two equations, and then integrate over the infinite cross
section A_. The term

fA (e * Vet - et Vt) dA

is converted to a line integral at infinity using the vector
Green's theorem. This term vanishes since et and et decay
exponentially. The final result is Eq. (17). No approxima-
tions have been made in obtaining the expression for /2 - 32.

We note, however, that /2 - 32 - 2k(O - ), since / -A
k.

When E(x,y) is a step function, the numerator in Eq. (17)
is simplified by integrating by parts and using the identity

(V lnE) dA = [ln(Etj/c, 0 )]6(B)i dl = -O26(B)i dl, (A3)

where b(B) is a delta function at the boundary of the core, dA
is a differential area element with a portion of its perimeter
at the boundary, and fi is the outward normal to the boundary.
We then have

6t e Vt(et * Vt lnE) dA = O2 (Vt - 6t)(et- *i) dl.
fAx

(A4)

Vector Modal Fields
We now give the mathematical procedure for forming the

vector electric fields et of a waveguide with nco - n. *This
requires approximating et by a linear combination of the fields
e of all nco = nci modes with equal or nearly equal fl's. Usually
this can be reduced to two modes after applying symmetry
arguments. Thus

eti = ai a + bieb, (A5)

where i = 1 or 2. In all our examples 6a -b = 0, but in gen-
eral

fA -
ea - Cb dA = 0, (A6)

where A is the infinite cross section. Now we substitute Eq.
(A5) into Eq. (17) for et and substitute 6a into Eq. (17) for et.
This leads to

(Caa + da -fl )ai + (Cab)bi = 0,

where da is the / for 6a and

Caj =

f1A -a - Vt(6j - Vt lne) dA

(A7)

(A8)

XA Iea12 dA

where j is either a or b. We again substitute Eq. (A5) into Eq.
(17) but this time substitute eb for et. This leads to

(Cba)ai + (Cbb + b - At)bi = 0, (A9)

where 3b is f for 6b and Cba, Cbb are given by Eq. (A8), re-
placing a by b. Taken together, Eqs. (A8) and (A9) determine
& i and the ratio ai/bi. Equating the determinant of the two
equations to zero leads to an equation for Oi:

(Caa + ha -' )(Cbb + b - ) CabCba = 0, (A10)

from which we find that

Cab + Ha + Cbb + b

2

i[ (Caa + 2 Cbb - 2 CabCba (All)

where fl3 goes with (+) and 02 with (-). Knowing 0?, we have
ai/bi from Eq. (A9):

ai/i = (I - Cbb)/Cba. (A12)

No approximations have been made other than Eq. (A5). In
many cases $? >> Cjj, where j is either a or b and also d2 - {2
>> Caa - Cbb. We also often have that Cba - Cab - C. With
these assumptions, we have

SF [Ia +D)/2] i C(A2 + 1),

A = ( - )/2C,

ailbi = A 1 (A2 + 1)1/2,

(A13)

(A14)

(A15)

where C = Cab - Cba given by Eq. (A8).

APPENDIX B. PERTURBATION METHODS FOR
THE SCALAR WAVE EQUATION

/3 Correction formula
In the text we require an expression for fl of the scalar wave

equation for a slightly elliptical core and also for two parallel
waveguides. The method of derivation follows the philosophy
already given in Appendix A. Suppose we have two different
scalar wave equations,

1V2 + k 2}+ = A24, (B1)

(B2)
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Multiply Eq. (Bi) by 'P and Eq. (B2) by A and subtract:

TV,24 - 4'VIT + fk2 -k 2}' = 1/2 - d214". (B3)

Equation (B3) is now integrated over the infinite cross section.
Green's theorem is used to convert the first term to a line in-
tegral at infinity, which is zero. The final result is

fA -(k2-k 2)4' dA
f2 - d2 =

XA - OdA

(B4)

The usefulness of Eq. (B4) is that we usually have a good ap-
proximation for A and k2 - k 2 is known. In the text we use

~2- ~2 - 2k (d -A)

Scalar Fields
In the text we approximated 4 by cylindrical functions for

the ellipse with small ellipticity, and 4' for the two-cylinder
waveguide was approximated using 4 = 4 I ± 4'2, where 4'1, q12

are the scalar solutions of the two waveguides in isolation.
Thus it is unnecessary to present the formal derivations of
these elementary approximations. However, in certain cases,
e.g., such as two waveguides that differ slightly, it is useful to
have the results of the formal approach. The method again
parallels that of Appendix A. We approximate 4i by

hi = aj4a + bikb, (B5)

where A a and kb do not obey SA -P a 4' b dA = 0 for the two-
parallel-waveguides system, since 45a and 'Pb are solutions of
different scalar wave equations. Now we substitute Eq. (B5)
into Eq. (B4) in precisely the same way as described in Ap-
pendix A, leading to

(Caa + Aa - O3)aj + [Cab + Da(I2 - ?)]bi = 0, (B6a)
I

[Cba + Db(fb - /)]aj + (Cbb + - O32)bj = 0, (B6b)

where

(B7)

=A (k2 - k 2)4 p- dA

Cpq =

f A2 dA
AW

fTa¢'b dA

Dj = I

X T? dA
AX

where p, q, and i can equal either a or b. The Dj term is
nonzero when 'Pa and 'Pb are not orthogonal but is usually
small and can be neglected. The results for fi and ai/bi are
then given by Eqs. (All) and (A12) or Eqs. (A13)-(A15).

APPENDIX C. CORRECTION OF / FOR THE
STEP-INDEX FIBER WITH CIRCULAR SYMMETRY

Once the linear combinations in Eqs. (23) are known, Eq.
(17) is used to calculate the correction to d produced by the
Vt e term. For example, consider the linear combination

et, = exe + e6y

= (coslok + sinlkS')fi(r)

= (cos(l - 1)/fr+ sin(l - 1),Pk)fi(r).

(Cla)

(Clb)

(Clc)

Let et = et, and et = exe in Eq. (17). We could also take et
= eyo, the final answer is the same. Using

Vt - exe = fj(r) coslk cosk + [If 1(r)/r] sinlk sin0 (C2)

and Eq. (18a), we have

(B8)

OW p " d4f,(p) cos(l - 1)o cosls cosk + {I/i(p)/pl cos(l - 1)o sinlk sing
/2 = F2 +

fA -fl (r) cos2 h0 dA

= d2 - ( I 1 21(1

=-2(1c) 2 (U)2 WK,(W) l 1=I
p V K2( W)

where standard Bessel function recurrence relations and the
eigenvalue equation, Eq. (32) have been employed. The
corrections to the remaining three O's are listed in Table I.

APPENDIX D. MATHEMATICAL DETAILS FOR
THE ELLIPTICAL CORE WAVEGUIDE

Here we provide some intermediate steps leading to the
expression de - do for the elliptical core waveguide presented
in the text. The perturbation formula Eq. (B4) gives d in
terms of 3 and '. Since it is assumed that the ellipticity is
very slight, we take these barred quantities to be the solutions
of the scalar wave equation for a circular cylinder and assume
4' ' A. The ellipse departs only slightly from the circular
geometry within a crescent-shaped region about the x axis of

(C3a)

(C3b)

(C3c)

Fig. 3, so that k 2 -2 = 2 = (Ok,0 )2 in this perturbation re-
gion and zero elsewhere. The perturbation exists close to the
ellipse boundary so that '(r,o) at (p,k) in the region of inte-
gration of Eq. (B4), with dA = (1/2)(ep) 2 COS2 0 d+. Now
substituting 44 = fl(r) coso, which is the I = 1 solution of Eq.
(20), into Eq. (B4) leads to

2 - ~2 =3 Ke(2 W)
4 p K 2(W)Ko(W)

Substituting 4'0 = fi(r) cosk into Eq. (B4) leads to

2 - 2 = (2 -2)3

(DI)

(D2)

The difference between these two equations leads to the ex-
pressions in the text noting that /e3 32 - 2k( Oe - k)
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APPENDIX E. MATHEMATICAL DETAILS FOR
THE COMPOSITE TWO-CYLINDER WAVEGUIDE

Here we provide some intermediate steps leading to. the
expression for t3+ - fl for the two-cylindrical waveguide
system. The perturbation formula Eq. (B4) is again used, this
time with the barred quantities representing the solution to
one of the waveguides in isolation and the perturbation region
the core of the other. We then approximate h' by AA = 4l ±
4'2 and ' = A in Eq. (B4). Neglecting terms Score 2 412 dA and
fA. T1T2 dA leads to

f2 = t2 ± ( 0ckco)2 Xore2~~+ fcore 2IT dA/ fg2 dA. (El)

These integrals are evaluated by the Bessel function addition
formulas. f+e and f+ 0 are found by placing Ale and 4plo in Eq.
(El).

The correction to F+ for finite Vte terms is found by sub-
stituting the ellipse fields into Eq. (17), leading to

flX+ = A+ + k2 ,f 4+(V'+. k*)(fi X) dl/ J A+ dA

(E2)

for e.+ of the fundamental mode, as an example, where f is
a line integral over both fibers. Neglecting terms whose in-
tegrand contains two exponentially decaying functions leads

02x+ = is2 + 2 ( i i *f X~(1tl * X

+ 42 (V7Tl * X) + 4'1(Vt 2 * X)] dl).

These integrals are evaluated using

vr, 1 tJr 2  Wd
K 0  = E (-1)' cos10 2 11  K -,

P I=-, P P

(E3)

(E4)

where r1, r2, and 02 are shown in Fig. 3.
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