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Homogenization of potential vorticity 
in planetary gyres 

By PETER B. RHINES AND WILLIAM R. YOUNG 
Woods Hole Oceanographic Institution, Woods Hole, 

Massachusetts 02543 

(Received 23 February 1981 and in revised form 21 January 1982) 

The mean circulation of planetary fluids tends to develop uniform potential vorticity 
q in regions where closed time-mean streamlines or closed isolines of mean potential 
vorticity exist. This state is established in statistically steady flows by geostrophic 
turbulence or by wave-induced potential-vorticity flux. At the outer edge of the closed 
contours the expelled gradients of q are concentrated. Beyond this transition lies 
motionless fluid, or a different flow regime in which the planetary gradient of q may 
be dominant. The homogenized regions occur where direct forcing by external stress 
or heating within the closed isoline is negligible, upon the potential-density surface 
under consideration. In the stably stratified ocean such regions are found at depths 
greater than those of direct wind-induced stress or penetrative cooling. In  ‘channel’ 
models of the atmosphere we again find constant q when mesoscale eddies cause the 
dominant potential-vorticity flux. In  the real atmosphere the results here can apply 
only where internal heating is negligible. The derivations given here build upon the 
Prandtl-Batchelor theorem, which applies to non-rotating, steady two-dimensional 
flow. Supporting evidence is found in numerical circulation models and oceanic 
observations. 

1. Jntroduction 
In  the literature of fluid mechanics tjhere are several studies of steady two- 

dimensional closed-streamline flow, in which weak molecular diffusion causes the 
gradient of some conservat’ive scalar property to be expelled from a region enclosed 
by streamlines. In the first volume of this journal Batchelor (1956) established the 
result (earlier noted by Prandtl) that the relative vorticity thus becomes uniform hi 
two-dimensional steady closed gyres of fluid without planetary rotation. Weiss (1966) 
and Proctor (1975) (for a review see Moffatt 1978), found that the gradient of the 
magnetic potential is expelled from two-dimensional steady thermal convection cells, 
and this production of concentrated, energetic ‘flux ropes ’ appears in far more complex 
flows, as in the solar photosphere. Ingersoll (1969) showed that the core of a two- 
dimensional Taylor column, surrounded by a closed streamline, must be stagnant. 
Benney & Bergeron (1969)’ Davis (1969) and Redekopp (1980) similarly determined 
the closed circulation in the ‘cat’s-eye’ of the nonlinear critical layer msociated with 
various kinds of waves. 

In  the study of large-scale atmospheric and oceanic circulation the principal field 
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348 P .  B.  Rhines and W .  R. Young 

( C )  

FXQVRE 1. (a) Sketch of the circulation path = const and the geostrophic contour of ij = const. 
Both curves lie on a surface of constant potential density (which lies near a level of geopotential 
surface). (a) The circulation gyres under consideration may occur in single layers of homogeneous 
fluid, or (c) in the quasi-horizontal flow in a stratified fluid. For large-scale flows with small 
relative vorticity, the patential vorticity is simply Q cz j / h ;  uniform Q could occur if isopycnal 
layers thicken to the north. 

variable, the potential vorticity q, is quasi-conservative. t In this paper we establish 
that q may indeed be expected to become uniform within closed streamlines. In the 
oceanic case this leads to a theory of the general circulation. 

The simplest illustration of expulsion would involve a purely prtssive scalar field, 
like the concentration of a neutrally buoyant dye. Here and in Batchelor’s study the 
expelled quantity is active: a knowledge of q plus boundary conditions gives knowledge 
of the entire flow field. 

t q is defined here to be H( j + { ) / h ,  where is the vertical relative vorticity, h the (variable, 
unsteady) thickness of a layer between constant density surfaces, and H the areal mean of h. 
By quasi-conservative we mean that q obeys DqlDt = B- A, where D/Dt  is the convective 
derivative, and B (forcing) and A (dissipation) are both small relative to the individual terms 
in DqlDt. 
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Homogenization of potential vorticity in planetary gyres 349 

The present problem is distinct from many of those cited above in being three- 
dimensional and in having, as a component of q, the large-scale north-south variation 
known as the /3-effect. 8, the northward gradient of the Coriolis frequency f, dominates 
the dynamics where the flow is sufficiently weak, and in much of the classical theory 
of ocean circulation and large-scale wave motion this gradient is supposed to remain 
dominant. We thus anticipate that there is a threshold of energy which must be 
surpassed if the flow is to produce closed q-contours. 

Planetary fluids tend to be stably stratified in potential density p, to have mean 
rotation, and to be confined to a spherical shell by solid or virtually solid boundaries 
(figure 1). Often the heating or stresses that drive the fluid vanish over large volumes. 
For example the oceans are driven largely at or near their upper boundary. The inner 
n - 2 layers of an n-layer quasi-geostrophic ocean model are remote from direct wind 
forcing and strong frictionless effects, and obey 

terms due to the averaged effect of small-scale 
processes such as internal waves a.vq = -V.u'q'+ 

in the interior. (The overbar in (1 .l) denotes a time-average; primes denote fluctuations 
about that average.) In regions where the eddy flux divergence V .  @ is weak the 
right-hand side of (1.1) is small and a first integral is 

ij = &($,p) +{corrections due eddy fluxes etc.}. (1.2) 

Because the fluid is confined to nearly horizontal density surfaces, the statement in 
the previous paragraph that planetary flows are three-dimensional is potentially 
misleading. In  the non-diffusive limit q i3 conserved on fluid particles, and hence the 
three-dimensional problem retains some aspects of its two-dimensional predecessors. 
This reduced dimensionality has important dynamic consequences and simplifies 
many of the theoretical arguments in this article. For example, because particles are 
confined to density surfaces, the eddy flux of potential vorticity in (1.1) cannot 
transfer mean potential vorticity across density surfaces. Thus under restrictions 
discussed below u'q' can be expressed as a downgradient flux of mean potential 
vorticity (i.e. u'q'. Vij < 0) within, but not across, mean-density surfaces (i.e. q. 
V p  = 0 ) .  In  view.of the difficulty of generalizing the Prandtl-Batchelor theorem, and 
other related arguments, to  fully three-dimensional flows (e.g. Grimshaw 1969) the 
inability of geostrophic eddies to flux q into a region of closed streamlines from ' above ' 
and 'below ' is a welcome simplification. 

However, one should not form the impression that nothing of importance can be 
transported across density surfaces by eddies. Rhines & Holland (1979) show that the 
eddy transport of potential vorticity appears as a force-like quantity in the averaged 
momentum equation. The corresponding stresses can transport momentum both 
laterally (i.e. within density surfaces), through Reynolds stresses, and vertically (is. 
across density surfaces), through form drag. In  fact Rhines & Holland argue that for 
large-scale mean flows (i.e. flows in which the relative vorticity is negligible compared 
with the planetary vorticity and vortex stretching) the latter, vertical process dom- 
inates. Thus in the planetary-scale problems which concern us here, a lateral flux of 
potential vorticity is equivalent to a vertical flux of horizontal momentum. 

The surfaces of constant potential density pare  covered with curves of constant ij, 
known aa geostrophic contours or isostrophes, which coincide with streamlines. TO 
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350 P. B. Rhines and W .  R. Young 

make further progress Q must be determined. If a geostrophic contour intersects a 
lateral boundary, Q is fixed by a zero-velocity boundary condition, except in a region 
where a viscous or inertial boundary layer can occur. This leads one to conclude that 
there is no motion at  this order in interior subsurface layers whose q-contours are 
connected to both eastern and western boundaries. (For further discussion see Rooth, 
Stommel & Veronis 1978; Rhines & Holland 1979.) If one applies linearized non- 
diffusive inviscid theory to the spin-up of the circulation from a state of rest (Anderson 
& Gill 1975) the dominance of p y / h  over other contributors to the ij-field thus ensures 
that the circulation will eventually vanish on interior layers, for the contours of By 
intersect coastal boundaries in both the east and west. 

This trivial solution, $ = 0,  can be avoided if the geostrophic contours and stream- 
lines close upon themselves in the interior of the basin; however, in this case Q cannot 
be determined by lateral boundary conditions, and is in fact arbitrary within the 
context of an eddyless inviscid theory. It is in these regions, isolated from lateral 
boundaries, that we expect strong interior flows to develop. 

This expectation is reinforced when one considers mean-flow induction round closed 
geostrophic contours from the perspective of the averaged momentum equations. As 
Welander (1969) emphasized, flow driven round ‘free ’ (i.e. closed) contours is far more 
intense than flow in the presence of contours blocked by a rigid boundary. In  order 
that the interior geostrophic contours close, however, the forcing in the upper ocean 
must deform the density interfaces sufficiently to overcome the B-effect in the layers 
below. 

2. Formulation; separation of wind-driven and thermal ocean-circulations 
The full ocean-circulation problem encompasses the development of the density 

field from surface heating, cooling, evaporation and precipitation. The equations 
describe the simultaneous evolution of the density and flow fields. Important to this 
complete problem is the intersection of constant-density surfaces with the upper 
boundary. Free paths are thus created, along which the external atmospheric forcing 
can communicate deep into the interior. The disparate time scales of changes in gyre- 
scale velocity and density fields (decades and centuries respectively) suggest, however, 
that it is meaningful to consider the development of wind-driven circulation on an 
essentially prescribed basic thermocline stratification. This separation is automatically 
achieved by adopting the quasi-geostrophic equations in which the unperturbed 
density is a function of the vertical co-ordinate z, only. Implicit in this ideal is the 
condition that fluid particles in the wind-driven circulation should circulate about a 
gyre several or many times before escaping from it. A t  some time in their history they 
pass through the upper boundary layer, where their density and potential vorticity 
are rapidly changed by interaction with the atmosphere, or eddy dispersion may 
transport them laterally to another gyre or arm of the circulation. But their residence 
time in the recirculating interior of a single gyre is long enough for lateral eddy 
q-transport gradually to alter their potential vorticity and so to establish a mean flow 
whose structure reflects the mean-field effects of eddies, rather than the source dis- 
tribution of the upper mixed layer. 

The simplicity of classical wind-driven ocean circulation theory is related to the 
apparent independence of the vertically integrated velocity from the density stratifi- 
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cation and from the vertical structure of the velocity. If the driving wind-stress is 7 ,  

the linearized vorticity equation (1.1) 

pv =faiii/az 

gives 

where (u, v ,  w) is the velocity vector, and (x, y ,  z )  are (eastward, northward, upward) 
Cartesian /3-plane co-ordinates. The interior is'driven by vertical velocity wo = V x T/ 
pof  a t  the base of the upper Ekman boundary layer. Under the assumption that iZ 
vanishes at some depth &'the net transport IVdz  is a known function of wind-stress. 
Observations (Leetma, Niiler & Stommel 1977) and numerical models (e.g. Holland 
& Rhhes 1980) indeed suggest that with sufficient time- and space-averaging this 
'Sverdrup balance' roughly holds in open ocean regions, far from western boundary 
currents. But theory is needed to calculate the vertical structure of fi, and to justify 
the existence of a depth of vanishing W. That theory is the principal application of 
the idem given here. 

Equations. We use the quasi-geostrophic equations familiar in synoptic meteorology 
and 'mesoscale ' oceanography, in which rotation and buoyancy are significant, 

(2.1) 
Dq - = forcing + dissipation, 
Dt 

where, in terms of the geostrophic stream function, 

Here u = 2 x V$, 2 being a vertical unit vector and $ is proportional to the pressure. 
The P-plane approximation is taken. In  terms of $ one has 

where 0% is the horizontal Laplacian and N the buoyancy frequency. This expression 
for q is e,quivalent to that given in the footnote above. 

We will be primarily concerned with the interaction between the mean flow, charac- 
terized by velocity and horizontal length scales U and L, and mesoscale eddies, 
characterized by U' and L'. These scales are used to define non-dimensional variables, 
denoted temporarily by *, 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

82
00

22
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112082002250


352 P. B. Rhinesand W .  R.  Young 

where 

No = typical value of the buoyancy frequency in the wind-driven gyre. 

The vertical scale above was chosen to ensure that the vortex-stretching term and the 
B-effect have equal strengths. For a large-scale flow, away from western boundary 
layers, the non-dimensional parameter a//3z2 multiplying the relative vorticity is 
very small (a  N 1 cm s-l, /3 N 10-13 cm-l s-l, N 1Oe cm, so a//312 N 10-3). Thus in 
the interior of a wind-driven gyre one expects the relative vorticity to be negligible 
in comparison with the B-effect and vortex stretching. It is this approximation which 
ensures that horizontal momentum flux due to eddy stresses in the mean momentum 
equation is principally vertical (see $3.4 for further discussion). 

For statistically steady flows driven externally by wind or buoyancy sources we 
write the time-average of (2.1) (non-dimensionalized) : 

where 
q* = &(x, z) +q;(x, z, t ) ,  y2* = $* + y2.5, ..., 2F* = q;, S? is the buoyancy flux by 
deep convection or small-scale processes (including density diffusion), 9 is the dissipa- 
tion of potential vorticity by small-scale processes other than geostrophic eddies (e.g. 
internal waves), E = U'L'/DE, v is the scale estimate of B/BU, p = 1/H/3a,  wo is the 
vertical velocity ( x f o / p U )  produced by wind-stress curl at the baseof the Ekmanlayer, 
and S(z )  is the delta-function. The boundary conditions for insulating level upper and 
lower boundaries are 

ay2 g(ay2) = 0 ( z =  0, - H ) ,  and -= a8 0 Dt 

on a free-slip lateral boundary (s being the displacement along the boundary), a$-/& 
is proportional to perturbation density. Note the wind-stress forcing at the upper 
boundary has been shown explicitly on the right-hand side of (2.3) using the mathe- 
matical artifice of a delta-function. 

The equations allow significant interaction of the upper boundary with the deep 
interior only by vortex stretching, but not by advection from the surface. A necessary 
condition for their validity is L / a  < 1, where L is the lateral scale of a gyre streamline 
and a is the Earth's radius. It is just to this same degree that the mid-latitude ,&plane 
is valid. Extension of the result to gyres of fully planetary breadth is straightforward 
so long as the contact of fluid with the upper and lower boundaries is infrequent in the 
sense described above. Further discussion of the density boundary condition is given 
by Rhines & Young (1982). 

3. The integral constraint 

In  analysing a particular ocean-circulation model Holland & Rhines (1980) found it 
useful to study the vorticity balance integrated over an area bounded by a time- 
averaged streamline. In  the uppermost layer, the circulation of the wind-stress, 
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pofo II w,dx dy = f o . dl, was balanced by a combination of lateral momentum flux by 
eddies (to adjacent gyre streamlines) and downward momentum flux, which drove a 
deep circulation. In the deep layer the effect of this downward eddy flux was balanced 
principally by bottom friction. The procedure is analogous to zonal averaging in 
simplified atmospheric ' channel ' models. 

Here we use a similar integral balance to prove that, ifgyres exist, (defined by curves 
or i j  = const being closed upon themselves) then i j  rnwrt in many cases be uniform 

within the gyres. There is an abrupt jump to the external q-field aa one passes through 
the boundary of the wind gyre. If the exterior is a t  rest, this external field is just the 
'ramp', q = /3y (see figure 3b). 

We give three separate derivations ($5 3.1-3.3) of this result in order to distinguish 
necessary assumptions from those made for convenience. The first derivation closely 
parallels the argument given by Batchelor (1956); on a first reading i t  may be clearest 
to focus on this section and then move on to the remarks on vertical friction ($3.4) 
and atmospheric dynamics ( $ 3.6). 

3.1. Proof based on integrals round streamlines 
The assumptions made in the following derivation are: 

(i) The right-hand side of (2.3) is small, i.e. z c 0 and E, v,p 4 1. Thus as a first 
approximation the mean flow is dissipationless, and q and T contours are almost 
coincident &s in (1.2). 

(ii) The eddy-flux divergence has intermediate strength, i.e. based on the magni- 
tudes of typical individual terms 

a 
J(g , i j )  s V . 9  % ~9, ,U%(FV.H).  

This includes assumption (i); the second inequality implies that the eddies are stronger 
than the process subsumed in $3 and .%? such as internal waves, penetrative convection, 
etc. Equation (3.1) suggests that the solution of (2.3) can be obtained as a perturbation 
expansion 

where the first term in the expansion is (1.2). 
(iii) The eddy flux of potential vorticity can be approximated by 

where eddy-particle excursion 
= length scale of mean flow 4 1, 

K ~ ,  = Lagrangian diffusivity of fluid particles 

= the ensemble average (uix,>, where xi and ui are 

the displacement and velocity of a particle. 

The expression (3.3) has been discussed in detail elsewhere (Rhines 1977; Rhines & 
Holland 1979). 

(iv) The symmetric part of K ~ ~ ,  

Sij = + ( K i j + K j i ) ,  (3.4) 
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is positive-definite, i.e. Sijaiaj > 0, (3.5) 
for a11 non-zero vectors ai, everywhere in the flow. Note that the above is guaranteed 
if Si j  = A(x)  aij. In general, however, the condition is 

S n S 2 2  > &. 
This condition on the symmetric part of Kij is related to the assertion that in a turbulent 
fluid a particle ensemble expands about its centre of mass, rather than contracts. Since 

aq aq 
= - sij- - 

ax, axj 

(3.5) amounts to an assertion that the eddy flux of potential vorticity is downgradient 
everywhere. It will become apparent in the course of the derivation below that this 
last assumption is stronger than necessary; we will only require that (3.5) apply in an 
integrated sense. 

Begin by integrating (2.3) over the area enclosed by a $-contour. This area will be 
denoted by A ,  and its boundary by Be. The large advective term on the left-hand 
side vanishes identically leaving an integral balance between eddies, dissipation and 
heating : 

-e$  B,  S . i i d l + v / / A $ g d 2 a + p c j  B,  (F*)*.fidl = 0 (3.7) 

(we take z += 0, so there is no contribution from the Ekman pumping wo(x, y)). A is a 
unit vector normal to B, in the horizontal plane. Note that (3.7) is an exact result, 
not relying on assumptions (i)-(iv) above. It shows that the net potential vorticity 
flux across a closed mean streamline vanishes to O(v/s,p/s). 

Now from (3.1) and (3.3), (3.7) reduces to 

and substituting the perturbation expansion (3.2) into the above, together with 

gives 

Assumption (iv) then ensures that the line integral is non-zero, so that to leading 
order the potential vorticity is uniform. It is clear from (3.8) that (3.5) is stronger than 
necessary; Sij need only be positive-definite in the integrated sense required by 
assuming that the line integral in (3.8) is non-zero. Since this notion is rather ill- 
defined we thought it best to make the strong assumption (3.5) from the outset. 

This result provides a starting point for a theory of the general circulation (Rhines 
& Young 1982), driven by r and X. It is evident that one feature of the circulation 
will be the occurrence of discontinuities in q,  for homogenization in gyres is so at odds 
with the 8-gradient that must appear in resting fluid. 
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3.2. Proof based on integrals round geostrophic contours 

The assumptions made in the derivation below are as follows. 
(i) Closed geostrophic contours (i.e. q-contours) exist. This is not obvious a priori; 

as has been mentioned previously the p-effect tends to prevent the closure of geostro- 
phic contours, There are other more subtle processes which can prevent the closure of 
geostrophic contours. Suppose for example that the eddies are very strong in (2.3) so 
that e 8 1 and all the other terms are O( 1)  or less. Suppose furthermore that K ~ ,  = ASij, 
where A is constant, so that 

and consequently (2.3) reduces to 
AV2q N 0 .  

Hence, in this simplified strong-eddy limit, q is harmonic and so can have no interior 
extrema. Consequently no closed q contours exist. 

(ii) The eddy-flux divergence is greater than the other terms on the right-hand side 
of (2.3) i.e. e 8 p, v and x < 0. 

(iii) and (iv) These are the same as assumptions (iii) and (iv) of the previous deriva- 
tion, that the turbulent flux of q is diffusive in nature. 

The strongest difference between the proof in 3.1 and that here is in assumption 
(i); in this proof the weak-eddy assumption, which is necessary for the validity of 
(1.2), is not made. The new assumption is itself restrictive, but this version of the 
theory has some value. For example, in a numerical or field experiment, one has 
knowledge of the q-field, which at large scale is simply fp,/p. 

The proof is now almost identical to that in 53.1. Integrate (2.3) over the area 
enclosed by q-contour to obtain 

s . f i d l + v / / A q g d 2 a + , u $  ( F x ) , . f i d l =  0, (3.9) -€f, B!? 

where A, denotes the area enclosed by the contour and B, the bounding curve. As in 
(3.7) the large advective term has vanished identically leaving an integral balance. 
Once again (3.9) is exact, provided the area of integration exists ! Now assumption 
fii) reduces (3.9) to 

(j B s.fiaz=o(y). (3.10) 

Assumption (iii) and .Fz = Vij/lVijl can be used to rewrite the above as 

It then follows from assumption (iv) that 

pql = O ( q E , , u / 4  < 1 ,  

i.e. ij is uniform to order (vE/e ,pE/s ) ,  where E is the horizontal length scale of the 
mean flow. 
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3.3. Proof based on the enstrophy balance within a streamline 

This third derivation of the potential-vorticity homogenization result is presented to 
show that one can avoid introducing the flux-gradient relation (3.3) as an intermediate 
step. Not surprisingly we shall find that the arguments and assumptions are similar 
to those used by Rhines (1977) and Rhines & Holland (1979) to justify (3.3) in the 
first place. They highlight the connection between the enstrophy cascade, systematic 
transport of q by eddies, and homogenization of ij. 

The assumptions made in the derivation below are as follows. 
(i) Once again we assume that the eddy-flux divergence in (2.3) has intermediate 

a strength: 
ii.Vq s V . 9  & ~ 9 ,  p - , ( F V . X ) .  

Thus the perturbation expansion (3.2) is appropriate, and (3.7) reduces to 

u ' q ' . i i d l =  0 - < 1 fB*- (Y) (3.11) 

(ii) The second assumption concerns the balance of terms in the eddy enstrophy 
(q'2) equation. This result is derived from the fluctuation potential-vorticity equation 

q~+ii .Vq'+U'.Vij+V.{u'q'-U'q'} = A', (3.12) 

where A' subsumes all the small-scale processes that dissipate enstrophy and so provide 
the end-point of the enstrophy cascade. (Equation (3.12) is obtained by subtracting 
(2.3) from (2.1).) If (3.12) is multiplied by qf  and averaged one obtains the enstrophy 

(3.13) equation ii . V & f 2  + u'q' .Vq + V . U'&f2 = A'qf,  

where we have assumed that the turbulence is statistically stationary so that 
a(+q'2)/at = 0. We further assume that the third term in (3.13) is negligible compared 
with the other three. Rhines (1977) and Rhines & Holland (1979) have argued that 
the circumstances in which this is valid are the same as those that justify (3.3), viz 
scale separation between the mean flow and eddy-induced particle excursions. 

- -  - -  

/ / A * a . v q d 2 a  = / / A y m d 2 a + O ( y ) ,  (3.14) 

where y is tile scale-separation parameter defined after (3.3). Integrate the fist term 
in (3.14) by parts: 

(3.15) 

Now both terms on the left-hand side of (3.15) are O ( u / s )  since 

f iju'q'.fidZ = &t$,z)f u'q'.fidZ (from (3.2)) 
BS BS 

= O(y), (from (3.11)) 

and if (2.3) is multiplied by and integrated over A,, then 

(3.16) 

(3.17) 
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Hence (3.15) implies 

For particular forms of A' such as 

A' = -6q' or hV2q' 

(3.18) allows us to conclude that 

q ' = O  - - , y  . (x ) 

(3.18) 

(3.19) 

(3.20) 

This, together with the observation that q' is created by displacing fluid particles 
across the mean potential vorticity gradient, implies that 

v q =  O ( ' ! , y ) .  
€ 8  

(3.21) 

When A' is not given by (3.19) (for example in many eddy-resolving general circulation 
models A' is proportional to V 4 f  or V e t )  one must argue that in an enstrophy cascade 
the average effect of small-scale dissipation A' is to remove enstrophy so that is 
positive-definite and proportional to q'. The results (3.20) and (3.21) then follow. 
Rhines & Holland (1979) discuss the circumstances in which is negative and 
conclude that these exceptions are rare. 

3.4. Some remarks on vertical-friction models 

In 5 1 we mentioned that when the mean flow is of large scale (more precisely when the 
relative vorticity does not contribute significantly to the mean potential vorticity 
field) the dominant mean effect of the quasi-geostrophic eddies in the mean momentum 
equation is vertical (rather than horizontal) transport of momentum. In this section 
we show the consequences of the familiar assumption that all mean effects of transient 
flows can be modelled by a simple viscosity acting on vertical gradients of velocity. Let 

Dii 
Dt - + L x  fii = -vp /po+(v i ie )e .  (3.22) 

In  the above ii is the mean horizontal velocity and v(z) is a kinematic vertical viscosity. 
The potential vorticity equation is obtained by taking the curl of (3.22) and then 
using the density equation (linearized about the mean stratification) to eliminate the 
vertical velocities. The result is 

J ( P ,  q )  = - v .  F, (3.23 a)  

where F = 2 x (viiJa, q = /3y + (PPz),, J' = f t / N e ( z ) .  (3.233, c, d )  

We are using the dimensional quasi-geostrophic equations; the relative vorticity has 
been neglected in ( 3 . 2 3 ~ )  using the scaling arguments of $2. The most important point 
to note is that the right-hand side of ( 3 . 2 3 ~ )  is not proportional to V% unless v is 
proportional to P. Thus a lateral eddy flux of potential vorticity corresponds to 
vertical viscosity with a particular z dependence, viz 

v(z)  oc P(z) oc N-2(2). (3.24) 

This choice of v(z) has implications for numerical modelling; it is to be preferred if one 
believes in (3.3). 
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Now suppose that the right-hand side of (3.23) is small, so that 

q = Q@:, z )  + W. (3.25) 

As in $83.1-3.3, if (3.23) is integrated over A ,  the large-left-hand side vanishes 
identically, leaving 

.F.fidZ = 0, (3 .26)  

1 have been made. 
fB@ 

f B* B* 

Once again (3 .26)  is an exact result; no assumptions such as v 
However, using (3 .23b)  and (3 .25) ,  (3 .26)  can be rewritten as 

.F.AdZ = f (v$),.dl (3 .27a)  

= 3, Fa,. dl + 3 (Fu,), . dl, (3.27 b )  f f 
where we have introduced 3(z)  defined by 

v(z) = P(z)D(z). (3 .28)  

Using iZxVij=/3iZ~f+(Ffi,),. (3 .29a)  

or 

from (3 .25) ,  one can put (3 .26)  and (3.27 b )  in the form 

(3 .29b)  

(3.30) 

If B* is a mid-latitude streamline, which does not enclose the North or South Pole, 
then the third term in (3 .30)  is zero. Hence if 3, $. 0 then the potential vorticity is not 
uniform : 

On the other hand, when 3, = 0, so that the vertical friction in (3.22) is analogous to 
that produced by eddy stresses and ( 3 . 2 3 ~ )  is 

J($,q) = v V ~ ,  
then the homogenization result is recovered. 

The observation above that vertical friction must be specially chosen in order to 
homogenize potential vorticity is important because i t  allows one to discriminate 
between processes. For instance, if it is observed t h a t  the potential vorticity is indeed 
uniform in some part of the ocean one could argue that this homogenization wm 
accomplished by lateral eddy flux of potential vorticity and not by some arbitrary 
vertical friction due to, say, internal waves. (Unless of course there was some reason 
for believing that vertical stress transmission by internal waves should be para- 
meterized as in (3 .24)  !) 

3.5. Atmospheric dynamics 
Surfaces of constant potential density in an atmosphere free of lateral boundaries will 
tend to expel potential vorticity gradients. The homogenized state will, however, be 
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reached only if interior sources (e.g. radiative and latent heating) of q lying inside B+ 
or BQ are sufficiently weak. Also, regions where isentropic surfaces intersect the ground 
must not lead to significant flux of q if the result is to hold.? 

The eddy flux of potential vorticity in (2.3) and the vertical friction in (3.22) may 
in this geometry lead to different mean circulations even when (3.24) is satisfied. Take 
the domain of integration to be the region north of a latitude y ,  on a constant potential 
density surface, still within the restrictions of the quasi-geostrophic equations. Then 
the argument in $3.1 applies when 9 = u'q', and so i j  becomes nearly uniform, say 
@/ay = O(v / s ) .  On the other hand if 9 is given by (3.233) and if we choose 9, = 0, 
then (3.30) becomes 

lB,Vij.fidl = -1 B.dl f 
= Sna/?sin (latitude), 

where a is the Earth's radius. If the circuit $ = constant coincides with a latitude 
circle this gives 

(3.31) 

It is the thickness h of an isopycnal layer rather than the potential vorticity that is 
uniform. 

Annular regions pose new problems. A popular idealization of the atmosphere is a 
re-entrant east-west running channel, with rigid walls at y = yo and y = yl. The 
circulation integrals have as their boundary circuits the contour II. plus the northern 
or southern boundary. For such a /?-plane channel with steady flow and vertical 
friction as in (3.22) with 3, = 0, (3.30) becomes 

v q .  A de = SS aq (2, y l )  dx. 
$4 

Suppose for simplicity that II. lies upon a latitude circle. Then q = q(y,  z) ,  and from 
the above 

(3.32) 

To close the problem we must say something about the potential-vorticity flux through 
the rigid wall. If the flow vanishes in the neighbourhood of y l ,  (aqlay) (2, y l )  = /? and 
we recover aq/@ = /?, as above. This is also the result iffor any reason S ( y l )  = 0. But 
of more interest to atmospheric dynamicists are unsteady flows. The eddy closure 
(3.3) leads to (3.32). Given that the zonal momentum balance is 

where h is the iopycnal-layer thickness, and H = A, steady 2-mean flows in a channel 
must obey @= 0 if mass-conservation forces 7G = 0. This says simply that there is 

t On the other hand homogenization is greatly enhanced by pardlel-flow geometry, for 
which (3.2) is automatically satisfied. In the idealized 'atmosphere' of McWilliams & Chow 
(1981), absence of mean streamline curvature leads to nearly perfect homogenization on 
interior density levels. 
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FIGURE 2. For caption see facing page. 
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FIQURE 2. The large-scale potential vorticity q, as computed from individual (i.e. not time- 
averaged) hydrographic observations of the North Atlantic Ocean. (a) At the shallowest potential 
density surface, ug = 26.3-26.5, the potential-vorticity gradient is strongly negative as one 
moves into the wind gyre; (b) ug = 26.6-27-0, the q-gradient is approximately the ambient 
value, B/A (plotted), south of 10 O N  latitude, but becomes much smaller than ,!? inaide the wind 
gyre; (c)  at a level near the base of the wind gyre, a, = 27-0-27.3, the q-gradient is greater than 
p, and positive. It is the density interval (b) in which the theory predicts the expulsion of 
q-gradients. Interval ( c )  is near the level of vanishing velocity, and represents the rim of the gyre, 
where the potential vorticity gradient is concentrated. Data from International Geophysical 
Year cruises analysed by S. McDowell, data from Montgomery (1938) indicated with crosses. 

nothing to balance the eddy force q'v', thus @/ay = O(v/e), as before. The homogen- 
ization of 4 in a channel flow is the most relevant result of this section. 

4. Field observations and numerical simulations 
This result emerged as a part of an analytical study of the general ocean circula- 

tion, which is presented in a succeeding paper (Rhines & Young 1982). The prediction 
V4 = 0 is in itself sufficiently interesting to stimulate us to look at data and computer 
models. 

North Atlantic Ocean. Mr Scott McDowell (see McDowell et al. 1982) kindly computed 
the large-scale potential vorticity for the North Atlantic from a selected set of sections 
(many from the 1958 International Geophysical Year). At scales much larger than 
the Rossby radius of deformation appropriate to the observed stratification q is 
approximated well by is the potential density. p in 
this approximation can be calculated from hydrographic observations alone. In figure 
2 we plot values for q along north-south lines that cut across the subtropical wind- 

-= f /h ,  or f(au,/az)/a,, where 
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driven gyre. The constant potential-density layers used for the calculations are 
go = 26-3-26.5, 26-5-27.0, and 27.0-27-3. The fist of these (figure 2a) is deepest in 
the gyre centre (about 400 m) where i t  is 130 m thick. It intersects the sea surface in 
the north-eastern part of the gyre. The second, deeper surface extends to 800 m depth 
in mid-gyre and has a typical thickness of 400 m. Its potential temperature ranges 
from 1lo  to 17 "C. The third, deepest surface lies below the dominant flow of the 
wind gyre, reaching to 1000 m in mid-gyre, with a thickness of about 200 m. 

The shallowest of the three layers intersects regions of direct atmospheric forcing 
(where winter cooling and evaporation cause deep convectmion in the 18" water forma- 
tion area at  the northern edge of the Sargasso Sea), and regions where boundary- 
current dissipation may be strong. The conditions for validity of the theorem are not 
met, and indeed there is a sharp decrease in (1' as one moves northward. The potential 
vorticity By/E appropriate to a resting ocean is plotted for comparison. 

In the intermediate-depth layer the conditions of the derivation are satisfied, and a 
large region of essentially uniform potential vorticity shows through the observation 
(and sampling) noise (see figure 2b). The northern and southern boundaries of the 
gyre are evident where large gradients of Q appear. These boundaries are well-docu- 
mented by other markers like salinity, dissolved oxygen, tritium, and by velocity 
measurements. The I.G.Y. data agrees well with that of Montgomery (1938). The most 
misleading part of the plot occurs in the Gulf Stream, which forms the northern border 
of the gyre. There the relative vorticity forms an important part of q, which may be 
far more uniform across the Stream than the Q-sections suggest. 

The deepest of the three levels is at the base of the wind-driven gyre. As expected, 
strong gradients of Q appear. These north-south profiles of Q correspond simply to the 
geometry of the isopycnal surfaces sketched in figure 1. The dish-shaped depression of 
the surfaces decreases at  greater depth, and the dips are shifted poleward. This amounts 
to a thickening of isopycnal layers as one moves northward. The thickening cancels 
By in the expression for q, over a large range of depths. Below these levels the gradient 
of q must be made up, and is thus doubly strong. Above the homogenized layers the 
northward thickening of the layers overcompensated p, presumably because of sources 
and sinks of potential vorticity at shallow levels within gyre contours. 

The strong potential vorticity gradients a t  the base of the gyre make the map of Q, 
and hence the flow direction, particularly well-defined at these levels. But, ironically, 
it is just these levels where the theory suggests the flow is becoming weak and indistinct. 
The circulation a t  these great depths is more readily driven by direct forcing, for 
example by buoyancy sources and diffusion. The character of a non-diffusive thermo- 
haline circulation in the deep water should require 'tongues ' of q aligned with the flow, 
rather than the completely homogenized q of the wind gyres. 

In a series of papers (e.g. Stommel & Schott 1977; Behringer & Stommel 1980) the 
Q-field in a 10" triangle in the eastern North Atlantic has been explored intensively. 
This amounts to a local analysis of the function q($, 2). The object was to infer the 
flow direction from the strike of the geostrophic contours, and hence to find the 
constant of integration in the determination of velocity from density observations. 
In agreement with McDowell's computations, the layer at 600-800 m depth has well- 
defined @contours, and the layer above 450 m depth has unresolved, small gradients 
of q. As we infer above the vector velocity vanishes roughly at  750 m depth, in the 
heart of the strong q-gradient. 
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Numerical models: subtropical wind gyre. Few numerical simulations of the ocean 
have operated in the weakly diffusive parameter range appropriate to the theory (and, 
perhaps, to the oceans). Islands and plateaux of q develop most clearly a t  levels out 
of reach of the direct influence of the wind and above the direct influence of the 
bottom frictional layer. A two-layer model fails to harbour any level at which the 
theory applies accurately. Nevertheless, the expulsion effect is sufficiently strong that 
in the simulation discussed by Holland & Rhines (1980) regions of quasi-uniform ij 
appeared in both layers. Coincident with the development of this theory, Holland has 
produced a new three-layer 4000 x 4000 km model of the wind-driven circulation. In  
the crucial interior layer both ij and the instantaneous q vanish in a region 4000 x 
3000 km in extent (figure 3). The homogenized region coincides with the pair of wind- 
driven gyres which are antisymmetric about the middle latitude of the basin. It is 
interesting that the western boundary currents and the intense free jet that flows 
eastward along the line of symmetry are completely invisible in the q-field. The 
expulsion of q-gradients has been this complete. North-south sections of ij in each of 
the three layers resemble the North Atlantic data shown in figure 2. 

The argument leading to (3.24) suggests that, if eddies are neglected in a coarsely 
resolved numerical simulation, a vertical Navier-Stokes friction v(z) proportional to 
buoyancy N2 will reproduce some of their effect on the mean state. 

Wind-driven zonally oriented channel. McWilliams & Chow (1981) have recently 
addled an interior layer to their comprehensive model of turbulent /I-plane channel 
flows (McWilliams, Holland & Chow 1978). In  this new interior layer the time- and 
zonally averaged potential vorticity is uniform to within a few parts per thousand. 
This suggest’s that eddies indeed act more like a down-gradient lateral diffusion of q 
(3.3), in appropriate circumstances, than a down-gradient vertical momentum 
diffusion (3.233). 

Once expulsion has occurred to this degree, the homogenized layers are ‘slaved’ to 
the ‘outer’ layers, in which q is not uniform. The entire flow, that is, may be found 
from the q-field in the outer layers alone. This suggests that further numerical com- 
putation might be simplified by exploiting the reduction in degrees of freedom. 

5. Concluding remarks 
We have suggested that planetary gyres driven remotely (i.e. across surfaces of 

constant potential density rather than along them) tend, firstly, to involve flow nearly 
along geostrophic contours in regions of weak eddies, and, secondly, to expel gradients 
of potential vorticity to the outer edges of the gyres. It is in this manner that the 
otherwise dominant effect of planetary sphericity (the /I-effect) is defeated and north- 
south excursions of fluid particles are made possible. The depth range of the wind- 
driven ocean gyres is obviously limited by the necessity that the flow ‘burrow Out’ 
plateaux of uniform q; the extent will depend on the strength of the wind stress. This 
is the topic of the succeeding theory (Rhines & Young 1982). 

The rate a t  which expulsion occurs is important, for this effect must compete with 
others in determination of &(@). In a paper in preparation we show that the fast initial 
phase of expulsion relies on the process known as shear dispersion, which replaces 
initial values of q by their (generalized) average about a closed streamline. This phase 
requires more than the circulation time L / U  (where L is the scale of the flow), yet less 
than the diffusion time L ~ / K .  For steady flow with small K ~ U L  this time is of order 
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FIGURE 3. For caption see facing page. 
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(C) 

FIGURE 3. The potential-vorticity field from a numerical simulation of the wind-driven circula- 
tion by W. Holland. This is the intermediate layer (300-1000 m depth) of the 5000 m x 4000 km 
x 4000 km basin. Resolution of the grid is 20 l m ,  with three layers in the vertical. Driving is by 
a steady east-west wind stress exerted on the uppermost layer. The simulation develops a pair 
of wind gyres antisymmetric about the middle latitude, plus violent eddy activity. Intense 
western boundary currents occur with a free jet along the middle latitude of the basin. The 
time-averaged potential vorticity (a) is nearly uniform in the domain of the circulation gyres, in 
accord with the theory. Outside the gyres the planetary gradient of ij is visible. (b) A perspective 
view of the q-field. (c) The instantaneous q-field shows nearly perfect homogenization, within the 
pair of gyres. At the edges the level of eddy activity is clear, with q-contours being wound up in 
the enstrophy c,ascade. Occasional wisps of anomalous p are swept along the west,ern boundary 
and ejected into the middle of the domain, where they are rapidly dissipated. 

(L/ U )  ( UL/K)+.  The second, slow phase of expulsion is entirely diffusive, with any 
residual variation of q across streamlines disappearing over a time - L2/K. The case 
of solid-body rotation is special: there is no shear-augmented dispersion and the entire 
process requires the long diffusive time - L 2 / ~ .  

The theory given here does not fully come to grips with western boundary current 
dynamics, in which the dissipation may be large. Treatment of this area is in progress. 
It is clear that, given sufficiently slippery lateral boundaries, the homogenized gyres 
can still exist.? Both the oceanic observations and the numerical simulations described 
above support the picture of gyres in which interior layers circulate without great 

t The subtlety of the boundary effects must be emphasized. Current numerical models using 
‘high-order’ friction (a term Ve@ in the vorticity equation) require additional boundary condi- 
tions, beyond just the vanishing of velocity at a rigid wall, or vanishing normal velocity and 
stress at a ‘slippery’ wall, The additional conditions chosen will d e c t  the flux of potential 
vorticity through the wall, and hence the degree of homogenization of gyres. 
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change of their potential vorticity, even in boundary currents. The contrast with one’s 
intuition based on homogeneous fluid models of the circulation is great. There, large 
changes in q are caused by passage of fluid through a dissipative Gulf Stream boundary 
current, changes which are removed by the wind-stress curl in mid-ocean. Dissipation 
of q is necessary in all cases, but in the present model this can occur in the exterior 
density surfaces. The boundary current occurs in interior levels not by necessity of 
dissipation, but merely to mimic the ?j and eddy-stress patterns imposed upon them 
from the exterior layer, above. 

The Lagrangian history of fluid particles will be an important diagnostic tool for 
these dynamics. Fluid particles diverge from Eulerian-mean streamlines by the 
process of eddy dispersion (the very quantity described by K ~ ,  in (3.3)). Stirring and 
eventual mixing by molecular effects causes the fluid eventually to depart from surfaces 
of constant potential density and potential vorticity. The present theory assumes that 
this migration process is slow relative to the circulatory nature of the gyres (that is, 
the pitch of the ‘helical’ particle paths is tight), and that horizontal scattering of 
particles from one gyre to the next is gradual. The potential vorticity balance following 
particles should be simple, indeed, in homogenized gyres. Not only is the time-average 
of q uniform, but so too is the instantaneous field of q, by virtue of the transport 
argument ! 

The near vanishing of eddy flux of q that this implies leads to an apparent paradox 
for studies of the maintenance of the circulation. One might wrongly regard the effect 
of eddies to be weak, though they entirely determine the circulation. It is very like a 
turbulent Couette flow in which the Reynolds stress actively transports momentum 
yet the transport is non-divergent. The situation amounts to a singular limit of 
formulas relating the mean flow to eddy activity. For example Rhines (1977) and 
Yamagata (1981) give U = - p / V i j  for a homogeneous-density geostrophic flow with 
bottom friction. When homogenization of p occurs, both numerator and denom- 
inator Vtj vanish. 

Our de-emphasis of the atmosphere stems from lack of appropriate observational 
data. In large regions internal thermal sources and sinks are active, and the theory 
will not apply there. Computations of the appropriate Ertel potential vorticity are 
under way by Held, Lau and Wallace, and their results are awaited with interest. 
Rossby (1947) indeed suggested that the circulation poleward of the jet stream was 
sufficiently stirred to make the vertically integrated potential vorticity uniform. 

The authors are grateful to S. McDowell for computing the North Atlantic potential 
vorticity, which will appear in more detail in his Ph.D. dissertation. Drs Holland and 
McWilliams kindly made available their computer simulations before publication. We 
thank the referees for comments on presentation, and, equally, Mary Ann Lucas for 
accommodating the many changes. This work was supported by the National Science 
Foundation, POLYMODE grant OCE 78-25692 and OCE 75-21674, by the John 
Simon Guggenheim Foundation, and by Christ’s College, Cambridge. The hospitality 
of the Department of Applied Mathematics and Theoretical Physics at Cambridge is 
gratefully acknowledged. This is contribution number 4848 of the Woods Hole 
Oceanographic Institution. 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

82
00

22
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112082002250


Homogenization of potential vorticity in planetary gyres 367 

REFERENCES 

ANDERSON, D. & GILL, A. E. 1975 Spin-up of a stratified ocean with application to upwelling. 

BATCHELOR, 0. K. 1956 Steady laminar flow with closed streamlines a t  large Reynolds num- 

BEHRINUER, D. & STOMMEL, H. 1980 The p-spiral in the North Atlantic subtropical gyre. 

BENNEY, D. & BERUERON, R. 1969 A new class of nonlinear waves in parallel flows. Stud. Apple 

DAVIS, R. E. 1969 On the high Reynolds number flow over a wavy boundary. J .  Fluid Mech. 

GRIMSHAW, R. 1969 On steady mcirculating flows. J .  Fluid Mech. 39, 695-703. 
HOLLAND, W. R. & RHINES, P. B. 1980 An example of eddy-induced circulation. J .  phY8. 

Oceanogr. 10, 1010-1031. 
INUERSOLL, A. P. 1969 Inertial Taylor columns and Jupiter's great red spot. J. Atmoe. Sci. 26, 

744-752. 
LEETMA, A., NIILER? P. P. & STOMMEL, H. 1977 Does the Sverdrup relation account for the 

Mid-Atlantic circulation? J. Mar. Res. 35, 1-10. 
XCDOWELL, S., RHINES, P. B. & KEFFER, T. 1982 North Atlantic potential vorticity and its 

relation to the general circulation. J. Phys. Oceanogr. (in the press). 
MCWILLIAMS, J. C. & CHOW, J. H. S. 1981 Equilibrium geostrophic turbulence. I. A reference 

solution in a 8-plane channel. J. Phye. Oceanogr. 11, 921-949. 
MCWILLIAMS, J., HOLLAND, W. R. & CHOW, J. H. S. 1978 A description of numerical Antarctic 

circumpolar currents. Dyn. Atmos. Oceam 2, 213-291. 
MOFFATT, H. K. 1978 Magnetic Field Generation in  Electrkdly Conducting Fluids. Cambridge 

University Press. 
MONTQOMERY, R. B. 1938 Circulation in upper layers of southern North Atlantic deduced with 

use of isentropic analysis. Pap. Phye. Oceanogr. Meteorol. W.H.O.I./M.I.T. 
PROCTOR, M. R. E. 1975 Nonlinear mean-field dynamo models and related topics. Ph.D. thesis, 

Cambridge Univezsity. 
REDEKOPP, L. 1980 Solitary Rossby waves with critical layers. Geophyeical Fluid Dynamice 

Lectures, Woods Hole Oceanographic Inetitution, pp. 55-72. 
RHINES, P. B. 1977 The dynamics of unsteady currents. In  The Sea, vol. VI (ed. E. Goldberg), 

pp. 189-318. Wiley. 
RHINES, P. B. & HOLLAND, W. R. 1979 A theoretical discussion of eddy-induced circulation. 

Dyn. Atmoe. Oceans 3, 285-325. 
RHINES, P. B. & YOUNQ, W. R. 1982 A theory of wind-driven ocean circulation. J .  Mar. Ree. 

(in the press). 
ROOTH, C., STOMMEL, H. M. & VERONIS, G. 1978 On motion in steady layered geostrophic 

models. J. Oceanog. SOC. Japan 34, 265-267. 
ROSSBY, C. G. 1947 On the distribution of angular velocity in gaseous envelopes under the 

influence of large-scale horizontal mixing processes. Bull. Am. Met. Soc. 28, 63-68. 
STOMMEL, H. & SCHOTT, F. 1977 The )6-spira1 and the determination of the absolute velocity 

field from hydrographic station data. Deep-sea Res. 24, 325-329. 
WEISS, N. 0. 1966 The expulsion of magnetic fluxing eddies. Proc. R. SOC. Lond. A 293, 

310-328. 
WELANDER, P. 1969 Effects of planetary topography on deep-sea circulation. Deep-sea Res. 

Suppl. 16, 369-391. 
YAB~AQATA, T. 1981 On a steady mean flow in a generalized closed geostrophic contour - a 

generalization of Prandtl-Batchelor theorem. J. Met. Soc. Japan (in the press). 

Deep-sea Rea. 22, 583-596. 

bers. J. Fluid Mech. 1, 177-190. 

Deep-sea Ree. 27, 225-238. 

Math. 48, 181-204. 

36, 337-351. 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

82
00

22
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112082002250

