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Lecture 1

Making approximations

The long-term goal of this class (SIO203C/MAE294C) is to teach you how to obtain approxi-
mate solutions to applied-mathematical problems that can’t be solved “exactly”. These solu-
tions are obtained by considering limiting cases as some parameter becomes large or small. In
the most interesting cases this limit is degenerate i.e. the obvious answer is zero or infinity. As
example of infinity, say something “useful” about n! as n→ ∞. As an example of zero,

A less ambitious goal of this introductory lecture is convince you that even problems with
“exact solutions” are often best understood by ignoring the exact solution and looking at ap-
proximations. In this lecture I’ll talk in general terms about approximations and use some
historical examples as illustrations. This involves some revision (I hope it’s revision) of dimen-
sional analysis and scaling.

1.1 Distance to the horizon

Start with a typical example: suppose you’re standing on the deck of a ship and looking out into
the distance. How far is the horizon? To estimate the distance to the horizon we approximate
the Earth as perfect sphere with radius R = 6 371km and suppose that the height of your eyes
above sea level is h = 10m. The unknown distance to the horizon is d. The answer to this
question has the form

d = f1(R, h) , (1.1)

where f1 is an unknown function with two arguments; f1 has dimensions of length.
It is the third quarter of your graduate career and I’m sure that by now you’ve seen several

discussion of dimensional analysis. So you will not be surprised by the claim that the answer
is simpler than (1.1) – it must have the form

d

R
= f2(ϵ) , (1.2)

where

ϵ
def
=

h

R
(1.3)

is a dimensionless parameter. In (1.3) f2 is an unknown dimensionless function with one
argument. It is also clear that f2(0) = 0. The function f2 is much simpler than f1 and so we
have already made substantial progress.

Exercise: Dr. Kluge protests that
d

h
= f3 (ϵ) (1.4)
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is perfectly acceptable on dimensional grounds. Explain why Kluge’s objection is captious.

With R and h above
ϵ ≈ 1.57 × 10−6 ≪ 1 . (1.5)

In these lectures ϵ will almost invariably denote a small dimensionless parameter and ≈ means
approximate equality. (Sometimes ϵ is negative, or even complex; it is |ϵ| that is small.)

Some Pythagorean geometry shows that

d =
√

2Rh+ h2︸ ︷︷ ︸
f1(h,R)

. (1.6)

This is an exact solution for d. But I prefer the approximation obtained by neglecting h2

relative to 2hR so that
d ≈

√
2Rh . (1.7)

Plugging the numbers into (1.7) one finds that d ≈ 11.29km.
Let’s return to the step between (1.6) and (1.7). We can re-write (1.6) in dimensionless

variables as
d

R
=
√

2ϵ+ ϵ2︸ ︷︷ ︸
f2(ϵ)

. (1.8)

To obtain (1.7), neglect ϵ2 relative to ϵ so that

d

R
≈

√
2ϵ . (1.9)

We’ll dwell further on the relative magnitudes of ϵ and ϵ2 later in this lecture. The main point
is that it is easier to see and understand the approximation in the non-dimensional formulation
(1.8) than in the equivalent dimensional formulation (1.6).

Discussion: Why might we prefer the approximation (1.7) to the exact result (1.6)? Suppose you launch a
drone so that you see the horizon from a height of 100m. It is obvious from (1.7) that the horizon is now
about

√
10× 11.3km away. In other words, the approximation is easier to use than the exact result. The

Earth is not a perfect sphere: according to Wiki, distances from points on the surface of the Earth to
the center vary between the polar radius 6 357km and the maximum equatorial radius 6 378km – perhaps
this complication is more important than the difference between (1.6) and (1.7)? And of course the ocean
is not flat: the actual horizon will be perturbed by surface gravity waves and geostrophic currents. And
because of atmospheric refraction, light does not travel in straight lines. The order-ϵ2 term we have
neglected is probably far less important than these other complications. What is clear is that if want to
improve on our first estimate in (1.7) we must consider a better model than a smooth sphere and contend
with additional physics such as atmospheric refraction. These complications introduce additional small
parameters of their own. This is a typical perturbation problem.

1.2 Regular perturbation series

Physical problems often devolve to analysis of limits (ϵ→ 0 in the horizon example). Simplifi-
cation occurs in the limit. Simplification can occur in three or four different ways. The example
above is an easy case in which we simply neglect ϵ2 relative to ϵ. Problems like this lead to a
regular perturbation series (RPS).
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An improved approximation

To systematically improve on the leading-order approximation in (1.9) we write

d

R
=

√
2ϵ
(
1 + ϵ

2

)1/2
(1.10)

and recall the Taylor series

(1 + x)n = 1 + nx+ 1
2n(n− 1)x2 + O

(
x3
)
. (1.11)

Putting n = 1/2 and x = ϵ/2 in this result we improve (1.9) to

d

R
=

√
2ϵ
(

1 + ϵ
4 − ϵ2

32 + O(ϵ3)
)
. (1.12)

Exercise: What is the radius of convergence of the series in (1.12)?

Notation O(): You should take O(x3) in (1.11) as meaning: “There are terms involving x3, and also even
smaller stuff varying like x4, x5 and so on. We know these terms are there but we can’t be bothered
calculating them.” This is not the official definition of O() – we’ll get to that eventually.

As an introductory example of a regular perturbation series (RPS) let’s suppose we don’t
know the Taylor series (1.11). We proceed from scratch. Let

x =
(
1 + ϵ

2

)1/2
so that x2 = 1 + ϵ

2 . (1.13)

With ϵ = 0 we know that x = ±1. We expect that if ϵ≪ 1 then x is close to either +1 or −1.
We’re inspired to look for a solution of the quasi-obvious form

x = x0 + ϵx1 + ϵ2x2 + · · · (1.14)

where x0 = ±1. With some algebra

x2 = x20 + ϵ2x0x1 + ϵ2(2x0x2 + x21) + ϵ3(2x3x2 + 2x1x2) +O(ϵ4) . (1.15)

Exercise: Do you see the pattern? What is the order ϵ4 term in (1.15)?

Substituting (1.15) into (1.13) and equating terms at the same order in ϵ we have

ϵ0 : x20 = 1 , ⇒ x0 = ±1 , (1.16)

ϵ1 : 2x0x1 = 1
2 , ⇒ x1 = 1

4x0
= ±1

4 , (1.17)

ϵ3 : 2x0x2 + x21 = 0 , ⇒ x2 = − x21
2x0

= ∓ 1
32 . (1.18)

This essentially the method of undetermined coefficients. It works provided that we start with
the correct form for the answer in (1.14).

A more challenging example

You’re probably not very impressed by the previous example. Let’s consider a more challenging
example: find the ϵ≪ 1 solutions of

xe−x = ϵ . (1.19)

See figure 1.1 for a graphical visualization of the problem. There is a small root that approaches
zero as ϵ→ 0. there is also a large root that goes to infinity as ϵ→ 0. If we put ϵ = 0 in (1.19)
then we have the exact solution x = 0. The large root has disappeared.
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Figure 1.1: Graphical determination of the ϵ≪ 1 solutions of (1.19).

We can determine the small root by substituting an RPS,

x = ϵx1 + ϵ2x2 +O
(
ϵ3
)
, (1.20)

into (1.19). Let’s agree to discard terms of order ϵ3. Then

exp(−ϵx1 − ϵ2x2 +O
(
ϵ3
)
) = 1 −

[
ϵx1 + ϵ2x2 +O

(
ϵ3
) ]

+ 1
2

[
ϵx1 +O

(
ϵ2
) ]2

+O
(
ϵ3
)
, (1.21)

= 1 − ϵx1 + ϵ2
(
1
2x

2
1 − x2

)
+O

(
ϵ3
)
, (1.22)

and

xe−x =
[
ϵx1 + ϵ2x2 +O(ϵ3)

]
×
[
1 − ϵx1 + ϵ2

(
1
2x

2
1 − x2

)
+O(ϵ3)

]
, (1.23)

= ϵx1 + ϵ2(x2 − x21) +O(ϵ3) . (1.24)

It is irritating that we did unnecessary work back in (1.22) – we could have discarded the
order-ϵ2 term and maintained ϵ2-accuracy in (1.24).

Substituting (1.24) into (1.19) and matching powers of ϵ we find

x1 = 1 , and x2 = x21 = 1 . (1.25)

Hence the small root is determined by the RPS

x = ϵ+ ϵ2 +O
(
ϵ3
)
. (1.26)

Turning to the large root in figure 1.1 we have a much more difficult problem. The depen-
dence of ϵ of this root is not obvious. This is an example of a singular perturbation problem:
setting ϵ = 0 makes a structural change in (1.19) – there is a single root x = 0. But if we take
the limit ϵ → 0 then there is always a big root. Perhaps this big root goes off to infinity like
ϵ−1, or ϵ?. We’ll return to this question in the next lecture.

1.3 Small parameters and really small parameters: ϵ versus ϵ2

Figure 1.2 shows a three right-angled triangle with sides

1 , ϵ and
√

1 + ϵ2 .
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Isosceles or right triangle?
ǫ =

0
.1

H
ow

ab
ou
t
th
is
on
e?

ǫ
=
0
.05

A right triangle. ǫ = 0.2

Figure 1.2: Three right triangles: the short side has length ϵ, the base has length 1 and the
hypotenuse length

√
1 + ϵ2.

When ϵ is small one has trouble visually distinguishing this right-triangle from an isosceles
triangle because the hypotenuse is very nearly equal to the long side. Using the binomial
theorem and assuming that ϵ≪ 1, the length of the hypotenuse is

√
1 + ϵ2 = 1 +

ϵ2

2
+ O

(
ϵ4
)
. (1.27)

So the difference between the long side and the hypotenuse is “order ϵ2”. With ϵ = 0.1 this
small difference is hard to see, and even more difficult if ϵ = 0.05. On the other hand, the small
angle in figure 1.2 is

θ = arctan(ϵ) ≈ ϵ . (1.28)

You have no difficulty seeing the order ϵ small angle and the small side of the triangle: to
mistake the triangle for a line segment we’d have to make ϵ a lot less than 0.05.

As another example of the difference between ϵ and ϵ2 consider the ellipse in figure 1.3. The
eccentricity of this ellipse is e = 0.2 which is close to the eccentricity of the orbit of Mercury. I
picked Mercury because it has the most eccentric orbit of the eight planets in the solar system.
As you can see in figure 1.3, it is easy to mistake this ellipse for a circle. Kepler, analyzing data
collected by Tycho Brahe, made that mistake: he thought that the orbit of Mars (e = 0.09)
was a circle with the Sun off-center. Later Kepler realized that the orbit of Mars is actually
a small-eccentricity ellipse with the Sun at a focal point. This confusion arises because the
distance of the foci from the center of an ellipse is of order e, while the difference between the
major and minor axes of an ellipse is of order e2. Specifically, the curve in figure 1.3 is

x2 +
y2

1 − e2
= 1 , (1.29)

and the focus ∗ is at (x, y) = (e, 0), with e = 0.2.

8



Is this an ellipse
or a circle?

Figure 1.3: An ellipse with eccentricity e = 0.2. It looks like a circle doesn’t it? The off-center
point ∗ is at a focus.

1.4 Example: Rectification of the ellipse

Let’s calculate the perimeter, ℓ, of the ellipse in figure 1.3. On dimensional grounds the perime-
ter is 2πa× f(e) where the eccentricity e is the only dimensionless number in this problem and
2πa is the perimeter of a “comparison circle” (see the box “Anatomy of the Ellipse”).

If a curve is specified as the graph of a function via

y = f(x) , (1.30)

then, using Pythagoras’s theorem, dℓ =
√

(dx)2 + (df)2. Thus the length of the curve between
x1 and x2 is

ℓ =

∫ x2

x1

√
1 +

(
df

dx

)2

dx . (1.31)

Suppose an ellipse is specified as

x2

a2
+
y2

b2
= 1 . (1.32)

For the portion of the ellipse above the x-axis (i.e. y > 0) we have

y = b

√
1 − x2

a2︸ ︷︷ ︸
f(x)

, and
df

dx
= − b

a

x√
a2 − x2

. (1.33)

The semi-minor axis is b =
√

1 − e2 a, where e is the eccentricity. Combining these results, the
perimeter integral in (1.31) is

ℓ = 4

∫ a

0

√
a2 − e2x2

a2 − x2
dx , (1.34)

= 4a

∫ 1

0

√
1 − e2v2

1 − v2
dv . (1.35)
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Figure 1.4: The “reduction factor” f(e) in (1.38) is the solid black curve. The two-term
approximation in (1.40) is the blue dashed curve. The three- and four-term approximations
(the dash-dot and dotted curves) from (1.42) lie even closer to the black curve.

In going from (1.34) to (1.35) we’ve used the change of variable x = av to tidy the integral so
that it becomes non-dimensional and contains only the eccentricity e. We can try to evaluate
the integral analytically by making a further substitution

v = sin θ , and therefore
dv√

1 − v2
= dθ . (1.36)

The integral becomes

ℓ = 4a

∫ π/2

0

√
1 − e2 sin2 θ dθ . (1.37)

As a sanity check, notice that if e = 0 the perimeter in (1.37) is 2πa.

Exercise: Make another sanity check by considering e = 1.

Let’s write (1.37) as

ℓ = 2πa × 2

π

∫ π/2

0

√
1 − e2 sin2 θ dθ

︸ ︷︷ ︸
f(e)

, (1.38)

where f(e) is a dimensionless “reduction factor” relative to a circle with radius a.

Small eccentricity

Students of applied mathematics used to learn to recognize elliptic integrals and many other
special functions. These days students might use mathematica or something similar to discover
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that the integral in (1.37) and (1.38) is a “complete elliptic integral of the second kind” (see
the box). Using elliptic integrals, the reduction factor can be written as an “exact analytic
solution”. It is difficult to deny that this exact answer is useful because both mathematica
and matlab have elliptic integrals hardwired. If we are interested, however, in quickly and
accurately estimating the perimeter of the near-circle in figure 1.3 then we can approximately
evaluate (1.37) like this1

ℓ ≈ 4a

∫ π/2

0
1 − 1

2e
2 sin2 θ dθ , (1.39)

= 2πa
(
1 − 1

4e
2
)

︸ ︷︷ ︸
≈f(e)

. (1.40)

Figure 1.4 compares the approximation f ≈ 1 − e2/4 to the elliptic-function answer. With
e = 0.2 the simple approximation is probably good enough for most purposes. Of course, to use
an approximation with some confidence we must have some estimate of the size of the error.

Applied mathematics is concerned with making precise approximations in which the error
is both understood and controllable. We should also strive to make the error smaller by some
systematic method. Here we can do this by using more terms in the binomial expansion of√

1 − e2 sin2 θ. Let’s use four terms and indicate the form of the first neglected term:

√
1 − e2 sin2 θ = 1 − 1

2e
2 sin2 θ − 1

8e
4 sin4 θ − 1

16e
6 sin6 θ + O

(
e8
)
. (1.41)

Integrating over θ, our new improved approximation to the reduction factor f(e) is

f = 1 − 1
4e

2 − 3
64e

4 − 5
256e

6 + O
(
e8
)
. (1.42)

In figure 1.4 there is a systematic improvement as we use more terms in the series. (I used
mathematica to compute the θ integrals above.)

A very eccentric ellipse

How about the other limit e → 1? The ellipse degnerates into a line segment. It is obvious,
both analytically and geometrically, that the perimeter is ℓ = 4a. Suppose e is slightly less than
one. How do we find the difference between ℓ and 4a? This is a typical “asymptotic question”:
we have a simple result at the extreme parameter value e = 1. (e = 1 is extreme because the
ellipse degenerates to a line segment.) We want to understand what happens close to, but not
exactly at, this interesting value e = 1.

The equations look pretty if we define a small parameter ϵ by

ϵ =
√

1 − e2 . (1.43)

Then the perimeter of the very eccentric ellipse is

ℓ(e) = 4a

∫ π/2

0

√
cos2 θ + ϵ2 sin2 θ dθ . (1.44)

1For the integrals

π

2
=

∫ π/2

0

cos2 θ + sin2 θ dθ , and by quarter-wavelength symmetry

∫ π/2

0

cos2 θ dθ =

∫ π/2

0

sin2 θ dθ =
π

4
.

11



We use the trusty approximation discussed previously:

√
cos2 θ + ϵ2 sin2 θ = cos θ

(
1 + ϵ2 tan2 θ

)1/2 ≈ cos θ + ϵ2
sin2 θ

2 cos θ
. (1.45)

Substituting this approximation into (1.44) the result is a disaster

ℓ(e) ≈ 4a

∫ π/2

0
cos θ + ϵ2

sin2 θ

2 cos θ
dθ , (1.46)

??
≈ 4a

[
1 + ϵ2∞

]
. (1.47)

The second integrand in (1.46), namely

sin2 θ

2 cos θ
, (1.48)

has a non-integrable singularity at θ = π/2. We’ll return to this example later in these lectures.

Discussion: Why has this reasonable approach to a simple geometric problem failed?

1.5 Example: Period of a pendulum

Following Galileo, suppose you observe a mass m swinging at the end of massless rigid rod,
length ℓ, in a gravitational field with acceleration g. At the top of the swing the rod makes an
angle θm (subscript m for “maximum”) with the vertical. What can one say about the period,
p, of this pendulum? From ℓ and g there is a time scale

√
ℓ/g. The angle θm is non-dimensional.

Hence by dimensional analysis

p =

√
ℓ

g
f(θm) , (1.49)

where f is a dimensionless function. It is a profound2 fact that the mass m is “irrelevant” to
p. The story is that Galileo realized that if θm ≪ 1 (small swings) then the unknown function
above approaches a non-zero constant:

lim
θm→0

f(θm) = c0 . (1.50)

Consideration of symmetry indicate that f should be an even function of its argument θm e.g.
the minimum (meaning most negative) angle to the vertical is −θm . Thus we expect that f has
the expansion

f = c0 + c2θ
2
m + c4θ

4
m + · · · (1.51)

In the discussion above have neglected damping e.g. air resistance as the bob swishes back and
forth. As a problem you can determine the additional non-dimensional parameters required by
this extra physics.

Discussion: Can we assume that |θm| does not appear in (1.51)?

2Inertial and gravitational masses are the same. If the two masses were not equal there would be another
non-dimensional parameter mI/mG.
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To say more about f , we start with the equation of motion

mℓθ̈ +mg sin θ = 0. (1.52)

The first term is mass × acceleration in the θ-direction and the second term is the component
of gravitational force along the θ-direction. We cancel m, divide by ℓ, and write the pendulum
equation as

θ̈ + ω2 sin θ = 0 , (1.53)

where

ω
def
=

√
g

ℓ
. (1.54)

I assume that you know and love the linearized version of (1.53), and that you also know that
the small-angle approximation to the period is p = 2π/ω. Our goal is to improve on the small-
angle formula by finding the “first correction”. In (1.51) we have used symmetry to anticipate
that the first correction is proportional to θ2m . It is also plausible that c2 > 0 i.e. bigger swings
take longer.

Multiply (1.53) by θ̇ and integrate to obtain energy conservation in the form

1
2 θ̇

2 + ω2 cos θm − ω2 cos θ = 0 . (1.55)

We’ve determined the constant of integration in (1.55) so that θ̇ = 0 when θ = ±θm. Separate
variables in (1.55)

ω dt = ± dθ√
2(cos θ − cos θm)

. (1.56)

We draw trajectories in the phase plane (figure 1.5) and argue that the period is given by:

p =
2
√

2

ω

∫ θm

0

dθ√
cos θ − cos θm

. (1.57)

With ingenuity the integral above can be converted into a complete elliptic integral of the first
kind:

p =
1

ω

2

π
K

(
sin

θm
2

)
. (1.58)

Bah humbug.
Back up the truck to (1.57) and proceed with a brutal3 small-angle expansion of the cosines

cos θ − cos θm = 1
2(θ2m − θ2) − 1

24(θ4m − θ4) + O
(
θ6m
)
, (1.59)

≈ 1
2(θ2m − θ2)

[
1 − 1

12(θ2m + θ2)
]
. (1.60)

Therefore

1√
cos θ − cos θm

≈
√

2√
θ2m − θ2

[
1 − 1

12(θ2m + θ2)
]−1/2

(1.61)

≈
√

2√
θ2m − θ2

[
1 + 1

24(θ2m + θ2)
]
. (1.62)

3See the problem 1.10 for elegance.
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Figure 1.5: Phase plane of the pendulum (scale time so that ω 7→ 1). You should draw arrows
on the curves above to show the direction of evolution. The expression for the period p in (1.57)
is obtained by noting that it takes p/2 to go from A to B in the upper half plane. Because
we’re in the upper half plane take the + in (1.56).

Hence

p ≈ 4

ω

∫ θm

0

1 + 1
24(θ2m + θ2)√
θ2m − θ2

dθ . (1.63)

With the change of variables x = θ/θm

p ≈ 4

ω

∫ 1

0

1 + θ2m
24 (1 + x2)

√
1 − x2

dx (1.64)

The integrals above can be evaluated with a further change of variables to x = sin v. Instead,
using mathematica, I get

p ≈ 2π

ω

(
1 +

θ2m
16

)
. (1.65)

The familiar small-angle approximation to p is an underestimate of the true period. At θm = π/6
(a pretty big swing) the correction, θ2m/16, is 1.7%. That seems like a small correction. But
see the grandfather clock problem at the end of this lecture.

1.6 Some references

Two books that have shaped my view of perturbation methods and asymptotics are:

BO C.M. Bender & S.A. Orszag (1978), Advanced Mathematical Methods for Scientists and
Engineers;
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H E.J. Hinch (1991), Perturbation Methods.

For a more recent textbook see:

Ho Mark H. Holmes (2013), Introduction to Perturbation Methods (second edition).

More advanced, books are:

M P.D. Miller (2006), Applied Asymptotic Analysis;

N J.C. Neu (2015), Singular Perturbation in the Physical Sciences;

KC J. Kevorkian & J.D. Cole (1996) Multiple Scale and Singular Perturbation Methods.

While I don’t recommend it as a systematic reference, I enjoyed reading Mathematical Under-
standing of Nature by V.I. Arnold (some of the material in this lecture is based on Arnold).
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Basic anatomy of the ellipse

An ellipse is a plane curve enclosing two focal points such that the sum of the distances
to the two foci is constant for every point on the ellipse. In figure (1.6) the foci are on the
x-axis at x = ±ea and ellipse is defined by

√
(x− ea)2 + y2︸ ︷︷ ︸

def
= r+

+
√

(x+ ea)2 + y2︸ ︷︷ ︸
def
= r−

= 2a . (1)

If e = 0 then the ellipse becomes a circle with radius a. With some algebra you can show
that (1) is equivalent to

x2

a2
+
y2

b2
= 1 , (2)

where
b =

√
1 − e2 a .

The lengths a and b are the semi-major and semi-minor axes respectively. If e ≪ 1 then
the difference between a and b is order e2.

+ea−ea +a−a

b

−b

r
−

r+

Figure 1.6: An ellipse with e = 0.75.

Lines from a focus point to a point P on the ellipse make equal angles with the tangent at
P . Hence if the ellipse is a mirror and there is a light source at one of the foci then light
rays reflecting specularly from the mirror all pass through the other focal point. Focus is
latin for fireplace.
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Complete Elliptic Integrals

In traditional notation the complete elliptic integral of the first kind is

K(k)
def
=

∫ π/2

0

dθ√
1 − k2 sin2 θ

,

=
π

2

[
1 +

12

22
k2 +

12 32

22 42
k4 +

12 32 52

22 42 62
k4 + · · ·

]
.

The complete elliptic integral of the second kind is

E(k)
def
=

∫ π/2

0

√
1 − k2 sin2 θ dθ ,

=
π

2

[
1 − 1

22
k2 − 12 3

22 42
k4 − 12 32 5

22 42 62
k4 + · · ·

]
.

The series above converge if k2 < 1.

Other series include

K(k) = ln
4

k′
+

1

2

(
ln

4

k′
− 1

)
k′2 +O

(
k′4 ln k′

)
,

E(k) = 1 +
1

2

(
ln

4

k′
− 1

2

)
k′2 +O

(
k′4 ln k′

)
,

where k′
def
=

√
1 − k2.

The two integrals are related by

dE

dk
=
E −K

k
, and

dK

dk
=

1

k

(
E

k′2
−K

)
.

Be aware there are slightly different notations out there e.g. matlab does not use the
notation above. Read the documentation.

There are many, many more identities involving elliptic integrals. Online resources include
Wikipedia, MathWorld and the Digital Library of Mathematical Functions (google DLMF).
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1.7 Problems

Problem 1.1. Suppose you’re on a ship and your eyes are h = 10m above sea level. You see
an island on the horizon. Following the lecture suppose that the Earth is a perfect sphere with

radius R = 6 371km and introduce ϵ
def
= h/R. Denote the great-circle distance by ℓ and recall

that d is the line-of-sight distance from the lecture. With simplification using ϵ ≪ 1, find a
concise expression for ℓ/d− 1.

Problem 1.2. (i) A triangle in the plane can be specified uniquely by giving the length of
the longest side – call it c – and the acute angles θ and ϕ that the two shorter sides make
with the longest side. Use dimensional analysis to say what you can about the area of the
triangle in terms of c, θ and ϕ. (Pretend you don’t know trigonometry: leave an undetermined
dimensionless function in the answer.) (ii) Consider the special case of a right-angled triangle
with sides a, b and c. Divide the triangle into two sub-triangles by dropping a perpendicular
onto the long side with length c. The total area is the sum of the areas of two right-angled
subtriangles. Use this observation to prove Pythagoras’s theorem. (iii) Spherical triangles
don’t satisfy Pythagoras’s theorem. How far can you proceed with the spherical version this
problem?

Problem 1.3. You can use the high school formula to exactly solve the quadratic equation

x2 − πx+ 2 = 0 . (1.66)

Notice that if we replace π by the approximation 3 then you can solve the equation by inspection.
Define ϵ by π = 3 + ϵ and use an RPS to solve (1.66) neglecting terms of order ϵ3 and smaller.
Assess the accuracy of this solution against a numerical calculation of the root.

Problem 1.4. Because 10 is close to 9 we suspect that
√

10 is close to
√

9 = 3. (i) Define x(ϵ)
by

x(ϵ)2 = 9 + ϵ . (1.67)

Assume that x(ϵ) has an RPS as in (1.14). Calculate the first four terms, x0 through x3. (ii)
Take ϵ = 1 and compare your estimate of

√
10 with a six decimal place computation. (iii) Solve

(1.67) with the binomial expansion and verify that the resulting series is the same as the RPS
from part (ii) What is the radius of convergence of the series?

Problem 1.5. Assume the Earth is a perfect sphere with radius R = 6 371km and it wrapped
around the equator by a rope with length 2πR+ ℓ , where ℓ = 1 meter. (i) As an easy warm-up
calculate h if the rope is pulled to a uniform height h above the surface of the Earth. (ii)
Suppose the rope is grabbed at a point and that point is hoisted vertically to a height H till
the rope is taut – see figure 1.7. Estimate H by: (i) guessing an order of magnitude and (ii)
perturbation theory based on ℓ≪ R.

Problem 1.6. Show that the expansion of f(x0 + ϵx1 + ϵ2x2 + · · · ) is

f(x0 + ϵx1 + ϵ2x2 + · · · ) = f(x0) + ϵx1f
′(x0) + ϵ2

(
x2f

′(x0) + 1
2x

2
1f

′′(x0)
)

+ O(ϵ3) . (1.68)

If your OCD is strong, calculate some more terms and try to spot the pattern.

18



Figure 1.7: The rope is red with length 2πR+ ℓ. Find H.

Problem 1.7. Consider an ellipse with semi-axes a and b (a > b) and perimeter ℓ. If the ellipse
is a near-circle, a ≈ b, then the perimeter ℓ might be estimated by

ℓ1 = π(a+ b) , or perhaps by ℓ2 = 2π
√
ab . (1.69)

Both formulas above give the right answer if a = b. (a) Which ℓn is best if a ≫ b? (b) Which
ℓn is best if a ≈ b? (c) Determine α so that

ℓ3 = αℓ1 + (1 − α)ℓ2 (1.70)

is the best possible approximation to ℓ in the case a ≈ b.

Problem 1.8. Figure 1.8 shows the path followed by a tipsy sailor from a bar at the origin of the
(x, y)-plane to home at (x, y) = (ℓ, 0). The path is a sinusoid leaving the bar at an angle α and
in figure 1.8 α = π/4. How much longer is the sinusoidal path than the straight line? Answer
this question by: (i) eyeballing the curve in figure 1.8 and guessing; (ii) constructing the integral
that gives the arclength and evaluating it numerically; (iii) devising an approximation to the
arc-length integral based on α ≪ 1, and then pressing your luck by using this approximation
with α = π/4.

Problem 1.9. Because of surface waves a snapshot of the sea-surface is

z = a [p cos(kx+ α) + q cos(ly + β)] , (1.71)

where a (meters) is the amplitude of the waves field. The waves are small amplitude so that
the sea-surface slope is small i.e. {ka, la} ≪ 1. How much extra surface area (relative to the
flat undisturbed surface) do these waves produce?
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How much longer
is the sinusoidal path
than the straight line?

π
/4 ℓ

Figure 1.8: A tipsy walk.

Problem 1.10. Recall that the period of a pendulum is

p =
2
√

2

ω

∫ θm

0

dθ√
cos θ − cos θm

. (1.72)

Simplify the integral above by substituting sin(θ/2) = sin(θm/2) sinψ. Show that

p = 2π

√
ℓ

g

[
1 + 1

4 sin2 θm
2

+ 9
64 sin4 θm

2
+ · · ·

]
. (1.73)

Problem 1.11. A grandfather clock swings at a maximum angle θm = 5◦ to the vertical. How
many seconds does the clock lose or gain each day if it is adjusted to keep perfect time when
the swing is θm = 2◦? (Use results from the lecture.)

Problem 1.12. Suppose that the pendulum in section 1.5 is damped by air resistance. Assume
that the turbulent drag law

Drag = CDρAu
2 (1.74)

applies. In (1.74) ρ is the density of air, A is the cross-section area of the mass, and u is the
velocity of the mass through the air. (i) Check that the drag above has the dimensions of force
= mass × acceleration. (ii) How is (1.49) modified to account for this additional physics? (iii)
Write the enhanced version of (1.53) accounting for drag.
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Lecture 2

Dominant balance and iteration

After this lecture you’ll be able to solve, or greatly simplify, almost any equation you encounter.

2.1 Consistent dominant balances

Rosencrantz: Consistency is all I ask!

Guildenstern: Give us this day our daily mask.

A typical equation is

A(x) +B(x) + C(x) +D(x) + E(x) + F (x) = 0 . (2.1)

where A through F are functions of the unknown x. We try to solve the equation above by
finding a balance between two of the terms – a two-term dominant balance – and dropping
the other terms in the equation. A key step in dominant balance is to verify consistency of
the approximation. For example, suppose we retain terms A and D and solve the simplified
equation

A(x) +D(x) ≈ 0 . (2.2)

We now possess an approximation to x – call it y. Consistency requires that

{A(y), D(y)} ≫ {B(y), C(y), E(y), F (y)} . (2.3)

We do not require that the neglected terms be much less than one – consistency only requires
that the neglected terms are much less than the retained terms.

Example: A quadratic equation illustrating singular perturbation

Consider the quadratic equation
ϵx2 + x− 1 = 0 , (2.4)

with ϵ≪ 1. With small but non-zero ϵ there is a consistent two-term dominant balance between
the second and third terms in (2.4). This means that if x ≈ 1 then the neglected term ϵx2 is
much less than the retained terms {x, 1}. Below we can grind out the answer with an RPS.
Before descending into those details we notice that quadratic equations have two roots: by
focussing on the root near x = 1 we are missing the second root.
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RPS around x = 1: How does the root near x = 1 changes with ϵ? We use an RPS:

x = 1︸︷︷︸
x0

+ϵx1 + ϵ2x2 + · · · (2.5)

Substituting into the quadratic equation (2.4) we have

ϵ
(
1 + 2ϵx1 + ϵ22x2 + ϵ2x2

1

)
+ ϵx1 + ϵ2x2 + ϵ3x3 +O

(
ϵ4
)
= 0 . (2.6)

Now match up powers of ϵ:

ϵ1 : 1 + x1 = 0 , ⇒ x1 = −1 , (2.7)

ϵ2 : 2x1 + x2 = 0 , ⇒ x2 = 2 , (2.8)

ϵ3 : 2x2 + x2
1 + x3 = 0 , ⇒ x3 = −5 . (2.9)

To summarize
x = 1− ϵ+ 2ϵ2 − 5ϵ3 +O

(
ϵ4
)
. (2.10)

The procedure is never going to help us find the missing root of (2.4).

Two-term dominant balance

The quadratic equation (2.4) presents a singular perturbation problem because a solution dis-
appears if we set ϵ = 0. We find the missing root by looking for another two-term dominant
balance in (2.4):

ϵx2 + x︸ ︷︷ ︸
dominant balance?

−1 = 0 . (2.11)

The balance above implies that x ≈ −ϵ−1. The balance is consistent because the neglected
term in (2.11) (the −1) is smaller than the two retained terms as ϵ→ 0.

Once we know that x is varying as ϵ−1 we can rescale by introducing

X
def
= ϵx . (2.12)

The variable X remains finite as ϵ → 0, and substituting (2.12) into (2.4) we find that X
satisfies the rescaled equation

X2 +X − ϵ = 0 . (2.13)

Now we can find the big root via an RPS

X = X0 + ϵX1 + ϵ2X2 + O(ϵ3). (2.14)

Exercise: Verify that (2.14) reproduces the expansion of x(ϵ) that begins with −ϵ−1 in (2.18) Find the second
term X1.

The introduction of X in (2.12) is “only” a change in notation, and (2.13) is completely
equivalent to (2.4). But notation matters: in terms of x the problem is singular while in terms
of X the problem is regular. The importance of rescaling, and notation, is a main message from
this simple example.

The quadratic equation in (2.4) has three terms and so there are three different two-term
balances. In the discussion above we balanced the second and third terms (to get x ≈ 1). We
also balanced the first and second terms to get x ≈ −1/ϵ. We have not tried balancing the first
and third terms. Let’s do it and see what happens.If we drop the term x in (2.4) we have the
two-term balance ϵx2−1 ≈ 0. This implies that x ∝ ϵ−1/2 and suggests the rescaling X = ϵ1/2x.
But this is wrong – we dropped x relative ϵx2 and 1. But if x ∝ ϵ−1/2 then x is bigger than
both ϵx2 and 1. So this third dominant balance is inconsistent. This is a relief – we’re solving
a quadratic equation and there can’t be a third solution.
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More than you need to know: Using the formula for the solution of a quadratic equation, we find

x =
−1±

√
1 + 4ϵ

2ϵ
. (2.15)

But it is not entirely straightforward to get both leading-order solutions from (2.15).

Taking the plus sign in (2.15), we have

x =
−1 +

√
1 + 4ϵ

2ϵ
≈ 1 , as ϵ → 0. (2.16)

Because of near cancellation in the numerator a slight calculation is required to get the result above. We
obtained x ≈ 1 with a lot less fuss by just ditching the term ϵx2 in (2.4). We obtain the missing root by
taking the minus sign in (2.15):

x =
−1−

√
1 + 4ϵ

2ϵ
≈ −1

ϵ
, as ϵ → 0. (2.17)

Using mathematica I expanded the two answers (2.15) as

x =

{
1− ϵ+ 2ϵ2 − 5ϵ3 + · · ·
−ϵ−1 − 1 + ϵ− 2ϵ2 + 5ϵ3 + · · ·

(2.18)

2.2 Some quartic examples of two-term dominant balance

A quartic equation

Now consider
ϵx4 + x− 1 = 0 (2.19)

Quartic polynomials can be solved exactly, but the formula is complicated. Instead we use the
method of dominant balance to find approximations to all four roots.

There is a consistent two-term balance between the second and third terms i.e. x ≈ 1, and
ϵx4 is consistently less than the retained terms as ϵ → 0. We can obtain more terms with the
RPS x = 1 + ϵx1 + · · · Instead let’s find the other three roots.

Try the two-term dominant balance

ϵx4 − 1
?
≈ 0 , ⇒ x ∼ ϵ−1/4 . (2.20)

But the neglected term is x ∼ ϵ1/4 and ϵ−1/4 is much larger than the retained terms {ϵx4, 1}.
This dominant balance is inconsistent.

The final two-term dominant balance is

ϵx4 + x
?
≈ 0 , ⇒ x ∼ ϵ−1/3 . (2.21)

Because ϵ−1/3 ≫ 1, the neglected term, 1, is much less than the retained terms. This dominant
balance is consistent and the leading-order solutions of the quartic are

x = 1 , and x = ϵ−1/3{−1, e±iπ/3} . (2.22)

To systematically investigate the ϵ−1/3 solutions we rescale with x = ϵ−1/3X. The re-scaled
equation is

X4 +X − ϵ1/3 = 0 . (2.23)

Now we can develop an RPS using powers of ϵ1/3:

X = X0 + ϵ1/3X1 + ϵ2/3X2 + · · · (2.24)

where X0 = {−1, e±iπ/3}.
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Another quartic equation

Now consider
ϵ2x4 + 7x3 + ϵx+ 11 = 0 . (2.25)

The low hanging fruit is picked by setting ϵ = 0. This results in the cubic equation

7x3 + 11 ≈ 0 . (2.26)

This is a consistent two-term dominant balance because the neglected terms are small relative
to retained terms. We find three solutions,

x = (11/7)1/3{−1 , e±iπ/3} . (2.27)

Further terms are obtained by an RPS x = x0 + ϵx1 + · · · .
The fourth solution is obtained by the dominant balance

ϵ2x4 + 7x3
?
≈ 0 , ⇒ x ≈ − 7

ϵ2
. (2.28)

Neglected term ϵx is then of order ϵ−1 ≫ 1. Nonetheless this is a consistent dominant balance
because the retained terms are of order ϵ−2 which is much larger than ϵ−1 as ϵ → 0. To

determine the development of the large root we rescale with X
def
= ϵ2x to obtain

X4 + 7X3 + ϵ5X + 11ϵ6 = 0 . (2.29)

This example emphasizes that neglecting big terms is OK provided that the neglected terms
are dwarfed by even bigger retained terms. We are always thinking of the limit ϵ→ 0 and the
disparity between neglected and retained terms becomes ever larger as ϵ→ 0.

Yet another quartic equation

We discuss solution of the quartic polynomial

ϵx4︸︷︷︸
T1

+ ϵ2x3︸︷︷︸
T2

+ ϵx2︸︷︷︸
T3

− x︸︷︷︸
T4

+ 7︸︷︷︸
T5

= 0 (2.30)

as a final example of dominant balance in quartic polynomials.
In (2.30) there are five terms labelled T1 through T5. We’re going to solve this problem by

finding two-term dominant balances. There are ten pairs of terms. So a brutal approach is to
examine all ten pairs and find the balances which are consistent approximations as ϵ→ 0.

Balance T4 and T5: so that that x
?
≈ 7. Neglected terms T1, T2 and T3 are:

T1 = ϵx4 = O(ϵ) , T2 = ϵ2x3 = O(ϵ2) , T3 = ϵx2 = O(ϵ1) .

All terms above are smaller than the retained terms (T4, T5) ∝ ϵ0 as ϵ → 0. This is a
consistent dominant balance and we can plug in the RPS x = 7 + ϵx1 + · · · into (2.30)
with every expectation of success. You should do this.
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Balance T3 and T4: this means that ϵx2 − x
?
≈ 0, implying that x = 0 or x = O(ϵ−1). Only

x = O(ϵ−1) might be helpful. In this case the neglected terms are

T1 = ϵx4 = O(ϵ−3) , T2 = ϵ2x3 = O(ϵ−1) , T5 = 7 = O(ϵ0) .

This dominant balance is inconsistent because the neglected term T1 = O(ϵ−3) is much
larger than the retained terms (T3, T4) = O(ϵ−1) as ϵ→ 0. No joy here.

Balance T3 and T5: this means that ϵx2 + 7
?
≈ 0, implying that x = O(ϵ−1/2). Neglected

terms are

T1 = ϵx4 = O(ϵ−1) , T2 = ϵ2x3 = O(ϵ1/2) , T4 = x = O(ϵ−1/2).

As ϵ → 0, neglected term T1 ∝ ϵ−1 is much greater than retained terms (T3, T5) ∝ ϵ0:
this dominant balance is inconsistent. Nothing to see here – move on.

Balance T1 and T5: this means that ϵx4 + 7
?
≈ 0, implying that x = O(ϵ−1/4). The neglected

terms are

T2 = ϵ2x3 = O(ϵ5/4) , T3 = ϵx2 = O(ϵ1/2) , T4 = x = O(ϵ−1/4) .

The neglected term T4 = O(ϵ−1/4) is much bigger than the retained terms (T1, T5) =
O(ϵ0): this is another inconsistent dominant balance.

Balance T1 and T4: this means that ϵx4 − x
?
≈ 0, implying that x = O(ϵ−1/3). The neglected

terms are

T2 = ϵ2x3 = O(ϵ1) , T3 = ϵx2 = O(ϵ1/3) , T5 = 7 = O(ϵ0) .

Hallelujah – this works. The three neglected terms are all smaller than the retained terms
(T1, T4) ∝ ϵ−1/3 as ϵ→ 0.

Exercise: It is sporting to examine the other five two-term balances and show that all of these are inconsistent.

The consistent dominant balance between T1 and T4 says that

ϵx4 − x ≈ 0 (2.31)

is a good ϵ→ 0 leading-order approximation to (2.30). Equation (2.31) has three useful solutions
– the three cube roots of one. The fourth root, x = 0 can be thought of as reproducing the
other consistent dominant balance, x ≈ 7 ≪ ϵ−1/3. We now possess all four ϵ → 0 roots of
(2.30).

To nail down the three singular roots, introduce

δ
def
= ϵ1/3 , and X

def
= δx . (2.32)

The rescaled polynomial is

X4 + δ4X3 + δ2X2 −X + 7δ = 0 . (2.33)

The good dominant balance is immediately revealed by setting δ = 0 and the RPS is

X = X0 + δX1 + O(δ2) . (2.34)

25



Noting that X4 = X4
0 + 4δX3

0X1 + O(δ2) we see that the first two orders are

δ0 : X0(X
3
0 − 1) = 0 , (2.35)

δ1 : (4X3
0 − 1)X1 + 7 = 0 . (2.36)

The three leading order solutions are X0 = 1, and X0 = e±2πi/3. In all three cases X1 = −3/7.
Summary: In our original notation the leading-order behaviour of the four roots of (2.30)

is
x ∼

{
7 , ϵ−1/3 , ϵ−1/3e±2πi/3

}
, as ϵ→ 0. (2.37)

Exercise: Find leading-order expressions for all six roots of

ϵ2x6 − ϵx4 − x3 + 8 = 0 , as ϵ → 0. (2.38)

The answer is in section 7.2 of BO.

Exercise: Construct a quartic polynomial in x, with coefficients ϵsome power, which presents a three-term domi-
nant balance as ϵ → 0.

2.3 Iteration, also known as recursion

Now let’s consider the method of iteration. Iteration requires a bit of initial ingenuity. But
in cases where the form of the expansion is not obvious, iteration is essential. (One of the
strengths of H is that it emphasizes the utility of iteration.)

Introductory example of iteration

Consider the quadratic equation
(x− 1)(x− 2) = ϵx . (2.39)

If we interested in the effect of ϵ on the root x = 1 then we rearrange this further as

x = 1 + ϵ
x

x− 2︸ ︷︷ ︸
def
= f(x)

. (2.40)

We iterate by first dropping the ϵ-term on the right – this provides the initial guess x(0) = 1.
At the next iteration we keep the ϵ-term with f evaluated at x(0):

x(1) = 1 + ϵf
(
x(0)

)
= 1 − ϵ . (2.41)

We continue to improve the approximation with more and more iterates:

x(n+1) = 1 + f
(
x(n)

)
. (2.42)

A few more times through the loop with mathematica produces:

x(2) =
1 + ϵ2

1 + ϵ
, (2.43)

x(3) =
1 + ϵ− ϵ2 − ϵ3

1 + 2ϵ− ϵ2
, (2.44)

x(4) =
1 + 2ϵ− 2ϵ2 + 2ϵ3 + ϵ4

1 + 3ϵ− ϵ2 + ϵ3
, (2.45)

x(5) =
1 + 3ϵ− 2ϵ2 + 2ϵ3 − 3ϵ4 − ϵ5

1 + 4ϵ− ϵ4
. (2.46)
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Figure 2.1: Comparison of the iterates x(2) and x(3) with power series having the same formal
accuracy. The iterates are a better approximation to the answer than truncated power series.

The exact answer is

x = [3 + ϵ−
√

1 + 6ϵ+ ϵ2]/2 , (2.47)

= 1 − ϵ+ 2ϵ2 − 6ϵ3 + 22ϵ4 − 90ϵ5 + O(ϵ6) . (2.48)

The expansion of the successive iterates is

x(1) = 1 − ϵ , (2.49)

x(2) = 1 − ϵ+ 2ϵ2−2ϵ3 + 2ϵ4 − 2ϵ5 + O(ϵ6) , (2.50)

x(3) = 1 − ϵ+ 2ϵ2 − 6ϵ3+14ϵ4 − 34ϵ5 + O(ϵ6) , (2.51)

x(4) = 1 − ϵ+ 2ϵ2 − 6ϵ3 + 22ϵ4−74ϵ5 + O(ϵ6) , (2.52)

x(5) = 1 − ϵ+ 2ϵ2 − 6ϵ3 + 22ϵ4 − 90ϵ5 + O(ϵ6) . (2.53)

Wrong terms are red. Every pass through the iteration loop provides another correct term in
the RPS.

But why do we insist on expanding the iterates in a power series in ϵ? Perhaps the un-
expanded iterates in (2.43) through (2.46) are superior to the RPS? In fact they are: see the
comparison in figure 2.1. Iteration is producing a Padé approximation to the solution. Padé ap-
proximations have superior convergence properties because they are not limited by singularities
in the complex ϵ-plane1. This example shows that an RPS is not always the best approximation.
Also it may be faster to bash out the first one or two iterates than an equivalent RPS.

1See BO for a discussion of Padé approximation.
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Exercise: Use iteration to locate the root near x = 2.

Example: Considering the equation
4− x2 = ϵ lnx , (2.54)

with 0 < ϵ ≪ 1, we see that there is a positive real solution close to x = 2. To improve on x ≈ 2 we
rewrite the equation as

x = 2− ϵ lnx

2 + x
. (2.55)

If we drop the ϵ-term we get a first approximation x(1) = 2, and the next iterate is

x(2) = 2− ϵ ln 2

4
, (2.56)

and again

x(3) = 2−
ϵ ln
(
2− ϵ ln 2

4

)
4− ϵ ln 2

4

. (2.57)

We can develop an RPS by simplifying x(3) as

x(3) = 2− ϵ

4

(
1 + ϵ

ln 2

16

)[
ln 2 + ln

(
1− ϵ

ln 2

8

)
︸ ︷︷ ︸
=−ϵ ln 2

8
+O(ϵ2)

]
+O(ϵ3) , (2.58)

= 2− ln 2

4
ϵ+

ln 2

64
(2− ln 2) ϵ2 +O(ϵ3) . (2.59)

Another example of iteration

As another example of iteration, consider the equation

x = ϵe−x
2
. (2.60)

There is a root near x = 0. But if x is close to zero, then e−x
2 ≈ 1, and in this case x ≈ ϵ.

These considerations motivate the iterative scheme

x(0) = ϵ , and x(n+1) = ϵ exp
(
−x(n)2

)
. (2.61)

Going twice through the loop

x(1) = ϵe−ϵ
2
, and x(2) = ϵe−ϵ

2e−2ϵ2

. (2.62)

The expansion of the first iterate is x(1) = ϵ− ϵ3 +O(ϵ5). Iteration is a more expeditious route
to this low-order approximation than RPS machinery.

Convergence of iteration

Usually we can’t prove that an RPS converges. The only way of proving convergence is to have
a simple expression for the form of the n’th term. In realistic problems this is not available.
One just has to be satisfied with consistency and hope for the best.

But with iteration there is a simple result. Suppose that x = x∗ is the solution of

x = f(x) . (2.63)

Start with a guess x = x0 and proceed to iterate with xn+1 = f(xn). If an iterate xn is close
to the solution x∗ then we have

x = x∗ + ηn , with ηn ≪ 1. (2.64)
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The next iterate is:

x∗ + ηn+1 = f(x∗ + ηn) , (2.65)

= x∗ + ηnf
′(x∗) + O(η2n) , (2.66)

and therefore
ηn+1 = f ′(x∗)ηn . (2.67)

The sequence ηn will decrease exponentially if

|f ′(x∗)| < 1 . (2.68)

If the condition above is satisfied, and the first guess is good enough, then the iteration converges
onto x∗. This is a loose version of the contraction mapping theorem

2.4 Double roots

Consider
x2 − 2x+ 1︸ ︷︷ ︸

(x−1)2

−ϵf(x) = 0 , (2.69)

where f(x) is some function of x. Section 1.3 of H discusses the case f(x) = x2 – with a surfeit
of testosterone we attack the general case.

We try the RPS:
x = x0 + ϵx1 + ϵ2x2 + · · · (2.70)

We must expand f(x) with a Taylor series:

f
(
x0 + ϵx1 + ϵ2x2 + · · ·

)
= f(x0) + ϵx1f

′(x0) + ϵ2
[
x2f

′(x0) + 1
2x

2
1f

′′(x0)
]

+ O
(
ϵ3
)
. (2.71)

This is not as bad as it looks – we’ll only need the first term, f(x0), though that may not be
obvious at the outset.

The leading term in (2.69) is

x20 − 2x0 + 1 = 0 , ⇒ x0 = 1 , (twice). (2.72)

There is a double root. At next order there is a problem:

ϵ1 : 2x1 − 2x1︸ ︷︷ ︸
=0

−f(1) = 0 . (2.73)

Unless f(1) happens to vanish, we’re stuck. The problem is that we assumed that the solution is
delivered by the RPS in (2.70), and it turns out that this assumption is wrong. The perturbation
method kindly tells us this by producing the contradiction in (2.73).

Iteration to the rescue

To find the correct form of the expansion we use iteration: rewrite (2.69) as

x = 1 ±
√
ϵf(x) . (2.74)
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Starting with x(0) = 1, iterate with

x(n+1) = 1 ±
√
ϵf
(
x(n−1)

)
. (2.75)

At the first iteration
x(1) = 1 ±

√
ϵf (1) . (2.76)

There is a
√
ϵ which was not anticipated by the RPS back in (2.70).

Exercise: Go through another iteration cycle to find x(2).

Iteration has shown us the way forward: we proceed assuming that the correct RPS is
probably

x = x0 + ϵ1/2x1 + ϵx2 + ϵ3/2x3 + · · · (2.77)

At leading order we find x0 = 1, and at next order

ϵ1/2 : 2x1 − 2x1 = 0 . (2.78)

This is surprising, but it is not a contradiction: x1 is not determined at this order. We have to
endure some suspense – we go to next order and find

ϵ1 : 2(x0 − 1)x2︸ ︷︷ ︸
=0

+x21 − f(x0) = 0 , ⇒ x1 = ±
√
f(1) . (2.79)

The RPS has now managed to reproduce the first iterate x(1). Going to order ϵ3/2, we find that
x3 is undetermined and

x2 = 1
2f

′(1) . (2.80)

The solution we constructed is

x = 1 ±
√
ϵf(1) +

ϵ

2
f ′(1) + O

(
ϵ3/2

)
. (2.81)

This example teaches us that a perturbation “splits” double roots. The splitting is rather
large: adding the order ϵ perturbation in (2.69) moves the roots apart by order

√
ϵ ≫ ϵ.

This sensitivity to small perturbations is obvious geometrically – draw a parabola P touching
the x-axis at some point, and move P downwards by small distance. The small movement
produces two roots separated by a distance that is clearly much greater than the small vertical
displacement of P . If P moves upwards (corresponding to f(1) < 0 in the example above) then
the roots split off along the imaginary axis.

Non-uniformity

Consider the cubic equation

(x− a)(x− b)(x− c) = ϵf(x) . (2.82)

Suppose that a, b, c and f(x) are known and that ϵ≪ 1. If ϵ = 0 then we can easily solve the
equation: x = a, x = b and x = c are all solutions. How are these solutions perturbed if ϵ is
non-zero but small?

We use an RPS
x = x0 + ϵx1 + O(ϵ2). (2.83)
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Consider the case with x0 = a. At order ϵ1 we find

x1(a− b)(a− c) = f(a) , (2.84)

with solution

x1 =
f(a)

(a− b)(a− c)
. (2.85)

Thus the two-term RPS is

x = a+
ϵf(a)

(a− b)(a− c)
+ O

(
ϵ2
)
. (2.86)

Exercise: Obtain (2.86) in one line with iteration.

This is great unless the denominator (a − b)(a − c) in (2.86) is very small e.g. if a − b is
same size as ϵ then the ostensible small correction,

ϵf(a)

(a− b)(a− c)
, (2.87)

is not small and the RPS likely fails. This happens if either b or c is close to a. Of course if
b = a or if c = a then it is a complete disaster – we’re dividing by zero in (2.87). The message
is that double roots, and near double roots, obstruct an RPS.

Exercise: Assuming that there is not a problem with double roots, find x1 if we start with x0 = b and x0 = c.

Suppose that a and b are close. Introduce

ξ
def
=

a+ b

2
, and ν

def
=

a− b

2
. (2.88)

Close means that ν ≪ ξ. With this change of notation the problem is now

(x− ξ − ν)(x− ξ + ν)(x− c) = ϵf(x) , (2.89)

where ν ≪ 1 and ϵ ≪ 1. We remain agnostic about the relative size of these two small
parameters. The problem is that there is a near double root at x = ξ – the parameter ν
controls proximity to the double root, while ϵ controls the size of the perturbation.

(If c is not close to ξ then there is an isolated single root near x = c. We can proceed
as before and develop an RPS x = c + ϵx1 + · · · . Nailing down this isolated root presents no
challenges. Press on to the more difficult case.)

For the near double root, we divide by x− c and write the equation as

(x− ξ − ν)(x− ξ + ν) = ϵ
f(x)

x− c︸ ︷︷ ︸
def
= g(x)

. (2.90)

All the action is in the neighbourhood of x = ξ and very plausibly (2.90) can be approximated
as

(x− ξ − ν)(x− ξ + ν) ≈ ϵg(ξ) . (2.91)

We multiply out the left hand side and rearrange to obtain

(x− ξ)2 ≈ ν2 + ϵg(ξ) . (2.92)
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Figure 2.2: Graphical determination of the ϵ≪ 1 solutions of (2.94).

Let’s admit that taking a square root is not a big deal so now2

x ≈ ξ ±
√
ν2 + ϵg(ξ) . (2.93)

The interesting case is if ν and ϵ are both small and ϵ is the same size as ν2. This is a
distinguished limit : take ϵ → 0 and ν → 0 with ϵ/ν2 fixed. The formula above works in this
limit, and also works if 1 ≫ ν2 ≫ ϵ, or if ν2 ≪ ϵ≪ 1.

2.5 An example with logarithms

I’ll discuss the example from H section 1.4:

xe−x = ϵ . (2.94)

It is easy to see that if 0 < ϵ ≪ 1 there is a small solution and a big solution – see figure 2.2.
It is straightforward to find the small solution in terms of ϵ. Here we discuss the more difficult
problem of finding the big solution.

Exercise: Show that the small solution is x(ϵ) = ϵ+ ϵ2 + 3
2
ϵ3 +O(ϵ4).

To get a handle on (2.94), we take the logarithm and write the result as

x = L1 + lnx , (2.95)

where

L1
def
= ln

1

ϵ
. (2.96)

Note if 0 < ϵ < 1 then ln ϵ < 0. To avoid confusion over signs it is best to work with the large
positive quantity L1.

Now observe that if x→ ∞ then there is a consistent two-term dominant balance in (2.95):
x ≈ L1. This is consistent because the neglected term, namely lnx, is much less than x as
x→ ∞. We can improve on this first approximation using the iterative scheme

x(n+1) = L1 + lnx(n) with x(0) = L1 . (2.97)

The first iteration gives
x(1) = L1 + L2 , (2.98)

2I’m writing ≈ in (2.93) because I’ve been sloppy about estimating the size of the neglected terms.
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Figure 2.3: Comparison of ϵ = xe−x with increasingly accurate small-ϵ approximations to the
inverse function ϵ(x).

where L2
def
= lnL1 is the iterated logarithm.

The second iteration3 is

x(2) = L1 + ln (L1 + L2) , (2.99)

= L1 + L2 + ln

(
1 +

L2

L1

)
, (2.100)

= L1 + L2 +
L2

L1
− 1

2

(
L2

L1

)2

+ · · · (2.101)

We don’t need L3.

3We’re using the Taylor series

ln(1 + η) = η − 1
2
η2 + 1

3
η3 + 1

4
η4 + · · ·

33



At the third iteration a pattern starts to emerge

x(3) = L1 + ln

(
L1 + L2 +

L2

L1
− 1

2

(
L2

L1

)2

+ · · ·

)
,

= L1 + L2 + ln

(
1 +

L2

L1
+
L2

L2
1

− 1
2

L2
2

L3
1

+ · · ·
)
,

= L1 + L2 +

(
L2

L1
+
L2

L2
1

− 1
2

L2
2

L3
1

+ · · ·
)
− 1

2

(
L2

L1
+
L2

L2
1

+ · · ·
)2

+ 1
3

(
L2

L1
+ · · ·

)3

· · ·

= L1 + L2 +
L2

L1
+
L2 − 1

2L
2
2

L2
1

+
1
3L

3
2 − 3

2L
2
2 + · · ·

L3
1

+ · · · (2.102)

The final · · · above indicates a fraction with L4
1 in the denominator.

The philosophy is that as one grinds out more terms the earlier terms in the developing
expansion stop changing and a stable pattern emerges. In this example the expansion has the
form

x = L1 + L2 +

∞∑

n=1

Pn(L2)

Ln1
, (2.103)

where Pn is a polynomial of degree n. This was not guessable from (2.94).
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The Lambert W function

The Lambert W -function is defined implicitly via

z = W eW . (1)

In the complex plane (1) defines a multivalued function Wk(z) where k is an integer
{0,±1,±2 · · · }. The figure shows two branches W0(x) and W−1(x). These are the real
branches which exist only if x > −1/e.

-2 0 2 4 6 8 10 12 14 16

-5
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-3

-2

-1

0

1

Figure 2.4: The two real branches of the Lambert W functions. The nose ∗ is at (−e−1,−1).

The Lambert W -function, also known as the omega function and the product logarithm;
try help ProductLog in mathematica and lambertw in matlab.
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The implicit function theorem

There are many versions of the implicit function theorem. I’ll state the analytic implicit
function theorem. Suppose that x0 is a complex number and

f(x0, 0) = 0 , (1)

where f(x, ϵ) is analytic at the point (x, ϵ) = (x0, 0). Analytic means that f(x, ϵ) has a
convergent power series expansion in non-negative powers of x− x0 and ϵ.

Provided that
∂f

∂x
(x0, 0) ̸= 0 , (2)

then there are constants p and q such that for every ϵ in the disc |ϵ| < p, equation (1) has
a unique simple root x = x(ϵ) in the disc |x − x0| < q. In addition x(ϵ) is an analytic
function of ϵ and x(0) = x0.

The condition in equation (2) is the same as saying that x0 is a simple root of f(x, 0) = 0.
The fuss about multiple roots results from failure, and near failure, of (2).
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2.6 Problems

Problem 2.1. Show that ϵ→ 0 expansion of the roots of ϵx3 + x− 1 = 0 is

x = 1 − ϵ+ O(ϵ2) , and x = ± i√
ϵ
− 1

2
±

√
ϵ

3 i

8
+ O

(
ϵ1
)
. (2.104)

Problem 2.2. x(t) is defined via the initial value problem

dx

dt
= exp

( x
10

)
− x , with IC x(0) = 0 . (2.105)

Find limt→∞ x(t) to three significant figures. (From a mid-term exam.)

Problem 2.3. x(t) is defined via the initial value problem

dx

dt
= 1.005 − x− e−x , with IC x(0) = 0 . (2.106)

Find limt→∞ x(t) to two significant figures. (From a mid-term exam.)

Problem 2.4. Consider the quartic polynomial

ϵ2x4 + ϵx3 + ϵx2 − x+ 7 = 0 . (2.107)

Find the leading order ϵ→ 0 approximation to all roots.

Problem 2.5. Consider a quadratic equation, ax2 + bx + c = 0, and suppose that b2 ≫ ac
(all coefficients are real). Use dominant balance (not the exact solution) to obtain a simple
approximation to both roots. Test drive your approximation on x2 + 3x+ 1/2 = 0.

Problem 2.6. (i) Find a two-term approximation to all five roots of

x5 − x+ ϵ = 0 . (2.108)

Take ϵ = 1/4 and compare your approximation to a numerical solution (e.g. use the matlab
command roots). (ii) Suppose that η = ϵ−1. Find a two-term approximation to the five roots
in the limit η → 0 (which is the same as the limit ϵ→ ∞).

Problem 2.7. Consider the transcendental equation

x2 − 1 = ϵex
2
. (2.109)

If ϵ = 0 there is a root x = 1. Find the first three terms in the ϵ → 0 regular perturbation
expansion of this root.

Problem 2.8. Find two-term, ϵ→ 0 approximations to all roots of

x3 + 5x2 + 4x+ ϵ = 0 , (2.110)

and
y3 − y2 + ϵ = 0 , (2.111)

and
ϵ3z4 + ϵz2 − z + 1 = 0 . (2.112)
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Figure 2.5: Figure for problem 2.11. Numerical iteration of yn+1 = ln 1
ϵ − ln yn. At ϵ = 0.45

the iteration diverges. In all three cases we start x0 within 0.1% of the right answer.

Problem 2.9. Find rescalings for the roots of

ϵ2x3 − (1 − ϵ+ 3ϵ2)x2 + (3 − 3ϵ+ 2ϵ2 − ϵ3)x− 2 + 3ϵ− ϵ3 = 0 (2.113)

and thence find two non-trivial terms in the approximation for each root using (i) iteration and
(ii) series expansion.

Problem 2.10. Consider y(ϵ, a) defined as the solution of

ϵya = e−y . (2.114)

Note that a = −1 is the example (2.94). Use the method of iteration to find a few terms in the
ϵ→ 0 asymptotic solution of (2.114) – “few” means about as many as in (2.102). Consider the
case a = +1; use matlab to compare the exact solution with increasingly accurate asymptotic
approximations (e.g. as in Figure 2.3).

Problem 2.11. Let us continue problem 2.10 by considering numerical convergence of iteration
in the special case a = 1. Figure 2.5 shows numerical iteration of

yn+1 = ln
1

ϵ
− ln yn . (2.115)

With ϵ = 0.25 everything is hunky-dory. At ϵ = 0.35 the iteration is converging, but it is
painfully slow. And at ϵ = 0.45 it all goes horribly wrong. Explain this failure of iteration. To
be convincing your explanation should include a calculation of the magic value of ϵ at which
numerical iteration fails. That is, if ϵ > ϵ∗ then the iterates do not converge to the solution of
ϵy = e−y. Find ϵ∗.
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Problem 2.12. Find a three-term approximation to the real solutions of

ex−x
2

= ϵx2 , as ϵ→ 0 . (2.116)

Problem 2.13. Find two- or three- term approximations to all real solutions of

x2 − 1 = eϵx , as ϵ→ 0 . (2.117)

Using figure 2.3 as an example, and considering the largest positive root, use matlab to compare
your approximation with the exact relation.

Problem 2.14. Find a two-term approximation to all positive real roots of x2 − 4 = ϵ lnx as
ϵ→ 0.

Problem 2.15. Consider z(ϵ) defined as the solution to

z
1
ϵ = ez . (2.118)

(i) Use matlab to make a graphical analysis of this equation with ϵ = 1/5 and ϵ = 1/10.
Convince yourself that as ϵ → 0 there is one root near z = 1, and second, large root that
recedes to infinity as ϵ → 0. (ii) Use an iterative method to develop an ϵ → 0 approximation
to the large solution. Calculate a few terms so that you understand the form of the expansion.
(iii) Use matlab to compare the exact answer with approximations of various orders e.g. as
in Figure 2.3. (iv) Find the dependance of the other root, near z = 1, on ϵ as ϵ→ 0.

Problem 2.16. Find the x≫ 1 solution of

ee
x

= 1010x10 exp
(
1010x10

)

with one significant figure of accuracy. (I think you can do this without a calculator if you use
ln 2 ≈ 0.69 and ln 10 ≈ 2.30.)
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Figure 2.6: The function defined implicitly by 2.119.

Problem 2.17. The relation
xy = ex−y (2.119)

implicitly defines y as a function of x, or vice versa. See figure 2.6. View y as a function x, and
determine the x → ∞ behavior of this function. Calculate enough terms to guess the form of
the expansion. Then consider x → 0 and do the same. Bonus: Find the closest points to the
origin on this curve.
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Lecture 3

Ordinary differential equations

3.1 Initial value problems: the projectile problem

If one projects a particle vertically upwards from the surface of the Earth at z = 0 with speed
u then the projectile reaches a maximum height h = u2/2g0 and returns to the ground at
t = 2u/g0 (ignoring air resistance). The particle spends as much time going up as coming
down. At least that’s what happens if the gravitational acceleration g0 is constant and if there
is no air resistance. But a better model is that the gravitational acceleration is

g(z) =
g0

(1 + z/R)2
, (3.1)

where g0 = 9.81m s−2, R = 6 371kilometers and z is the altitude. The particle stays aloft longer
than 2u/g0 because gravity is weaker up there.

Let’s use perturbation theory to calculate the correction to the time aloft due to the small
decrease in the force of gravity. But first, before the perturbation expansion, we begin with a
complete formulation of the problem. We must solve the second-order autonomous differential
equation

d2z

dt2
= − g0

(1 + z/R)2
, (3.2)

with the initial condition

t = 0 : z = 0 and
dz

dt
= u . (3.3)

We require the time τ at which z(τ) = 0. If R = ∞ we recover the elementary problem with
uniform gravity.

An important part of this problem is non-dimensionalizing and identifying the small pa-
rameter used to organize a perturbation expansion. We use the elementary problem (R = ∞)
to motivate the following definition of non-dimensional variables

z̄
def
=

g0z

u2
, and t̄

def
=

g0t

u
. (3.4)

To recast the problem using non-dimensional variables

d

dt
=
g0
u

d

dt̄
, and therefore

d2z

dt2
=
(g0
u

)2 d2

dt̄2
u2

g0
z̄ = g0

d2z̄

dt̄2
. (3.5)
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Putting these expressions into (3.2) we obtain the non-dimensional problem

d2z̄

dt̄2
+

1

(1 + ϵz̄)2
= 0 , (3.6)

where

ϵ
def
=

u2

Rg0
. (3.7)

We must also non-dimensionalize the initial conditions in (3.3):

t̄ = 0 : z̄ = 0 and
dz̄

dt̄
= 1 . (3.8)

At this point we have done nothing more than change notation. The original problem was
specified by three parameters, g0, u and u. The non-dimensional problem is specified by a
single parameter ϵ, which might be large, small, or in between. If we’re interested in balls and
bullets fired from the surface of the Earth then ϵ≪ 1.

OK, so assuming that ϵ ≪ 1 we try a regular perturbation expansion on (3.6). We also
drop all the bars that decorate the non-dimensional variables: we can restore the dimensions
at the end of the calculation and it is just too onerous to keep writing all those little bars. The
regular perturbation expansion is

z(t) = z0(t) + ϵz1(t) + ϵ2z2(t) + O
(
ϵ3
)
. (3.9)

We use the binomial theorem

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 + O

(
x3
)
, (3.10)

with n = −2 to expand the nonlinear term:

(1 + ϵz)−2 = 1 − 2ϵz + 3ϵ2z2 + O
(
ϵ3
)
. (3.11)

Introducing (3.9) into the expansion above gives

(1 + ϵz)−2 = 1 − 2ϵz0 + ϵ2(3z20 − 2z1) + O
(
ϵ3
)
. (3.12)

So matching up equal powers of ϵ in (3.6) (and denoting time derivatives by dots) we obtain
the first three terms in perturbation hierarchy:

z̈0 = −1 , with z0(0) = 0 , ż0(0) = 1 ,

z̈1 = 2z0 , with z1(0) = 0 , ż1(0) = 0 ,

z̈2 = 2z1 − 3z20 , with z2(0) = 0 , ż2(0) = 0 .

Above we have the first three terms in a hierarchy of linear equations of the form

Lzn+1 = R(z0, · · · zn) , (3.13)

where the linear operator is

L
def
=

d2

dt2
. (3.14)

To solve each term in the hirerarchy we must invert this linear operator, being careful to use
the correct initial equations that with n ≥ 1, zn+1(0) = żn+1(0) = 0.
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The solution of the first two equations is

z0(t) = t− t2

2
, and z1(t) =

t3

3
− t4

12
. (3.15)

To obtain z2(t) we integrate

z̈2 = −3t2 +
11t3

3
− 11t4

12
, (3.16)

to obtain

z2(t) = − t
4

4
+

11t5

60
− 11t6

360
. (3.17)

Thus the expanded solution is

z(t) = t− t2

2
+ ϵ

(
t3

3
− t4

12

)
+ ϵ2

(
− t

4

4
+

11t5

60
− 11t6

360

)
+ O

(
ϵ3
)
. (3.18)

We assume that the time aloft, τ(ϵ), also has a perturbation expansion

τ(ϵ) = τ0 + ϵτ1 + ϵ2τ2 + O
(
ϵ3
)
. (3.19)

The terms in this expansion are determined by solving:

z0
(
τ0 + ϵτ1 + ϵ2τ2

)
+ ϵz1 (τ0 + ϵτ1) + ϵ2z2 (τ0) = O

(
ϵ3
)
. (3.20)

We have ruthlessly ditched all terms of order ϵ3 into the garbage heap on the right of (3.20).
The left side is a polynomial of order τ6 so there are six roots. One of these roots is τ = 0 and
another root is close to τ = 2. The other four roots are artificial creatures of the perturbation
expansion and should be ignored – if we want the time aloft then we focus on the root near
τ = 2 by taking τ0 = 2 in (3.19). Expanding the zn’s in a Taylor series about τ0 = 2, we have:

z0(2) + (ϵτ1 + ϵ2τ2)ż0(2) + 1
2(ϵτ1)

2z̈0(2) + ϵz1(2) + ϵ2τ1ż1(2) + ϵ2z2(2) = O
(
ϵ3
)
. (3.21)

Now we can match up powers of ϵ:

z0(2) = 0 ,

τ1ż0(2) + z1(2) = 0 ,

τ2ż0(2) + 1
2τ

2
1 z̈0(2) + τ1ż1(2) + z2(2) = 0 .

Solving1 these equations, one finds

τ = 2 +
4

3
ϵ+

4

5
ϵ2 + O(ϵ3) .

The Taylor series above is another procedure for generating the expansion of a regularly per-
turbed root of a polynomial.

1Some intermediate results ż0(2) = −1, z1(2) = 4/3, ż1(2) = 4/3 and z2(2) = −4/45.
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Attempted solution of the projectile problem by iteration

We’re considering the differential equation

d2z

dt2
+

1

(1 + ϵz)2
= 0 , (3.22)

again. Our first iterate is

z(0) = t− t2

2
, (3.23)

which is the same as the first term in the earlier RPS. To obtain the next iterate, z(1)(t), we
try to solve

d2z(1)

dt2
+

1
(

1 + ϵ
(
t− t2

2

))2 = 0 , (3.24)

with the initial condition
z(1) = 0 , ż(1)(0) = 1 . (3.25)

We could assault this problem with mathematica:

DSolve[{z’’[t] + 1/(1 + (t - t^2/2))^2 == 0 , z[0] == 0 , z’[0] == 1}, z[t], t]

However the answer is not presentable in polite company. In this example, the RPS back in
(3.18) is definitely superior to iteration.

3.2 Boundary value problems: belligerent drunks

A half-line problem x > 0

Suppose there is a bar at x = 0. The bar is a steady source of drunks who spill out onto the
street and then random walk along the positive x-axis. Violence ensues when drunks collide so
that there is some probability of mutual destruction. How does the density of drunks decrease
with distance form the bar? The mathematical description of this problem is based on the
density (drunks per meter) u(x, t), which is governed by the partial differential equation

ut = κuxx − µu2 , (3.26)

with boundary condition at the bar
u(0, t) = U . (3.27)

We’re modeling the bar using a Dirichlet boundary condition that fixes a constant density U .
The parameter µ models the lethality of the interaction between pairs of drunks.

Exercise: Show that with a suitable choice of non-dimensional time and space there are no dimensionless control
parameters in this problem i.e. there is a “canonical scaling”.

We look for a steady solution of (3.26) and proceed using dimensional variables. We look
for a solution of the form

u =
u∗

(x− x∗)p
. (3.28)

The strategy is to substitute into the steady equation

κuxx − µu2 = 0 (3.29)
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and make it work.
A quick preliminary calculation shows that p = 2. We also need to satisfy the boundary

condition (3.27). So we can simplify our ansatz to

u =
Ux2∗

(x− x∗)2
. (3.30)

We hope to find an x∗ < 0 (so that the singularity is outside the domain) that makes it work.
Noting that

ux =
2Ux2∗

(x− x∗)3
, uxx =

6Ux2∗
(x− x∗)4

(3.31)

we find

x2∗2 =
6κ

µU
⇒ x∗ = −

√
6κ

µU
. (3.32)

We take the negative root so that singularity is outside the domain. The solution is

u =
6κU

(√
µU x+

√
6κ
)2 . (3.33)

A finite interval 0 < x < ℓ

Suppose there are at x = 0 and x = ℓ. The bars are a steady source of drunks who spill out
onto the street and then random walk along the x-axis. Violence ensues when drunks collide
so that there is some probability of mutual destruction. What is the density of drunks on the
stretch of sidewalk between x = 0 and x = ℓ? The mathematical description of this problem
is based on the density (drunks per meter) u(x, t), which is governed by the partial differential
equation

ut = κuxx − µu2 , (3.34)

with boundary conditions at the bars

u(0, t) = u(ℓ, t) = U . (3.35)

We’re modeling the bars using a Dirichlet boundary condition – outside each bar there is a
constant density U . The parameter µ models the lethality of the interaction between pairs of
drunks.

Discussion: Why does lethality vary quadratically with density u in this model? How would the formulation
change if the drunks peacefully ignore each other but have a constant probability per unit time of dropping
dead.

If we integrate (3.34) from x = 0 to ℓ we obtain

d

dt

∫ ℓ

0
udx =

[
κux

]ℓ
0
−
∫ ℓ

0
µu2 dx . (3.36)

You should be able to interpret each term in this budget.
First order of business is to non-dimensionalize the problem. How many control parameters

are there? With the definitions

t̄
def
=

4κt

ℓ2
, x̄

def
=

2x

ℓ
− 1 , and ū

def
=

u

U
, (3.37)
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we quickly find that the scaled boundary value problem is

ut = uxx − αu2 , with BCs u(±1) = 1 . (3.38)

There is a single control parameter

α
def
=

ℓ2µU

4κ
. (3.39)

We made an aesthetic decision to put the boundaries at x = ±1. This means we are using ℓ/2
as the unit of length and ℓ2/4κ as the unit of time.

Looking for a steady solution (ut = 0) to the partial differential equation, we consider the
nonlinear boundary value problem

uxx = αu2 , with BCs u(±1) = 1. (3.40)

The weakly interacting limit α≪ 1

If α≪ 1 – the weakly interacting limit – we can use an RPS

u = u0(x) + αu1(x) + · · · (3.41)

and
u2 = u20 + α2u0u1 + α2

(
2u0u2 + u21

)
+ · · · (3.42)

The leading-order problem is

u0xx = 0 , with BCs u0(±1) = 1 , (3.43)

and the solution is simply
u0(x) = 1 . (3.44)

At subsequent orders, the BCs are homogeneous. For example, the first-order problem is

u1xx = u20︸︷︷︸
=1

, with BCs u1(±1) = 0 . (3.45)

The solution is
u1(x) = −1

2(1 − x2) . (3.46)

At second order

u2xx = 2u0u1 = −
(
1 − x2

)
, with u2(±1) = 0 . (3.47)

The solution is

u2(x) =
x4

12
− x2

2
+

5

12
= 1

12

(
1 − x2

) (
5 − x2

)
. (3.48)

For those with obsessive-compulsive tendencies it is always tempting to calculate more terms:
the next term is

u3xx = 2u0u2 + u21 , with u3(±1) = 0 , (3.49)

with solution

u3 = − 1
72

(
1 − x2

) (
31 − 8x2 + x4

)
. (3.50)
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Figure 3.1: Comparison of the perturbation solution for u(x, 0.5) with numerical solution obtained by
the matlab routine bvp4c; the bvp4c solution is the black solid curve. The approximation 1 + αu1 is
green dashed, the three-term expansion is red solid, the four-term expansion is blue dash-dot and the
five term expansion in (3.53) is cayan solid.

And another
u4xx = 2u0u3 + 2u1u2 , with u4(±1) = 0 , (3.51)

with solution

u4(x) = 1
504

(
1 − x2

) (
251 − 71x2 + 13x4 − x6

)
. (3.52)

I solved the boundary value problems in (3.49) and (3.51) with the mathematica routine
DSolve. Figure 3.1 compares the perturbation solution at α = 0.5 with a numerical solution
obtained using the matlab routine bvp4c. Even with 5 terms the agreement is only so so – we
need more terms. Using the five-term perturbation series above at x = 0, the concentration at
the center of the domain is

u(0, α) = 1 − α

2
+

5α2

12
− 31α3

72
+

251α4

504
+ O

(
α5
)
. (3.53)

We extend this series below in (3.66)
At every step of the perturbation hierarchy we are inverting the linear operator d2/dx2

with homogeneous Dirichlet boundary conditions. You should recognize that all the regular
perturbation problems we’ve seen have this structure. There is a general result – the implicit
function theorem – which assures us that if we know how to solve these reduced linear problems,
with invertible linear operators, then the original problem has a solution for some sufficiently
small value of the expansion parameter (α in the problem above).

Example: Let’s consider a different approach to solving the boundary value problem

uxx = αu2 , with BCs u(±1) = 1 . (3.54)

Following our discussion of energy conservation for nonlinear oscillators, we multiplying the equation by
ux and integrate to obtain

1
2
u2
x = α

3
u3 + constant . (3.55)

Let c(α)
def
= u(0, α) be the unknown concentration at the center of the domain, where ux(0, α) = 0.

Evaluating the equation above at x = 0 we see that the constant of integration is −αc3/3. Next, take the
square root, separate the variables and integrate from x′ = 0 to x > 0 to obtain∫ u

c

du′
√
u′3 − c3

=

√
2α

3
x . (3.56)
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Figure 3.2: In both panels the solid black curve is c(α) defined implicitly by (3.58); the integral is
evaluated with the matlab routine integral. In the left panel the implicit solution is compared with
the α → ∞ approximation in (3.62). In the right panel the implicit solution is compared to the series
in (3.66).

(We take the positive square root because if x > 0 then ux > 0.) Evaluating (3.56) at x = 1 we obtain∫ 1

c

du′
√
u′3 − c3

=

√
2α

3
. (3.57)

Tidy up by changing variables to v = u′/c:√
2αc

3
=

∫ c−1

1

dv√
v3 − 1

. (3.58)

The expression in (3.58) is convenient for numerical work: we can graph the relation between c and α by
specifying c in the range 0 < c < 1 and evaluating α by numerical quadrature (see figure 3.2).

The form in (3.58) is useful in the limit α → ∞ and c → 0: an asymptotic approximation to c is obtained
by √

2αc

3
=

∫ ∞

1

dv√
v3 − 1

−
∫ ∞

c−1

dv√
v3 − 1

, (3.59)

≈ 2
√
π
Γ (7/6)

Γ (2/3)
−
∫ ∞

c−1

dv

v3/2
, (3.60)

= 2
√
π
Γ (7/6)

Γ (2/3)︸ ︷︷ ︸
=2.42865

−2
√
c . (3.61)

Solving (3.61) for c, we obtain the approximation

c ∼

(
2.42865

2 +
√

2α/3

)2

, as α → ∞. (3.62)

The left panel of figure 3.2 compares this approximation with the result from numerical evaluation of the
integral in (3.58).

Note I have written ∼ in (3.61) – this is unjustified because I haven’t displayed the asymptotic sequence
used to construct the approximation, nor indicated how one might obtain more terms. On the other hand,
the large-α comparison with the “exact” solution is splendid – careful justification of the approximation
(3.62) seems pointless. This is often the case when we compare asymptotic solutions with numerical
solutions.

One can also use (3.58) to reproduce and extend the α → 0 approximation in (3.53). Changing variables
to w = v − 1:

√
2αc =

∫ f

0

dw

w

(
1 + w + 1

3
w2)−1/2

, (3.63)
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where f
def
= c−1 − 1 ≪ 1. Using mathematica

√
2αc =

∫ f

0

dw

w

(
1− w

2
+

5w2

24
+ · · ·

)
, (3.64)

= 2f1/2 − f3/2

3
+

f5/2

12
+ · · · (3.65)

Squaring the expression above and using InverseSeries to express c in terms of α one eventually arrives
at

c = 1− α

2
+

5α2

12
− 31α3

72
+

251α4

504
− 5599α5

9072
+

43615α6

54432
− 10657285α7

9906624

+
25157603α8

16982784
− 4452284365α9

2139830784
+

241448268505α10

81313569792
+O

(
α11) . (3.66)

The coefficients are growing slowly – this series may have a non-zero radius of convergence. The right
panel of figure 3.2 compares partial sums of (3.66) to the exact solution. This example is frustrating: the
function c(α) is only slightly bent in the range 0 ≤ α ≤ 1. Yet the series (3.66) is ineffective beyond about
α = 0.5. This may be a job for Padé summation.

3.3 Dominant balance and ODEs

Dominant balance is an important method for local analysis of ordinary differential equations.

Example: Dawson’s function

Consider the first-order linear differential equation

D′ + 2xD = 1 , (3.67)

with initial condition D(0) = 0. Using an integrating factor we obtain the solution

D(x) = e−x
2

∫ x

0
et

2
dt . (3.68)

The function D(x) occasionally occurs in the solution of diffusion problems. It is important
enough to have a name: Dawson’s function. Dawson’s function is hardwired in matlab and
other computational environments. See the graph in figure 3.3.

Small x: How does D behave as x → 0? We seek a two-term dominant balance in (3.67).
There is only one choice consistent with the initial condition D(0) = 0:

D′ ?
≈ 1 , ⇒ D ≈ x , as x→ 0. (3.69)

This is consistent because the neglected term is 2xD = 2x2 ≪ x as x→ 0.
If we need more terms in the series then we can use iteration. Rearrange (3.67) to

D′ = 1 − 2xD︸︷︷︸
small

, (3.70)

and use the scheme
D(n+1)′ = 1 − 2xD(n) . (3.71)

With D(0) = x we find

D(1) = x− 2
3x

3 , and D(2) = x− 2
3x

3 + 4
15x

5 . (3.72)
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Figure 3.3: Dawson’s function and some x≫ 1 approximations.

Each time through the loop we get an extra term in Taylor series expansion of D(x).
Once we know that the solution of this problem is a Taylor series it may be more efficient

to substitute a series into the equation and determine the coefficients by matching powers of x.
But dominant balance followed by a one or two passes through the iteration loop is the best
way to get started.

Large x: It seems more difficult to understand the x ≫ 1 behaviour of D. The integral
representation in (3.68) is particularly opaque. Dominant balance to the rescue. Balancing the
second and third terms in (3.67) we have

2xD
?
≈ 1 , ⇒ D ∼ 1

2x
, as x→ ∞. (3.73)

As x → ∞ the neglected term D′ is much less than the retained terms: this is a consistent
x→ ∞ dominant balance and it compares well with the matlab result in figure 3.3.

We can now use iteration to improve on (3.73). Rewrite (3.67) as

D =
1

2x
− D′

2x
. (3.74)

The iterative scheme is

D(n+1) =
1

2x
− D(n)′

2x
(3.75)

where D(0) = 1/2x. Going twice through the loop I found

D(1)(x) =
1

2x
+

1

4x3
, and D(2)(x) =

1

2x
+

1

4x3
+

3

8x4
. (3.76)

Figure 3.3 compares D(0)(x) and D(1)(x) with matlab’s Dawson function. At large x this is
splendid.

Exercise: Consider y′ + 2xy = 1 with y(0) = y0. Using the integrating factor solution show that all solutions
approach 1/2x as x → ∞.

Example: A singularly forced oscillator

Consider
ÿ + y = t−1/2 , (3.77)

with initial conditions y(0) = ẏ(0) = 0.
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Small t: There is a good dominant balance ÿ ≈ t−1/2 leading to

y ≈ 4

3
t3/2 , as t→ 0. (3.78)

We can obtain more terms by writing

ÿ = t−1/2 − y︸︷︷︸
small

(3.79)

and iterating. The first iteration shows that y = 4
3 t

3/2 − 16
105 t

7/2 + O(t11/2) as t → 0. This
small-time approximation compares well with numerical solution: see figure 3.4.

Large t: There is a consistent dominant balance y ≈ t−1/2. The neglected term is ÿ =
3
4 t

−5/2 ≪ t−1/2 as t→ ∞. Again use iteration

y =
1

t
− ÿ , ⇒ y ≈ 1

t
− 3

4t5/2
. (3.80)

There is a second consistent dominant balance

ÿ + y = 0 , ⇒ y ≈ a cos t+ b sin t . (3.81)

As t→ ∞ the neglected term t−1/2 is much less than the O(1) oscillation. Because this equation
is linear the large t solution is

y ≈ a cos t+ b sin t+
1

t1/2
− 3

4t5/2
+O(t−9/2). (3.82)

We cannot determine a and b, except by solving the equation with reduction of order or the
Green’s function method.

Exercise: Show that the dominant balance, ẍ ≈ t−1/2, is inconsistent as t → ∞.

Discussion: Pitfalls in numerical solution of this IVP.

Details: The Green’s function solution is

y =

∫ t

0

sin(t− t′)√
t′

dt′ ,

= sin t

∫ t

0

cos t′√
t′

dt′ − cos t

∫ t

0

sin t′√
t′

dt′ . (3.83)

With the change of variables

v
def
=

√
2t′

π
, and

dt′√
t′

=
√
2πdv , (3.84)

we express the integrals in (3.83) in terms of the Fresnel integrals:

y =
√
2π sin t

∫ √
2t/π

0

cos

(
πv2

2

)
dv︸ ︷︷ ︸

C(
√

2t/π)

−
√
2π cos t

∫ √
2t/π

0

sin

(
πv2

2

)
dv︸ ︷︷ ︸

S(
√

2t/π)

(3.85)

The Fresnel integrals C(z) and S(z) are fresnels and fresnelc in matlab and their main properties are
summarized in books on special functions and on the DLMF. So the result in (3.85) is not completely
useless. For instance, the DLMF tells us that

lim
z→∞

C(z) = lim
z→∞

S(z) =
1

2
. (3.86)

Therefore at large times the solution in (3.85) becomes

y ≈
√

π

2
sin t−

√
π

2
cos t . (3.87)

The solution is summarized in figure 3.4. At large times the numerical solution does not agree very well
with the approximation (3.87). Can you quantitatively explain the difference between the solid and dashed
curves in the upper panel of figure 3.4?
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Figure 3.4: The solid curve in the upper panel shows the solution in (3.85); the dashed curve is the
large-time approximation in (3.87). The solid curves in the lower panel are y and ẏ from (3.85) and the
dashed curves show the small-time approximations in y ≈ 4t3/2/3.
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Another example

Consider the second-order linear ode

y′′ +
(
x+ x−1

)
y = 0 . (3.88)

Let’s use iteration to construct a solution with initial condition

y(0) = 0 , and y′(0) = 1 . (3.89)

And then with the initial condition

y(0) = 1 , and y′(0) = 1 . (3.90)

3.4 Failure of RPS: singular perturbation problems

Let’s close by giving a few examples of differential equation that do not obligingly yield to RPS,
dominant balance and iteration.

Boundary layers

First, consider the boundary value problem (3.40) with α = ϵ−1 ≫ 1. In terms of ϵ, the problem
is

ϵuxx = u2 , with BCs u(±1) = 1 . (3.91)

We try the RPS
u = u0(x) + ϵu1(x) + · · · (3.92)

The leading order is
0 = u20 , with BCs u0(±1) = 1 . (3.93)

Immediately we see that there is no solution to the leading-order problem.
What’s gone wrong? Let’s consider a linear problem with the same issues:

ϵvxx = v , with BCs v(±1) = 1 . (3.94)

Again the RPS fails because the leading-order problem,

0 = v0 , with BCs v0(±1) = 1 , (3.95)

has no solution. The advantage of a linear example is that we can exhibit the exact solution:

v =
cosh(x/

√
ϵ)

cosh(1/
√
ϵ)
, (3.96)

see figure 3.5(a). The exact solution has boundary layers near x = −1 and x = +1. In these
regions v varies rapidly so that the term ϵvxx in (3.94) is not small relative to v. Note that the
leading order interior solution, v0 = 0 is a good approximation to the correct solution outside
the boundary layers. In this interior region the exact solution is exponentially small:

v(0, ϵ) =
1

cosh(1/
√
ϵ)

∼ 2e−1/
√
ϵ , as ϵ→ 0. (3.97)
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Figure 3.5: Solutions of some linear ODEs. Exercise: match the panels above with the ODEs in
section 3.4

Our attempted RPS is using ϵn as gauge functions and as ϵ→ 0

2e−1/
√
ϵ = O (ϵn) , for all n ≥ 0. (3.98)

As far as the ϵn gauge is concerned, e−1/
√
ϵ is indistinguishable from zero.

The problem in both examples above is that the small parameter ϵ multiplies the term
with the most derivatives. Thus the leading-order problem in the RPS is of lower order than
the exact problem. In fact, in the examples above, the leading-order problem is not even a
differential equation.

Rapid oscillations

Another linear problem that defeats a regular perturbation expansion is

ϵwxx = −w , with BCs w(±1) = 1 . (3.99)

The exact solution, shown in figure 3.5(b), is

w =
cos(x/

√
ϵ)

cos(1
√
ϵ)

. (3.100)

In this case the solution is rapidly varying throughout the domain. The term ϵwxx is never
smaller than w.
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Secular errors

Let’s consider a more subtle problem:

ẍ+ (1 + ϵ)x = 0 , with ICs x(0) = 1 , and ẋ(0) = 0 . (3.101)

The exact solution of this oscillator problem is

x(t, ϵ) = cos
(√

1 + ϵ t
)
. (3.102)

In this case it looks like the RPS

x(t, ϵ) = x0(t) + ϵx1(t) + ϵ2x2(t) + · · · (3.103)

might work. The leading-order problem is

ẍ0 + x0 = 0 , with ICs x0(0) = 1 , and ẋ0(0) = 0 . (3.104)

The solution is
x0 = cos t . (3.105)

In fact, this RPS does work for some time – see figure 3.5(c). But eventually the exact solution
(3.102) and the leading-order approximation in (3.105) have different signs. That’s a bad error
if x0(t) is a clock.

Maybe we can improve the approximation by calculating the next term? The order ϵ1

problem is
ẍ1 + x1 = − cos t , (3.106)

with homogeneous initial conditions

x1(0) = 0 , and ẋ1(0) = 0 . (3.107)

I hope you recognize a resonantly forced oscillator when you see it: the solution of (3.106) is

x1 = −1
2 t sin t . (3.108)

Thus the perturbation solution is now

x = cos t− ϵ12 t sin t+ O
(
ϵ2
)
. (3.109)

This first-order “correction” makes matters worse – see figure 3.5(d). The RPS in (3.109) is
“disordered” once ϵt = O(1): we don’t expect an RPS to work if the higher order terms are
larger than the earlier terms. Clearly there is a problem with direct perturbative solution of an
elementary problem.

In this example the term ϵx is small relative to the other two terms in differential equation
at all time. Yet the small error slowly accumulates over long times ∼ ϵ−1. Astronomers call
this a secular error2. We did not face secular errors in the projectile problem because we were
solving the differential equation only for the time aloft, which was always much less than 1/ϵ.

2From Latin saecula, meaning a long period of time. Saecula saeculorum is translated literally as “in a century
of centuries”, or more poetically as “forever and ever”, or “world without end”.
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3.5 Problems

Problem 3.1. (i) Consider the projectile problem with linear drag:

d2z

dt2
+ µ

dz

dt
= −g0 , (3.110)

and the initial conditions z(0) = 0 and dz/dt = u. Find the solution with no drag, µ = 0,
and calculate the time aloft, τ . (ii) Suppose that the drag is small – make this precise by non-
dimensionalizing the equation of motion and exhibiting the relevant small parameter ϵ. Hint:
non-dimensionalize so that (g0, u) 7→ (1, 1). (iii) Use a RPS to determine the first correction
to τ associated with non-zero drag. (iv) Find the time to reach maximum altitude. Does the
projectile take longer going up or coming down? (v) Integrate the non-dimensional differential
equation exactly and obtain a transcendental equation for τ(ϵ). Solve this transcendental
equation approximately in the limit ϵ→ 0. Make sure the ϵ→ 0 solution agrees with the earlier
RPS.

Problem 3.2. Consider the projectile problem with quadratic drag:

d2z

dt2
+ ν
∣∣∣dz
dt

∣∣∣dz
dt

= −g0 , (3.111)

and the initial conditions z(0) = 0 and dz/dt = u. (i) Explain why the absolute value |ż| in
(3.111) is necessary if this term is to model air resistance. (ii) What are the dimensions of
the coefficient ν? Nondimensionalize the problem so there is only one control parameter. (iii)
Suppose that ν is small. Use a regular perturbation expansion to determine the first correction
to the time aloft. (iv) Solve the nonlinear problem exactly and obtain a transcendental equation
for the time aloft. (This is complicated.)

Problem 3.3. In this problem we use energy conservation to obtain a solution to the projectile
problem which is superior to (3.18). (i) From the non-dimensional equation of motion (3.6),
show that

1
2 ż

2 − 1

ϵ

1

1 + ϵz
= 1

2 − 1
ϵ . (3.112)

(ii) Find the maximum height reached by the projectile, zmax, in terms of ϵ. (iii) Show that
the time aloft is given exactly by

τ = 2zmax

∫ 1

0

√
1 + aξ

1 − ξ
dξ , with a(ϵ)

def
=

ϵ

2 − ϵ
. (3.113)

(iv) Evaluate the integral above exactly. (e) Use mathematica or some other tool to obtain
the ϵ≪ 1 expansions

τ =
4

2 − ϵ

[
1 +

a

3
− a2

15
+
a3

35
− a4

63
+
a5

99
− a6

143
+ O

(
a7
)]

, (3.114)

and

τ = 2 +
4ϵ

3
+

4ϵ2

5
+

16ϵ3

35
+

16ϵ4

63
+

32ϵ5

231
+

32ϵ6

429
+ O

(
ϵ7
)
. (3.115)

Which series is superior?
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Figure 3.6: Numerical solution of (3.118) with various initial conditions. In this illustration
K1/K0 = 0.1 and ω/r = 2. At large time all initial conditions convergence to a periodic solution
that lags the carrying capacity.

Problem 3.4. (i) Consider a ball that is dropped from a height h, with gravity g0. Show that
if the ball bounces elastically on an ideal hard surface then the period of the bounce is

√
8h/g0.

To model an upwards repulsive force that acts smoothly as the ball approaches z = 0 we use

z̈ = −g0 +
β

z5
, (3.116)

with β > 0. The initial conditions are

z(0) = h , and ż(0) = 0 . (3.117)

If h is very large then the repulsive force is initially negligible and the ball falls freely for some
time. (ii) Nondimensionalize the problem and identify the non-dimensional parameter that
quantifies “h is very large”. (iii) Is the time to return to z = h greater or less than

√
8h/g?

(iv) Find the first correction to the bounce period resulting from this model of an elastic bounce.
(v) Repeat (iv), replacing z5 by zn in (3.116).

Problem 3.5. Consider the logistic equation with a periodically varying carrying capacity:

Ṅ = rN

(
1 − N

K

)
, with K = K0 +K1 cosωt . (3.118)

The initial condition is N(0) = N0. (i) Based on the K1 = 0 solution, non-dimensionalize this
problem. Show that there are three control parameters. (ii) Suppose that K1 is a perturbation
i.e. K1/K0 ≪ 1. The numerical solution in Figure 3.6 shows that eventually the initial condition
is “forgotten” and all solutions converge to a periodic oscillation about the mean carrying
capacity K0. Use perturbation theory to determine the amplitude and phase of the long-term
oscillation.

Problem 3.6. Consider a partial differential equation analog to the boundary value problem
in (3.40). The domain is the disc r =

√
x2 + y2 < a in the (x, y)-plane and the problem is

uxx + uyy = αu2 , with BC: u(a, θ) = U . (3.119)

Following the discussion in section 3.2, compute three terms in the RPS.
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Problem 3.7. Let’s make a small change to the formulation of the belligerent-drunks example
in (3.34) and (3.35). Suppose that we model the bars using a Neumann boundary condition.
This means that the flux of drunks, rather than the concentration, is prescribed at x = 0 and
ℓ: the boundary condition in (3.35) is changed to

κux(0, t) = −F , and κux(ℓ, t) = F , (3.120)

where F , with dimensions drunks per second, is the flux entering the domain from the bars.
Try to repeat all calculations in section 3.2, including the analog of the β ≪ 1 perturbation
expansion. You’ll find that it is not straightforward and that some ingenuity is required to
understand the weakly interacting limit with fixed-flux boundary conditions.

Problem 3.8. First read the section entitled Boundary layers. Inspired by the example in
that section, find an approximate solution of the boundary value problem:

10−12vxx = ex
4
v , with BCs v(±1) = 1 . (3.121)

If you can do this, you’ll be on on your way to understanding boundary layer theory.

Problem 3.9. Consider the non-dimensional oscillator problem

ẍ+ βẋ+ x = 0 , (3.122)

with the initial conditions
x(0) = 0 , and ẋ(0) = 1 . (3.123)

(i) Supposing that β > 2, solve the problem exactly. (ii) Show that if β ≫ 1 then the long-time
behaviour of your exact solution is

x ∝ e−t/β , (3.124)

i.e. the displacement very slowly decays to zero. (iii) Motivated by this exact solution, “rescale”
the problem (and the initial condition) by defining the slow time

τ
def
=

t

β
, (3.125)

and X(τ) =?x(t). Show that with a suitable choice of ?, the rescaled problem is

ϵXττ +Xτ +X = 0 , with the IC: X(0) = 0 , Xτ (0) = 1 . (3.126)

Make sure you give the definition of X(τ) and ϵ≪ 1 in terms of the parameter β ≫ 1 and the
original variable x(t). (iv) Try to solve the rescaled problem (3.126) using an RPS

X(τ, ϵ) = X0(τ) + ϵX1(τ) + · · · (3.127)

Discuss the miserable failure of this approach by analyzing the dependence of the exact solution
from part (i) on β. That is, simplify the exact solution to deduce a useful β → ∞ approximation,
and explain why the RPS (3.127) cannot provide this useful approximation.

Problem 3.10. Consider a medium −ℓ < x < ℓ in which the temperature θ(x, t) is determined
by

θt − κθxx = αeβθ , (3.128)
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with boundary conditions θ(±ℓ, t) = 0. The right hand side is a heat source due to an exothermic
chemical reaction. The simple form in (3.128) is obtained by linearizing the Arrhenius law. The
medium is cooled by the cold walls at x = ±ℓ. (i) Put the problem into the non-dimensional
form

ΘT − ΘXX = ϵeΘ with BCs Θ(±1, ϵ) = 0 . (3.129)

Your answer should include a definition of the dimensionless control parameter ϵ in terms of
κ, α, β and ℓ. (ii) Assuming that ϵ ≪ 1, calculate the steady solution Θ(X, ϵ) using a regular
perturbation expansion. Obtain two or three non-zero terms and check your answer by showing
that the “central temperature” is

C(ϵ)
def
= Θ(0, ϵ) , (3.130)

=
ϵ

2
+

5ϵ2

24
+

47ϵ3

360
+ O

(
ϵ4
)
. (3.131)

(iii) Develop an approximate solution with iteration. (iv) Integrate the steady version of (3.129)
exactly and deduce that:

e−C/2 tanh−1
√

1 − e−C︸ ︷︷ ︸
def
=F (C)

=

√
ϵ

2
. (3.132)

(Use mathematica to do the integral.) Plot the function F (C) and show that there is no
steady solution if ϵ > 0.878. (v) Based on the graph of F (C), if ϵ < 0.878 then there are
two solutions. There is the “cold solution”, calculated perturbatively in (3.131), and there is a
second “hot solution” with a large central temperature. Find an asymptotic expression for the
hot central temperature as ϵ→ 0.

Problem 3.11. Consider the perturbed first-order autonomous differential equation

ẋ = f(x) + ϵ p(x, t) , with IC x(0) = 0. (3.133)

If we use an RPS, x0(t) + ϵx1(t) + · · · , then the leading-order term is defined by

ẋ0 = f(x0) , with IC x0(0) = 0. (3.134)

(i) Show that

x(t) = x0(t) + ϵf0 (x0(t))

∫ t

0

p (x0(t
′), t′)

f (x0(t′))
dt′ +O

(
ϵ2
)
. (3.135)

(ii) Check the formula above by considering the special perturbations p(x, t) = f(x) and
p(x, t) = s(t)f(x) where s is some function of t alone.

Problem 3.12. As a model of combustion triggered by a small perturbation, consider

ẋ = x2(1 − x) , x(0) = ϵ . (3.136)

(i) Start with the simpler problem

ẏ = y2 , y(0) = ϵ . (3.137)

Explain why problem (3.137) is a small-time approximation to problem (3.136). (ii) Use sep-
aration of variables to find the exact solution of (3.137) and show that y(t) reaches ∞ in a
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Figure 3.7: The exact solution of (3.136) (the solid curve) compared with large and small time
approximations.

finite time. Let’s call this the “blow-up” time, t⋆(ϵ). Determine the function t⋆(ϵ). (iii) Use a
phase-line analysis to show that the solution of (3.136) never reaches ∞ – in fact:

lim
t→∞

x(t; ϵ) = 1 . (3.138)

(iv) Use separation of variables to find the exact solution of (3.136); make sure your solution
satisfies the initial condition. (I encourage you to do the integral with Mathematica or Maple.)
(v) At large times x(t, ϵ), is somewhere close to 1. Simplify the exact solution from (iv) to
obtain an explicit (i.e. exhibit x as a function of t) large-time solution. Make sure sure you
explain how large t must be to ensure that this approximate solution is valid. (vi) Summarize
your investigation with a figure such as 3.7.
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Lecture 4

Why integrals?

Integrals occur frequently as the solution of partial and ordinary differential equations, and
as the definition of many “special functions”. The coefficients of a Fourier series are given as
integrals involving the target function etc. Green’s function technology expresses the solution
of a differential equation as a convolution integral etc. Integrals are also important because
they provide the simplest and most accessible examples of concepts such as asymptoticity and
techniques such as asymptotic matching.

4.1 First-order linear differential equations

Linear first order differential equations, such as

y′ − xy = −1 , with initial condition lim
x→∞

y(0) = 0 , (4.1)

can be solved with the integrating-factor method. This delivers y(x) as an integral. In the case
above we find

y(x) = ex
2/2

∫ x

0
e−t

2/2 dt . (4.2)

How does the solution behave as x becomes large? The easy answer is

y(x) ∼ ex
2/2

∫ ∞

0
e−t

2/2 dt

︸ ︷︷ ︸
=??

, as x→ ∞. (4.3)

Remark: This might be an opportune moment to define asymptotic equivalence “∼”.

Reminder: Evaluation of the Gaussian integral. Is this a reminder?

Suppose we consider a slightly different problem:

z′ − xz = −1 , with lim
x→∞

z(x) = 0 . (4.4)

In this case the solution, if there is a solution, must be

z(x) = ex
2/2

∫ ∞

x
e−t

2/2 dt . (4.5)

But you might feel nervous because the factor ex
2/2 is growing very fast as x → ∞. Our hope

is that the integral is decaying even faster so that the product on the right of (4.5) satisfies the
requirement that as x→ ∞, z(x) → 0. Later when we learn more about asymptotic evaluation
of integrals we’ll see that this is, in fact, the case.

Remark: Or consider applying L’Hôpital’s rule to (4.5).
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Figure 4.1: The functions Ai(x) and Bi(x). The Airy function decays rapidly as x → ∞ and
rather slowly as x→ −∞ .

4.2 Second-order linear differential equations

Airy’s equation,
y′′ − xy = 0 , (4.6)

is an important second-order differential equation. The two linearly independent solutions,
Ai(x) and Bi(x), are shown in figure 13.7. The Airy function, Ai(x), is defined as the solution
that decays as x→ ∞, with the normalization

∫ ∞

−∞
Ai(x) dx = 1 . (4.7)

We obtain an integral representation of Ai(x) by attacking (13.78) with the Fourier transform.
Denote the Fourier transform of Ai by

Ãi(k) =

∫ ∞

−∞
Ai(x)e−ikx dx . (4.8)

Fourier transforming (13.78), we eventually find

Ãi(k) = eik
3/3 . (4.9)

Using the Fourier integral theorem

Ai(x) =

∫ ∞

−∞
eikx+ik3/3dk

2π
, (4.10)

=
1

π

∫ ∞

0
cos

(
kx+

k3

3

)
dk . (4.11)

Notice that the integral converges at k = ∞ because of destructive interference or catastrophic
cancellation.

We’ll develop several techniques for extracting information from integral representations
such as (4.11). We’ll show that as x→ −∞:

Ai(x) ∼ 1
√
π|x|1/4

cos

(
2|x|3/2

3
− π

4

)
, (4.12)

and as x→ +∞:

Ai(x) ∼ e−
2x3/2

3

2
√
πx1/4

. (4.13)

Exercise: Fill in the details between (4.8) and (4.9).
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4.3 Recursion relations: the example n!

The factorial function
an = n! (4.14)

satisfies the recursion relation

an+1 = (n+ 1)an , a0 = 1 . (4.15)

The integral representation

an =

∫ ∞

0
tne−t dt (4.16)

is equivalent to both the initial condition and the recursion relation. The proof is integration
by parts:

∫ ∞

0
tn+1e−t dt = −

∫ ∞

0
tn+1 d

dt
e−t dt , (4.17)

= − [tn+1e−t]∞0︸ ︷︷ ︸
=0

+(n+ 1)

∫ ∞

0
tne−t dt . (4.18)

Exercise: Memorize

n! =

∫ ∞

0

tne−t dt . (4.19)

Later we will use the integral representation (4.19) to obtain Stirlings approximation:

n! ∼
√

2πn
(n

e

)n
, as n→ ∞. (4.20)

Exercise: Compare Stirling’s approximation to n! with n = 1, 2 and 3.

4.4 Special functions defined by integrals

The Gamma function: Γ(z)
def
=
∫∞
0

tz−1e−t dt , for ℜz > 0.

There are many other examples of special functions defined by integrals. Probably the most
important is the Γ-function, which is defined in the heading of this section – see Figure 4.2. If
ℜz > 0 we can use integration by parts to show that Γ(z) satisfies the functional equation

zΓ(z) = Γ(z + 1) . (4.21)

Using analytic continuation1 this result is valid for all z ̸= 0, −1, −2 · · · Thus the functional
equation (4.21) is used to extend the definition of Γ-function throughout the complex plane.
Notice that if z is an integer, n, then

Γ(n+ 1) = n! (4.22)

The special value

Γ

(
1

2

)
=

∫ ∞

0

e−t√
t

dt =

∫ ∞

−∞
e−u

2
du =

√
π (4.23)

is important.

1If f(z) and g(z) are analytic in a domain D, and if f = g in a smaller domain E ⊂ D, then f = g throughout
D.
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Figure 4.2: The Γ-function and its reciprocal.

Exercise: Use the functional equation (4.21) to obtain Γ(3/2) and Γ(−1/2).

Exercise: Use the functional equation (4.21) to find the leading order behaviour of Γ(z) near z = 0 and z = −1,
and other negative integers. Work backwards and show that

Γ(x) ∼ (−)n

n!

1

x+ n
, as x → −n.

Thus Γ(z) has poles at z = 0, −1, · · · with residues (−)n/n!.

Other special functions defined by integrals

A prominent example is the error function

erf(z)
def
=

2√
π

∫ z

0
e−t

2
dt , and its complement erfc(z)

def
= 1 − erf(z) . (4.24)

Another important example is the exponential integral of order n:

En(z)
def
=

∫ ∞

z

e−t

tn
dt . (4.25)

We refer to the case n = 1 simply as the “exponential integral”.
Example: Singularity subtraction – small z behavior of En(z).

4.5 Elementary methods for evaluating integrals

Change of variables

How can we evaluate the integral ∫ ∞

0
e−t

3
dt ? (4.26)
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Try a change of variable

v = t3 and therefore dv = 3t2dt = 3v2/3dt . (4.27)

The integral is then
1

3

∫ ∞

0
e−vv−2/3 dv =

1

3
Γ

(
1

3

)
= Γ

(
4

3

)
. (4.28)

Exercise: Evaluate in terms of the Γ-function

U(α, p, q)
def
=

∫ ∞

0

tqe−αtp dt .

Exercise: Show that

L[tp] =
∫ ∞

0

tpe−st dt =
Γ(1 + p)

s1+p
. (4.29)

Differentiation with respect to a parameter

Given that √
π

2
=

∫ ∞

0
e−x

2
dx , (4.30)

we can make the change of variables x =
√
tx′ and find that

1

2

√
π

t
=

∫ ∞

0
e−tx

2
dx . (4.31)

We now have an integral containing the parameter t.
To evaluate ∫ ∞

0
x2e−tx

2
dx , (4.32)

we differentiate (4.31) with respect to t to obtain

1

4

√
π

t3
=

∫ ∞

0
x2e−tx

2
dx , and again

3

8

√
π

t5
=

∫ ∞

0
x4e−tx

2
dx . (4.33)

Differentiation with respect to a parameter is a very effective trick. For some reason it is not
taught to undergraduates.

How would you calculate  L[tp ln t]? No problem – just notice that

∂pt
p = ∂pe

p ln t = tp ln t , (4.34)

and then take the derivative of (4.29) with respect to p

 L[tp ln t] =
Γ′(1 + p)

s1+p
− Γ(1 + p) ln s

s1+p
, (4.35)

=
Γ(1 + p)

s1+p
[ψ(1 + p) − ln s] , (4.36)

where the digamma function

ψ(z)
def
=

Γ′(z)

Γ(z)
(4.37)

is the derivative of ln Γ.

65



4.6 Complexification

Consider

F (a, b) =

∫ ∞

0
e−at cos bt dt , (4.38)

where a > 0. Then

F = ℜ
∫ ∞

0
e−(a+ib)t dt , (4.39)

= ℜ 1

a+ ib
= ℜ a− ib

a2 + b2
, (4.40)

=
a

a2 + b2
. (4.41)

As a bonus, the imaginary part gives us

b

a2 + b2
=

∫ ∞

0
e−at sin btdt . (4.42)

Derivatives with respect to the parameters a and b generate further integrals.

Contour integration

The theory of contour integration is an example of complexification. As revision we’ll consider
examples that illustrate important techniques.

Example: Consider the Fourier transform

f(k) =

∫ ∞

−∞

e−ikx

1 + x2
dx . (4.43)

We evaluate this Fourier transform using contour integration to obtain

f(k) = πe−|k| . (4.44)

Note particularly the |k|: if k > 0 we must close in the lower half of the z = x+ iy plane, and if k < 0 we
close in the upper half plane.

Example Let’s evaluate

Ai(0) =
1

π

∫ ∞

0

cos

(
k3

3

)
dk (4.45)

via contour integration. We consider a slightly more general integral

J(α) =

∫ ∞

0

eiαv3

dv , (4.46)

= |α|−1/3

∫ ∞

0

eisgn(α)x3

dx . (4.47)

Thus if we can evaluate J(1) we also have J(α), and in particular ℜJ(1/3), which is just what we need
for Ai(0). But at the moment it may not even be clear that these integrals converge – we’re relying on the
destructive cancellation of increasingly wild oscillations as x → ∞, rather than decay of the integrand, to
ensure convergence.

To evaluate J(1) we consider the entire analytic function

f(z) = eiz
3

= eir
3e3iθ = exp

[
y3 − 3x2y + i (x3 − 3xy2)︸ ︷︷ ︸

=the phase of z3

]
. (4.48)
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/6

z = x
π/6

Figure 4.3: The pie contour ABC in the complex plane (z = x + iy = reiθ) used to evaluate
J(1) in (4.47). The ray AC is a contour of constant phase: z3 = ir3 and exp(iz3) = exp(−r3).

Notice from Cauchy’s theorem that the integral of f(z) over any closed path in the z-plane is zero. In
particular, using the pie-shaped path ABC in the figure,

0 =

∫
ABC

eiz
3

dz . (4.49)

The pie-path ABC is cunningly chosen so that the segment CA (where z = reiπ/6) is a contour of constant
phase, so called because

f(z) = e−r3 on AC. (4.50)

On CA phase of f(z) is a constant, namely zero.

Now write out (13.85) as

0 =

∫ R

0

eix
3

dx︸ ︷︷ ︸
→J(1)

+

∫ π/6

0

eiR
3e3iθ iReiθdθ︸ ︷︷ ︸

=M(R)

+

∫ 0

R

e−r3 dr . (4.51)

Note that on the arc BC, z = Reiθ and dz = iReiθdθ – we’ve used this in M(R) above.

We consider the limit R → ∞. If we can show that the term in the middle, M(r), vanishes as R → ∞
then we will have

J(1) =

∫ ∞

0

e−r3 dr . (4.52)

The right of (4.52) is a splendidly convergent integral and is readily evaluated in terms of our friend the
Γ-function.

So we now focus on the troublesome M(R):

|M(R)| = R
∣∣∣ ∫ π/6

0

eiR
3 cos 3θe−R3 sin 3θeiθ dθ

∣∣∣ ,
≤ R

∫ π/6

0

∣∣∣eiR3 cos 3θe−R3 sin 3θeiθ
∣∣∣ dθ ,

≤ R

∫ π/6

0

e−R3 sin 3θ dθ ,

< R

∫ π/6

0

e−R3(6θ/π) dθ , (4.53)

=
π

6R2

(
1− e−R3

)
,

→ 0 , as R → ∞ . (4.54)

At (4.53) we’ve obtained a simple upper bound2 using the inequality

sin 3θ >
6θ

π
, for 0 < θ <

π

6
. (4.55)

2This trick is a variant of Jordan’s lemma.
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An alternative is to change variables with v = sin 3θ so that∫ π/6

0

e−R3 sin 3θ dθ =
1

3

∫ 1

0

e−R3v dv√
1− v2

, (4.56)

and then use Watson’s lemma (from the next lecture). This gives a sharper bound on the arc integral.

The final answer is

Ai(0) =
31/3

π

∫ ∞

0

e−r3 dr =
Γ(1/3)

32/3π
. (4.57)

In the example above we used a constant-phase contour to evaluate an integral exactly. A
constant-phase contour is also a contour of steepest descent. The function in the exponential is

iz3 = y3 − 3x2y︸ ︷︷ ︸
=ϕ

+i (x3 − 3xy2)︸ ︷︷ ︸
=ψ

. (4.58)

On CA the phase is constant: ψ = 0. But from the Cauchy-Rieman equations

∇ϕ ·∇ψ = 0 , (4.59)

and therefore as one moves along CA one is moving parallel to ∇ϕ. One is therefore always
ascending or descending along the steepest direction of the surface formed by ϕ(x, y) above the
(x, y)-plane. Thus the main advantage to integrating along the constant-phase contour CA is
that the integrand is decreasing as fast as possible without any oscillatory behavior.

Example: Let’s prove the important functional equation

Γ(z)Γ(1− z) =

∫ ∞

0

vz−1

1 + v
dv =

π

sinπz
. (4.60)

Example: Later, in our discussion of the method of averaging, we’ll need the integral

A(κ) =
1

2π

∫ π

−π

dt

1 + κ cos t
. (4.61)

We introduce a complex variable

z = eit , so that dz = izdθ , and cos t = 1
2
z + 1

2
z−1 . (4.62)

Thus

A(κ) = − i

π

∫
C

dz

κz2 + 2z + κ
, (4.63)

= − i

πκ

∫
C

dz

(z − z+)(z − z−)
, (4.64)

where the path of integration, C, is a unit circle centered on the origin. The integrand has simple poles at

z± = κ−1 ±
√

κ−2 − 1 . (4.65)

The pole at z+ is inside C, and the other is outside. Therefore

A(κ) = 2πi×
(
− i

πκ

)
× 1

z+ − z−
, (4.66)

=
1√

1− κ2
. (4.67)

Mathematica, Maple and Gradshteyn & Ryzhik

Tables of Integrals Series and Products by I.S. Gradshteyn & I.M. Ryzhik is a good source for
look-up evaluation of integrals. Get the seventh edition – it has fewer typos.
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4.7 Problems

Problem 4.1. Use the elementary integral

1

n+ 1
=

∫ 1

0
xn dx , (4.68)

to evaluate

S(n)
def
=

∫ 1

0
xn ln

(
1

x

)
dx and R(n)

def
=

∫ 1

0
xn ln2

(
1

x

)
dx . (4.69)

Problem 4.2. Starting from

a

a2 + λ2
=

∫ ∞

0
e−ax cosλxdx , (4.70)

evaluate

I(a, λ) =

∫ ∞

0
x e−ax cosλx dx . (4.71)

For desert evaluate

J(a) =

∫ ∞

0
e−ax

sinx

x
dx . (4.72)

J(a) is an interesting Laplace transform.

Problem 4.3. Consider

F (a, b) =

∫ ∞

0
e−a

2u2−b2u−2
du . (4.73)

(i) Using a change of variables show that F (a, b) = a−1F (1, ab). (ii) Show that

∂F (a, b)

∂b
= −2F (1, ab) . (4.74)

(iii) Use the results above to show that f satisfies a simple first order differential equation;
solve the equation and show that

F (a, b) =

√
2π

2a
e−2ab . (4.75)

Problem 4.4. The harmonic sum is defined by

HN
def
=

N∑

n=1

1

n
. (4.76)

In this problem you’re asked to show that

lim
N→∞

(HN − lnN) = γE , (4.77)

where the Euler constant γE is defined in (4.84). (i) Prove that HN diverges by showing that

ln(1 +N) ≤ HN ≤ 1 + lnN . (4.78)
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Hint: compare HN with the area beneath the curve f(x) = x−1 – you’ll need to carefully select
the limits of integration. Your answer should include a careful sketch. (ii) Prove that

HN =

∫ 1

0

1 − xN

1 − x
dx . (4.79)

Hint : n−1 =
∫ 1
0 x

n−1 dx. (iii) Use matlab to graph

FN (x) ≡ 1 − xN

1 − x
, for 0 ≤ x ≤ 1, (4.80)

with N = 100. This indicates that FN (x) achieves its maximum value at x = 1. Prove that
FN (1) = N . These considerations should convince you that the integral in (4.79) is dominated
by the peak at x = 1. (iv) With a change of variables, rewrite (4.79) as

HN =

∫ N

0

[
1 −

(
1 − y

N

)N] dy

y
. (4.81)

(v) Deduce (4.77) by asymptotic evaluation, N → ∞, of the integral in (4.81).

Problem 4.5. Consider

B(n) =

∫ ∞

0

dt

(1 + t2)(1 + tn)
(4.82)

Plot the integrand on the interval 0 < t < 2 for n = 2, 4, 8 and 16. After studying this plot,
devise a simple n≫ 1 approximation to B(n) and test your approximation by comparison with
a numerical evaluation of B(n) with 0 ≤ n ≤ 40. You’ll know that you’ve done this problem
correctly if comparison of the numerical answer with your approximation is so surprising that
you’ll see the need for exact analytic evaluation of B(n).

Problem 4.6. Evaluate the Fresnel integral

F (α) =

∫ ∞

0
eiαx

2
dx . (4.83)

Problem 4.7. Euler’s constant is defined by

γE
def
= −Γ′(1) . (4.84)

(i) Show by direct differentiation of the definition of the Γ-function that:

γE = −
∫ ∞

0
e−t ln t dt . (4.85)

(ii) Judiciously applying IP to the RHS, deduce that

γE =

∫ 1

0

1 − e−t − e−t
−1

t
dt . (4.86)

Problem 4.8. This problem uses many3 of the elementary tricks you’ll need for real integrals.
(i) Show that

ln t =

∫ ∞

0

e−x − e−xt

x
dx . (4.87)

3But not all – there is no integration by parts.

70



(ii) From the definition of the Γ-function,

Γ(z)
def
=

∫ ∞

0
e−ttz−1 dt , ℜz > 0 , (4.88)

show that the digamma function is

ψ(z)
def
=

d ln Γ

dz
=

Γ′(z)

Γ(z)
=

∫ ∞

0

[
e−x − 1

(x+ 1)z

]
dx

x
, ℜz > 0 . (4.89)

Hint: Differentiate the definition of Γ(z) in (4.88), and use the result from part (i). (iii) Noting
that (4.89) implies

ψ(z) = lim
δ→0

[∫ ∞

δ

e−x

x
dx−

∫ ∞

δ

1

(x+ 1)z
dx

x

]
, ℜz > 0 , (4.90)

change variables with x+ 1 = eu in the second integral and deduce that:

ψ(z) =

∫ ∞

0

(
e−u

u
− e−zu

1 − e−u

)
du , ℜz > 0 . (4.91)

Explain in ten or twenty words why it is necessary to introduce δ in order to split the integral on
the RHS of (4.89) into the two integrals on the RHS of (4.90). (iv) We define Euler’s constant
as

γE
def
= −ψ(1) = −Γ′(1) = 0.57721 · · · (4.92)

Show that

ψ(z) = −γE +

∫ ∞

0

e−u − e−ux

1 − e−u
du ,

= −γE +

∫ 1

0

1 − vz−1

1 − v
dv .

(v) From the last integral representation, show that

ψ(z) = −γE +

∞∑

n=0

(
1

n+ 1
− 1

n+ z

)
.

Notice we can now drop the restriction ℜz > 0 – the beautiful formula above provides an
analytic extension of ψ(z) into the whole complex plane.

Problem 4.9. Use pie-shaped contours to evaluate the integrals

A =

∫ ∞

0

dx

1 + x3
, and B =

∫ ∞

0
cosx2 dx . (4.93)

Problem 4.10. Use the Fourier transform to solve the dispersive wave equation

ut = νuxxx , with IC u(x, 0) = δ(x). (4.94)

Express the answer in terms of Ai.

Problem 4.11. Solve the half-plane (y > 0) boundary value problem

yuxx + uyy = 0 (4.95)

with u(x, 0) = cos qx and limy→∞ u(x, y) = 0. Is there a y < 0 solution?

71



Lecture 5

Some easy integrals

In this lecture I’ll give you a superpower so that you’ll be able to approximately evaluate these
integrals

A =

∫ 23

0
e−17t

√
1 + t7 dt , B =

∫ 2

0
cos(πt)e11t

7
dt , C =

∫ ∞

0

e13e
−t

√
1 + t3

dt , (5.1)

by inspection. Other integrals, such as

D =

∫ 2

−1

dt

(cosh t)29
, and E =

∫ 1

−1
e−29(1+t)2

√
2 + t2 dt , (5.2)

will offer only slightly more resistance. All of these are easy integrals.

5.1 Integrals dominated by a peak

The integrals in (5.1) and (5.2), including D, all have the form

I(x) =

∫ b

a
f(t)e−xϕ(t) dt , (5.3)

where x is a large positive number. In this case the integrand is largest at the point t⋆ defined
by

t⋆
def
= min

a≤t≤b
ϕ(t) . (5.4)

There are two main cases depending on whether t⋆ is at one of the end-points a or b, or
somewhere in the middle of the interval.

t⋆ at an end-point

We bash out the large-x approximation to

L(x, y)
def
=

∫ y

0

e−x sinh t

cosh t
dt . (5.5)

In this case ϕ = sinh t and t⋆ = 0. When x≫ 1

L(x, y) ≈
∫ ∞

0
e−xt dt =

1

x
. (5.6)
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Provided that y ≫ 1/x the result is independent y. With the same trick you should now be
able to approximately evaluate the integrals A and C in (5.1)

Now suppose that x in (5.7) is a large negative number. In this case

L(x, y) =

∫ y

0

e|x| sinh t

cosh t
dt , (5.7)

where |x| = −x ≫ 1. We assume that y > 0 so that t⋆ = y. It helps to change variables to

τ
def
= t− y so that

L(x, y) =

∫ 0

−y

e|x| sinh(y+τ)

cosh(y + τ)
dτ . (5.8)

When |x| ≫ 1

L(x, y) ≈
∫ 0

−∞

e|x| sinh y+|x| cosh y τ

cosh y
dτ =

e|x| sinh y

|x| cosh2 y
. (5.9)

You should now be able to approximately evaluate the integral B in (5.1).

Exercise: Show that

Lxx + L =
1− exp(−x sinh y)

x
. (5.10)

Check the results above by finding two-term dominant balances in the (5.10) as x → ∞ and x → −∞. (I
don’t see how to the x → −∞ result from (5.10) – but it must be possible.)

t⋆ in the interior of the interval

We consider

M(x, y)
def
=

∫ y

0
e−x
(
1
4 t

4−1
2 t

2
)
dt . (5.11)

In this case ϕ = 1
4 t

4 − 1
2 t

2 with minimum at t⋆ = 1. We suppose that y > 1 so that t⋆ is in the
interior of the interval.

Exercise: Consider (5.3) and suppose that t⋆ = b with ϕ(t) = ϕ(b) + ϕ′(b)(t− a) +O(t− a)2. Show that

I ≈ f(b)
e−xϕ(b)

|ϕ′(b)| . (5.12)

Make sure you understand where the |ϕ′(b)| comes from. Now do the orther case in which t⋆ = a and ϕ(t)
has a Taylor series expansion around t = a.

5.2 The Gaussian approximation

Consider

In
def
=

1

π

∫ π/2

−π/2
(cos t)n dt . (5.13)

With a little integration by parts one can show that

In =

(
1 − 1

n

)
In−2 . (5.14)

Then, since I0 = 1 and I1 = 2/π, it is easy to compute the exact integral at integer n recursively.
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Figure 5.1: The exact evaluation of
(5.13) is solid lines connecting the ∗’s
and the leading-order asymptotic esti-
mate (5.18) is the dashed curve. The
improved result in (5.24) is the dotted
curve.

Let’s use Laplace’s method to find an n → ∞ asymptotic approximation. We write the
integral as

In =
1

π

∫ π/2

−π/2
en ln cos t dt , (5.15)

and then make the small t-approximation

ln cos t = ln

(
1 − t2

2

)
≈ − t

2

2
. (5.16)

Thus the leading order is obtained by evaluating a gaussian integral

In ∼ 1

π

∫ ∞

−∞
e−nt

2/2 dt , (5.17)

=

√
2

πn
. (5.18)

Figure 5.1 compares this approximation to the exact integral. Suppose we’re disappointed
with the performance of this approximation at n = 5, and want just one more term. The easiest
way to bash out an extra term is

ln cos t = ln

(
1 − t2

2
+
t4

24
+ O(t6)

)
, (5.19)

=

(
t2

2
− t4

24
+ O(t6)

)
+

1

2

(
t2

2
+ O(t4)

)2

+ O(t6) , (5.20)

= − t
2

2
− t4

12
+ O(t6) , (5.21)

and then

In ∼ 1

π

∫ ∞

−∞
e−nt

2/2 e−nt
4/12 dt , (5.22)

=
1

π

∫ ∞

−∞
e−nt

2/2

(
1 − nt4

12

)
dt , (5.23)

=

√
2

πn

(
1 − 1

4n

)
. (5.24)
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This works very well at n = 5. In the unlikely event that more terms are required, then it is
probably best to be systematic: change variables with v = − ln cos t and use Watson’s lemma.

Exercise: Show that

In =
2

π

∫ ∞

0

e−nv dv√
e2v − 1

(5.25)

and use Watson’s lemma.

5.3 The Gaussian approximation with a moving maximum

Large s asymptotic expansion of a Laplace transform

Let’s consider the Laplace transform

L
[
e−1/t

]
=

∫ ∞

0
e−

1
t
−st dt , as s→ ∞. (5.26)

In the exponential in (5.26) have χ
def
= t−1 + st, and

dχ

dt
= 0 , ⇒ − 1

t2
+ s = 0 . (5.27)

Thus the integrand is biggest at t∗ = s−1/2 – the peak is approaching t = 0 as s increases.
Close to the peak

χ = χ(t∗) +
1

2
χ′′(t∗)(t− t∗)

2 +O(t− t∗)
3 , (5.28)

= 2s1/2 + s−3/2
(
t− s−1/2

)2
+O(t− t∗)

3 . (5.29)

The width of the peak is s−3/4 ≪ s−1/2, so it helps to introduce a change of variables

v
def
= s3/4

(
t− s−1/2

)
. (5.30)

In terms of the original variable t the peak of the integrand is moving as s increases. We make
the change of variable in (5.30) so that the peak is stationary at v = 0. The factor s3/4 on the
right of (5.30) ensures that the width of the v-peak is not changing as s→ ∞.

Notice that t = 0 corresponds to v = −s1/4 → −∞. But the integrand has decayed to
practically to zero once v ≫ 1. Thus the lower limit can be taken to v = −∞. The Laplace
transform is therefore

L
[
e−1/t

]
∼ s−3/4e−2s1/2

∫ ∞

−∞
e−v

2
dt

︸ ︷︷ ︸
=
√
π

, as s→ ∞. (5.31)

This Laplace transform is exponentially small as s → ∞, and of course the original function
was also exponentially small as t → 0. I trust you’re starting to appreciate that there is an
intimate connection between the small-t behaviour of f(t) and the large-s behaviour of f̄(s).

Remark: the Laplace transform of any function must vanish as s→ ∞. So, if you’re asked
to find the inverse Laplace transform of s or es

2
, then the answer is that there are no function

with these transforms.
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Stirling’s approximation

A classic example of a moving maximum is provided by Stirling’s approximation to n!. Starting
from

Γ(x+ 1) =

∫ ∞

0
txe−t dt , (5.32)

let’s derive the fabulous result

Γ(x+ 1) ∼
√

2πx
(x

e

)x(
1 +

1

12x
+O

(
x−2

))
, as x→ ∞. (5.33)

At x = 1, we have from the leading order 1 ≈
√

2π/e = 0.9221, which is not bad! And with the
next term

√
2π/e × (13/12) = 0.99898. It only gets better as x increases.

We begin by moving everything in (5.32) upstairs into the exponential:

Γ(x+ 1) =

∫ ∞

0
e−χ dt , (5.34)

where
χ

def
= x ln t− t . (5.35)

The maximum of χ is at t∗ = x – the maximum is moving as x increases. We can expand χ
around this moving maximum as

χ = x lnx− x+
(t− x)2

2x
+O(t− x)3 , (5.36)

= x lnx− x− v2 , (5.37)

where v
def
= (t− x)/

√
2x is the new variable of integration. With this Gaussian approximation

we have

Γ(x+ 1) = ex lnx−x
√

2x

∫ ∞

−∞
e−v

2
dv

︸ ︷︷ ︸
=
√
π

. (5.38)

This is the leading order term in (5.32).

Exercise: Obtain the next term, 1/12x, in (5.32).

Example: Find the leading order approximation to

Λ(x)
def
=

∫ ∞

0

txe−t dt

1 + t2
(5.39)

It is necessary to move all functions upstairs into the exponential, and after some algebra I found

Λ(x) ∼
√
2πx

(
x− 2

e

)x−2

, as x → ∞. (5.40)

I’m about 80% sure that this is correct.
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5.4 An example of uniform approximation

Consider a function of two variables 1 defined by:

J(x, α)
def
=

∫ ∞

0
e−x(sinh t−αt)dt . (5.41)

Let’s study the asymptotic limit of J(x, α) as x→ ∞ with α fixed. Introduce

ϕ
def
= sinh t− αt , and note that

dϕ

dt
= cosh t− α . (5.42)

The location of the minimum of ϕ crucially depends on whether α is greater or less than one.
If α < 1 then the minimum of ϕ is at t = 0 and

J(x, α < 1) ∼
∫ ∞

0
e−x(1−α)tdt , (5.43)

=
1

(1 − α)x
, as x→ ∞, and α < 1 fixed. (5.44)

If α > 1, the minimum of ϕ(t) moves away from t = 0 and enters the interior of the range
of integration. Let’s call the location of the minimum t∗(α):

cosh t∗(α) = α , and therefore t∗(α) = ln
(
α+

√
α2 − 1

)
. (5.45)

If α > 1 then t∗(α) is real and positive. Notice that

ϕ(t∗) = sinh t∗ − αt∗ =
√
α2 − 1 − αt∗(α) , (5.46)

and
ϕ′′(t∗) = sinh t∗ =

√
α2 − 1 . (5.47)

Then we expand ϕ(t) in a Taylor series round t∗:

ϕ(t) = ϕ(t∗) +
1

2
(t− t∗)

2ϕ′′(t∗) +O(t− t∗)
3 . (5.48)

To leading order

J(x, α > 1) ∼ e−xϕ∗
∫ ∞

−∞
e−x

1
2
(t−t∗)2ϕ′′(t∗)dt , (5.49)

Notice we’ve extended the range of integration to t = −∞ above. The error is small, and this
enables us to evaluate the integral exactly

J(x, α > 1) ∼ e−ϕ∗(α)

√
2π

xϕ′′∗(α)
, as x→ ∞ with α > 1 fixed. (5.50)

1This function is related to the Anger function

Aν(x)
def
=

∫ ∞

0

exp (−νt− x sinh t) dt .

77



If we use the expressions for t∗(α) and ϕ′′∗(α) above then we obtain an impressive function of
the parameter α:

J(x, α > 1) ∼

√
2π

x
√
α2 − 1

exp
(
−x
√
α2 − 1

)(
α+

√
α2 − 1

)αx
,

as x→ ∞ with α > 1 fixed. (5.51)

Comparing (5.44) with (5.51), we wonder what happens if α = 1? And how does the asymptotic
expansion change continuously from the simple form in (5.44) to the complicated expression in
(5.51) as α passes continuously through 1?

Regarding α = 1, notice that as x→ ∞:

J(x, 1) =

∫ ∞

0
e−x(sinh t−t) dt , (5.52)

∼
∫ ∞

0
e−xt

3/6 dt , (5.53)

= 21/33−2/3Γ

(
1

3

)
x−1/3 . (5.54)

Despite the impression given by both (5.44) and (5.51), J(x, 1) is not singular.
We’re interested in the transition where α is close to 1, so we write

α = 1 + ϵ (5.55)

where ϵ is small. Then

J(x, α) ∼
∫ ∞

0
exϵt−

1
3
xt3 dt = x−1/3

∫ ∞

0
eξτ−

1
3
τ3 dτ , (5.56)

where ξ is a similarity variable:

ξ
def
= (α− 1)x2/3 . (5.57)

The transition from (5.44) to (5.51) occurs when α − 1 = O(x−2/3), and ξ = O(1). The
transition is described uniformly by a special function

J(ξ)
def
=

∫ ∞

0
eξτ−

1
3
τ3 dτ . (5.58)

Our earlier results in (5.44), (5.51) and (5.54) are obtained as special cases by taking ξ → −∞,
ξ → +∞ and ξ = 0 in J(ξ).

78



5.5 The central limit theorem

5.6 Problems

Problem 5.1. Find the x→ ∞ leading-order behaviour of the integrals

A(x) =

∫ 1

−1
e−xt

3
dt , B(x) =

∫ 1

−1
e+xt

3
dt , (5.59)

C(x) =

∫ 1

−1
e−xt

4
dt , D(x) =

∫ 1

−1
e+xt

4
dt , (5.60)

E(x) =

∫ ∞

0
e−xt−t

4/4 dt , F (x) =

∫ ∞

−∞
e+xt−t

4/4 dt , (5.61)

G(x) =

∫ ∞

−∞

e−t
2

(1 + t2)x
dt , H(x) =

∫ ∞

−∞

et
2

(1 + t2)x
dt , (5.62)

I(x) =

∫ π/2

0
e−x sec t dt , J(x) =

∫ π/2

0
e−x sin

2 t dt , (5.63)

K(x) =

∫ 1

−1

(
1 − t2

)
e−x cosh t dt , L(x) =

∫ 1

−1

(
1 − t2

)
ex cosh t dt . (5.64)

Problem 5.2. Consider

V (x, k, p)
def
=

∫ kx−p

0
e−x cosh t dt , as x→ ∞. (5.65)

Find a leading-order approximation to (i) V (x, k, 1); (ii) V (x, k, 1/2) and (iii) V (x, k, 1/4).
Hint: In one of the three cases you’ll need to use the error function.

Problem 5.3. Show that
∫ 1

0
et
(

t

1 + t2

)n
dt ∼

√
π

2n

e

2n
, as n→ ∞. (5.66)

Problem 5.4. Show that
∫ π

0
tn sin tdt ∼ πn+2

n2
, as n→ ∞. (5.67)

Problem 5.5. Consider a harmonic oscillator that is kicked at t = 0 by singular forcing

ẍ+ x =
1

t
. (5.68)

(i) Show that a particular solution of (5.68) is provided by the Stieltjes integral

x(t) =

∫ ∞

0

e−st ds

1 + s2
. (5.69)

(ii) Find the leading-order the behaviour of x(t) as t → ∞ from the integral representation
(5.69). (iii) Show that this asymptotic result corresponds to a two-term balance in (5.68). (iv)
Evaluate x(0). (v) Can you find ẋ(0)? (vi) If your answer to (v) was “no”, what can you say
about the form of x(t) as t → 0? Do you get more information from the differential equation,
or from the integral representation?
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Problem 5.6. The beta function is

B(x, y)
def
=

∫ 1

0
tx−1(1 − t)y−1 dt . (5.70)

With a change of variables show that

B(x, y) =

∫ ∞

0
e−xv(1 − e−v)y−1 dv . (5.71)

Suppose that y is fixed and x→ ∞. Obtain the leading order approximation

B(x, y) ∼ Γ(y)

xy
. (5.72)

Go to the Digital Library of Special Functions, chapter 5 and find the relation between the beta
function and the gamma function. (You can probably also find this formula in RHB, or any
text on special functions.) Use this relation to show that

Γ(x)

Γ(x+ y)
∼ 1

xy
, as x→ ∞. (5.73)

Remark: this result can also be deduced from Stirling’s approximation, but its a rather messy
calculation.

Problem 5.7. Find an asymptotic approximation of
∫ ∞

0

∫ ∞

0

e−n(x
2+y2)

(1 + x+ y)n
dxdy as n→ ∞. (5.74)

Problem 5.8. Find the leading-order asymptotic expansion of

M(x)
def
=

∫ ∞

0
extt−t dt (5.75)

as x→ ∞ and as x→ −∞.

Problem 5.9. Find the first two terms in the asymptotic expansion of

N(x)
def
=

∫ ∞

0
tne−t

2−x
t dt (5.76)

as x→ ∞.

Problem 5.10. Show that
∫ ∞

0
e−x

(
1

1 + e−x

)n
dx ∼

√
2π

(n− 1)n−
3
2

nn−
1
2

as n→ ∞. (5.77)

(I am 80% sure this is correct.)

Problem 5.11. (i) Draw a careful graph of χ(t) = (1−2t2)2 for −2 ≤ t ≤ 2. (ii) Use Laplace’s
method to show that as x→ ∞

∫ 1/2

0

√
1 + t exχ(t) dt ∼ ex

(
1

4

√
π

x
+
p

x
+

q

x3/2
+ · · ·

)
, (5.78)

and determine the constants p and q. Find asymptotic expansion as x→ ∞ of

(ii)

∫ 1

0

√
1 + t exχ(t) dt , (iii)

∫ 1

−1

√
1 + t exχ(t) dt . (5.79)

Calculate the expansion up to and including terms of order x−3/2ex.
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Figure 5.2: A comparison of F (x) com-
puted from (13.84) using matlab (solid
curve) with the asymptotic approxima-
tion (dashed curve).

Problem 5.12. Consider the function

F (x) ≡
∫ ∞

0
exp

(
− t

3

3
+ xt

)
dt . (5.80)

(i) F (x) satisfies a second-order linear inhomogeneous differential equation. Find the ODE
and give the initial conditions F (0) and F ′(0) in terms of the Γ-function. (ii) Perform a local
analysis of this ODE round the irregular singular point at x = ∞ and say what you can about
the large x behaviour of F (x). (iii) Use Laplace’s method on (13.84) to obtain the complete
x → ∞ leading-order approximation to F (x). (iv) Numerically evaluate (13.84) and make a
graphical comparison with Laplace’s approximation on the interval 0 ≤ x ≤ 3 (see figure 5.2).

%% MATLAB script for Laplace’s method.

%%You’ll have to supply the ??’s and code {\tt myfun}.

clear

xx = [0:0.05:3];

nloop = length(xx);

FF = zeros(1,nloop); % Store function values in FF

uplim = 10; %10=\infty for the upper limit of quad?

lowlim = realmin; % avoid a divide-by-zero error

for n=1:nloop

F = quad(@(t)myfun(t,xx(n)),lowlim,uplim);

FF(n) = F;

end

plot(xx,FF)

hold on

approx = sqrt(??)*xx.^(-??).*exp(2*xx.^(??)/3);

plot(xx,approx,’--’)

hold off

xlabel(’x’)

ylabel(’F(x)’)

81



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t

In
te
g
ra

n
d

x = 1

x = 5
x
=
25

x
=

1
2
5

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

 

 

quad
1
2

√
π
x

Figure 5.3: Upper panel is the exact integrand in (5.81) (the solid curve) and the Gaussian
approximation (dashed). Lower panel compares the F (x) obtained by numerical quadrature
(solid) with the asymptotic approximation. The comparison is not great – problem 5.13 asks
you to calculate the next term in the asymptotic expansion and add that to the figure.

Problem 5.13. Find the first few terms in the x→ ∞ asymptotic expansion of

F (x)
def
=

∫ 1

0
exp

(
− xt2

1 + t

)
dt . (5.81)

Improve figure 5.3 by adding the higher-order approximations to the lower panel.

Problem 5.14. Find the first two terms in the x→ ∞ expansion of

Y (x)
def
=

∫ ex

0
e−xt

2/(1+t2) dt . (5.82)

Problem 5.15. Show that as x→ ∞
∫ ∞

x

e−t

tx
dt ∼ e−x

[
1

2x
+

1

8x2
+ O

(
x−3

)]
. (5.83)
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Lecture 6

What is asymptotic?

In this lecture I introduce the concept of asymptoticity and demonstrate the utility of divergent
series. A secondary theme is the utility of integration-by-parts – I bet you don’t know how
useful IP is.

6.1 An example: the error function

We consider the error function

erf(z)
def
=

2√
π

∫ z

0
e−t

2
dt . (6.1)

The upper panel of Figure 6.1 shows erf, and the complementary error function

erfc(z)
def
= 1 − erf(z) =

2√
π

∫ ∞

z
e−t

2
dt , (6.2)

on the real line.
The series on the right of

e−t
2

=

∞∑

n=0

(−t2)n

n!
(6.3)

has infinite radius of convergence i.e. e−t
2

is an entire function in the complex t-plane. Thus
we can simply integrate term-by-term in (6.1) to obtain a series for erf(z) that converges in the
entire complex plane:

erf(z) =
2√
π

∞∑

n=0

(−)nz2n+1

(2n+ 1)n!
, (6.4)

=
2√
π

(
z − 1

3z
3 + 1

10z
5 − 1

42z
7 + 1

216z
9 − 1

1320z
11
)

︸ ︷︷ ︸
=erf6(z)

+R6 , (6.5)

where erf6(z) is the sum of the first six terms and R6(z) is the remainder after 6 terms.
The lower panel of Figure 6.1 shows that erfn (the sum of the first n nonzero terms) provides

an excellent approximation to erf if |x| < 1. With matlab we find that

erf(1) − erf10(1)

erf(1)
= 1.6217 × 10−8 , and

erf(2) − erf10(2)

erf(2)
= 0.0233 . (6.6)
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Figure 6.1: Upper panel: the blue curve is erf(x) and the red curve is erfc(x). Lower panel
shows erf(x) and truncated Taylor series erfn(x), with n = 1, 2 · · · , 20.

The Taylor series is useful if |z| < 1, but as |z| increases past 1 convergence is slow. Moreover
some of the intermediate terms are very large and there is a lot of destructive cancellation
between terms of different signs. Figure 6.2 shows that this cancellation is bad at z = 3, and it
gets a lot worse as |z| increases. Because of round-off error, a computer with limited precision
cannot accurately sum the convergent Taylor series if |z| is too large. Convergence is not as
useful as one might think.

Now let’s consider an approximation to erf(x) that’s good for large1 x. We work with the
complementary error functions in (6.2) and use integration by parts

erfc(x) =
2√
π

∫ ∞

x

(
− 1

2t

)
d

dt
e−t

2
dt , (6.7)

=
2√
π

e−x
2

2x
− 2√

π

∫ ∞

x

e−t
2

2t2
dt . (6.8)

If we discard the final term in (6.8) we get a useful approximation2

erfc(x) ∼ e−x
2

√
πx

, as x→ ∞. (6.9)

1We restrict attention to the real line: z = x+ iy. The situation in the complex plane is tricky – we’ll return
to this later. We also defer the definition asymptotic approximation.

2The ∼ in (6.9) denotes “asymptotic equivalence” and is defined in section 6.2. In (6.9) it means that

lim
x→∞

√
πxex

2

erfc(x) = 1 .
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Figure 6.2: The terms in the Taylor series (6.5) with x = 3. The sum of the series – that
is erf(3) – is very close to 1. But there are cancellations between terms of order ±200 before
convergence takes hold. The problem quickly gets worse: at x = 4 the largest terms in the
series exceed 105.

The upper panel of Figure 6.3 shows that this leading-order asymptotic approximation is reliable
once x is greater than about 2 e.g. at x = 2 the error is 10.5%, and at x = 4 the error is less
than 3%.

Remark: Equation (6.8) has three terms. Discarding the final term is equivalent to asserting that as x → ∞
there is a two-term dominant balance in (6.8). The machinations following in (6.10) through (6.14) verify
consistency.

Exercise: If we try integration by parts on erf (as opposed to erfc) something bad happens: try it and see.

Why does the approximation in (6.9) work? Notice that the final term in (6.8) can be
bounded like this

2√
π

∫ ∞

x

e−t
2

2t2
dt =

2√
π

∫ ∞

x

1

4t3
× 2te−t

2
dt , (6.10)

≤ 2√
π

1

4x3

∫ ∞

x
2te−t

2
dt , (6.11)

=
2√
π

e−x
2

4x3
. (6.12)

The little trick we’ve used above in going from (6.10) to (6.11) is that

t ≥ x , ⇒ 1

4t3
≤ 1

4x3
. (6.13)

Pulling the (4x)−3 outside, we’re left with an elementary integral. Variants of this maneuverer
appear frequently in the asymptotics of integrals (try the exercise below).

Using the bound in (6.23) in (6.8) we have

erfc(x) =
2√
π

e−x
2

2x
+

[
something which is much less than

2√
π

e−x
2

2x
as x→ ∞.

]
(6.14)

Thus as x → ∞ there is a dominant balance in (6.14) between the left hand side and the first
term on the right. The final term is smaller than the other two terms by a factor of at least
x−2.

Exercise: Prove that ∫ ∞

x

e−t

tN
dt <

e−x

xN
. (6.15)
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Figure 6.3: Upper panel shows erfc(x) divided by the leading order asymptotic approximation
on the right of (6.9); as x→ ∞ the ratio approaches 1. The lower panel shows erfc(x) divided
by an n-term truncation of (6.28) with n = 1, 2, 3 and 4.

One more term

We can develop an asymptotic series if we integrate by parts successively starting with (6.8):

erfc(z) =
e−x

2

√
πx

− 1√
π

∫ ∞

x

1

t2

(
− 1

2t

)
d

dt
e−t

2
dt , (6.16)

=
e−x

2

√
πx

(
1 − 1

2x2

)
+

3

2
√
π

∫ ∞

x

e−t
2

t4
dt .

︸ ︷︷ ︸
R2

(6.17)

We use the same trick to bound the remainder:

R2 = − 3

4
√
π

∫ ∞

x

−2te−t
2

t5
dt <

3

4
√
πx5

∫ ∞

x

d

dt
e−t

2
dt =

3

4
√
πx5

e−x
2
. (6.18)

As x → ∞ the remainder R2(x) is much less than the second term in the series, so we can
suppress some information and write

erfc(x) =
e−x

2

√
πx

[
1 − 1

2x2
+O

(
1

x4

)]
. (6.19)

The big O notation used above is explained in section 6.2 – it means that x4 times the term
O(x−4) is bounded by some constant as x→ ∞.
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Yet more terms: the asymptotic series

Exercise: show that ∫ ∞

z

t−qe−t2 dt︸ ︷︷ ︸
Jq

= 1
2
z−(q+1)e−z2 − 1

2
(q + 1)Jq+2 . (6.20)

Using the result in the exercise above we integrate by parts N times and obtain an exact
expression for erfc(x):

erfc(x) =
e−x

2

√
πx

N−1∑

n=0

(2n− 1)!!

(
− 1

2x2

)n

︸ ︷︷ ︸
N terms

+ (−1)N (2N − 1)!!
2√
π

∫ ∞

x

e−t
2

(2t2)N
dt

︸ ︷︷ ︸
RN

. (6.21)

Above, RN (x) is the remainder after N terms and the “double factorial” is 7!! = 7 · 5 · 3 · 1 etc.
To bound the remainder we use our trick again:

|RN | =
2 (2N − 1)!!√

π

∫ ∞

x

(e−t
2
)t

2t× (2t2)N
dt , (6.22)

≤ (2N − 1)!!
√
π2Nx2N+1 e−x

2
. (6.23)

We have shown that
|RN |

Nth term of the series
≤ 2N − 1

(2x)2
, (6.24)

or equivalently
|RN | ≤ term N + 1 in the asymptotic series . (6.25)

Thus the first term we neglect in the expansion is an upper bound on the error as x → ∞.
And if we fix N and increase x then the approximation to erfc(x) obtained by dropping the
remainder gets better and better. But the limits

x→ ∞ and N → ∞ (6.26)

don’t “commute”. In other words, if we fix x at some large value, such as x = 3, and increase N
then the approximation gets better for a while, but then goes horribly wrong. This behaviour
is illustrated in figure 6.4 which shows how

relative error
def
=

N -term approximation to erfc(x)

erfc(x)
− 1 (6.27)

depends on both N and x in our erf example.

Numerical use of asymptotic series – the optimal stopping rule

Suppose an unreasonable person insists on ignoring the simple limit x → ∞ and instead de-
mands the best answer at a fixed value of x, such as x = 2. How many terms in the series

erfc(x) ∼ e−x
2

x
√
π

(
1 − 1

2x2
+

1 × 3

(2x2)2
− 1 × 3 × 5

(2x2)3
+

1 × 3 × 5 × 7

(2x2)4
+O

(
x−10

))
(6.28)

should one use to appease this tyrant? The numerators above are growing very quickly so at
a fixed value of x this series for erfc(x) diverges as we add more terms. But Figure 6.4 shows
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Figure 6.4: The absolute value of the relative error as a function of the number of terms used
in the asymptotic series (6.28).

that at fixed x there is an optimal value of N at which the relative error is smallest. How do
we find this best asymptotic estimate?

We showed above in (6.24) and (6.25) that as x→ ∞ the remainder RN (x) is less than the
(N + 1)st term in the series. Thus a good place to stop summing is just before the smallest
term in the series: we know the remainder is less than this smallest term. In practice we get
good accuracy if we use the optimal stopping rule: locate the smallest term in the series and
add all the previous terms. Do not include the smallest term in this sum.

The optimal stopping rule is a rule of thumb not a precise result – the remainder RN is less
than the (N + 1)st term only when x is sufficiently large i.e. in the limit x → ∞. We have no
assurance that this inequality applies at a particular value of x.

We illustrate the optimal stopping rule by estimating erfc(2). With x = 2 the sum (6.28) is

erfc(2)︸ ︷︷ ︸
4.67773×10−3

∼ e−4

2
√
π︸ ︷︷ ︸

5.16675×10−3

(
1 − 1

8︸︷︷︸
0.0125

+
3

64︸︷︷︸
0.046875

− 15

512︸︷︷︸
0.0292969

+
105

4096︸ ︷︷ ︸
0.0256348

− 945

32768︸ ︷︷ ︸
0.0288391

+
10395

262144︸ ︷︷ ︸
0.0396538

+ · · ·
)
.

(6.29)
The smallest term is 105/4096. The optimal approximation is obtained by stopping before the
smallest terms:

0.0051667
(

1 − 1

8
+

3

64
− 15

512

)
= 0.00461172 . (6.30)

The relative error is 0.0141116, or about 1.4%.
We get a much better answer by including half of the smallest term in the asymptotic series:

0.0051667
(

1 − 1

8
+

3

64
− 15

512
+

1

2

105

4096

)
= 0.00467795 . (6.31)
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With this mysterious improvement the relative error is now −0.000046. We should explain why
adding half of the smallest term works so well. (Bender & Orszag and Hinch don’t mention
this.....)

Exercise: erfc(1) = 0.157299 and the leading-order approximation is e−1/
√
π = 0.207554. The relative error

is therefore 0.31948 which seems unfortunately large. Show that according to the optimal stopping rule
the leading-order approximation is optimal. Does adding half of the smallest term significantly reduce the
error?

6.2 Landau symbols

Let’s explain the frequently used “Landau symbols”. In asymptotic calculations the Landau
notation is used to suppress information while still maintaining some precision.

Gauge functions

First we need to explain gauge functions. These are simple functions that we use to compare a
complicated f(ϵ) with. The gauge functions we’ve used most frequently are

ϕ0(ϵ) = ϵ0 , ϕ1(ϵ) = ϵ1 , ϕ1(ϵ) = ϵ2 , and so on with ϕn(ϵ) = ϵn. (6.32)

More generally, a sequence of gauge functions {ϕ0 , ϕ1 , · · · } is asymptotically ordered if

ϕn+1(ϵ)

ϕn(ϵ)
→ 0 , as ϵ→ 0. (6.33)

In practice the ϕ’s are combinations of powers and logarithms:

ϵn , ln ϵ , ϵm(ln ϵ)p , ln ln ϵ etc. (6.34)

Exercise Suppose ϵ → 0. Arrange the following gauge functions in order, from the largest to the smallest:

ϵ , ln

(
ln

1

ϵ

)
, e− ln2 ϵ , e1/

√
ϵ , ϵ0 , ln

1

ϵ
(6.35)

e−1/ϵ , ϵ1/3 , ϵ1/π , ϵ ln2 1

ϵ
,

1

ln 1
ϵ

, ϵln ϵ . (6.36)

Big Oh

We frequently use “big Oh” – in fact I’ve done this without defining O! One says f(ϵ) = O(ϕ(ϵ))
as ϵ→ 0 if we can find an ϵ0 and a number A such that

|f(ϵ)| < A|ϕ(ϵ)| , whenever ϵ < ϵ0.

Both ϵ0 and A have to be independent of ϵ. Application of the big Oh notation much easier
than this definition suggests. Here are some ϵ→ 0 examples

sin 32ϵ = O(ϵ) , sin 32ϵ = O(ϵ1/2) , ϵ5 = O(ϵ2) ,

cos ϵ− 1 = O(ϵ1/2) , ϵ+ ϵ2 sin
1

ϵ
= O(ϵ) ,

sin
1

ϵ
= O(1) , e−1/ϵ = O(ϵn) for all n.
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The expression

cos ϵ = 1 − ϵ2

2
+O(ϵ3) means cos ϵ− 1 +

ϵ2

2
= O(ϵ3) . (6.37)

In some of the cases above

lim
ϵ→0

f(ϵ)

ϕ(ϵ)
(6.38)

is zero, and that’s good enough for O. Also, according to our definition of O, the limit in (6.38)
may not exist – all that’s required is that ratio f(ϵ)/ϕ(ϵ) is bounded by a constant independent
of ϵ as ϵ→ 0. One of the examples above illustrates this case.

The big Oh notation can be applied to other limits in obvious ways. For example, as x→ ∞

sinx = O(1) ,
√

1 + x2 = O(x2) , ln coshx = O(x) . (6.39)

As x→ 1
ln
(
1 + x+ x2

)
− x = O(x2) . (6.40)

Little Oh

Very occasionally – almost never – we need “little Oh”. We say f(ϵ) = o(ϕ(ϵ)) if for every
positive δ there is an ϵ0 such that

|f(ϵ)| < δ|ϕ(ϵ)| , whenever ϵ < ϵ0.

Another way of saying this is that

f(ϵ) = o(ϕ(ϵ)) ⇔ lim
ϵ→0

f(ϵ)

ϕ(ϵ)
= 0 . (6.41)

Obviously f(ϵ) = o(ϕ(ϵ)) implies f(ϵ) = O(ϕ(ϵ)), but not the reverse. Here are some examples

ln(1 + ϵ) = o(ϵ1/2) , cos ϵ− 1 +
ϵ2

2
= o(ϵ3) , eo(ϵ) = 1 + o(ϵ) . (6.42)

The trouble with little Oh is that it hides too much information: if something tends to zero we
usually want to know how it tends to zero. For example

ln(1 + 2e−x + 3e−2x) = o
(

e−x/2
)
, as x→ ∞, (6.43)

is not as informative as

ln(1 + 2e−x + 3e−2x) = O
(
e−x
)
, as x→ ∞. (6.44)

Asymptotic equivalence

Finally “asymptotic equivalence” ∼ is useful. We say f(ϵ) ∼ ϕ(ϵ) as ϵ→ 0 if

lim
ϵ→0

f(ϵ)

ϕ(ϵ)
= 1 . (6.45)

Notice that
f(ϵ) ∼ ϕ(ϵ) , ⇔ f(ϵ) = ϕ(ϵ) [1 + o(ϵ)] . (6.46)
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Some ϵ→ 0 examples are

ϵ+
sin ϵ

ln(1/ϵ)
∼ ϵ , and

√
1 + ϵ− 1 ∼ ϵ

2
. (6.47)

Some x→ ∞ examples are

sinhx ∼ ex

2
, and

x3

1 + x2
+ sinx ∼ x , and x+ ln

(
1 + e2x

)
∼ 3x . (6.48)

Exercise: Show by counterexample that f(x) ≈ g(x) as x → ∞ does not imply that df
dx

≈ dg
dx

, and that

f(x) ≈ g(x) as x → ∞ does not imply that ef ≈ eg.

6.3 The definition of asymptoticity

Asymptotic power series

Consider a sum based on the simplest gauge functions ϵn:

∞∑

n=0

anϵ
n . (6.49)

This sum is an ϵ→ 0 asymptotic approximation to a function f(ϵ) if

lim
ϵ→0

f(ϵ) −
∑N

n=0 anϵ
n

ϵN
= 0 . (6.50)

The numerator in the fraction above is the remainder after summing N + 1 terms, also known
as RN+1(ϵ). So the series in (6.49) is asymptotic to the function f(ϵ) if the remainder RN+1(ϵ)
goes to zero faster than the last retained gauge function ϵN . We use the notation ∼ to denote
an asymptotic approximation:

f(ϵ) ∼
∞∑

n=0

anϵ
n , as ϵ→ 0. (6.51)

The right hand side of (6.51) is called an asymptotic power series or a Poincaré series, or an
asymptotic representation of f(ϵ).

Our erf-example satisfies this definition with ϵ = x−1. If we retain only one term in the
series (6.28) then the remainder is

R1 =
2√
π

∫ ∞

x

e−t
2

2t2
dt . (6.52)

In (6.11) we showed that
R1

e−x2/
√
πx

≤ 1

4x2
. (6.53)

Thus as x → ∞ the remainder is much less than the last retained term. According to the
definition above, this is the first step in justifying the asyptoticness of the series.

Exercise: Show from the definition of asymptoticity that

e−1/ϵ ∼ 0 + 0 ϵ+ 0 ϵ2 + 0 ϵ3 + · · · as ϵ ↓ 0. (6.54)
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A problem with applying the definition is that one has to be able to say something about the
remainder in order to determine if a series is asymptotic. This is not the case with convergence.
For example, one can establish the convergence of

∞∑

n=0

ln(n+ 2)xn , (6.55)

without knowing the function to which this mysterious series converges. Convergence is an
intrinsic property of the coefficients ln(n + 2). The ratio test shows that the series in (6.55)
converges if |x| < 1 and we don’t have to know what (6.55) is converging to. On the other
hand, asympoticity depends on both the function and the terms in the asymptotic series.

Example The famous Stieltjes series

S(x)
def
=

∞∑
n=0

(−)nn!xn (6.56)

does not converge unless x = 0. In fact, as it stands, S(x) does not define a function of x. S(x) is a formal
power series. And we can’t say that S(x) is an asymptotic series because we have to ask asymptotic to
what? But now observe that

n! =

∫ ∞

0

tne−t dt , (6.57)

and substitute this integral representation of n! into the sum (6.56). There is a moment of pleasure when
we realize that if we exchange the order of integration and summation then we can evaluate the sum to
obtain

F (x)
def
=

∫ ∞

0

e−t

1 + xt
dt . (6.58)

Because of the dubious steps between (6.56) and (6.58), I’ve simply defined F (x) by the integral above.
But now that we have a well defined function F (x), we’re entitled to ask is the sum S(x) asymptotic to
F (x) as x → 0? The answer is yes.

The proof is integration by parts, which yields the identity

F (x) = 1− x+ 2!x2 − 3!x3 + · · · (−1)(N−1)(N − 1)!xN−1 + (−1)NN !xN

∫ ∞

0

e−t

(1 + xt)N+1
dt︸ ︷︷ ︸

=RN

. (6.59)

It is easy show that
|RN (x)| ≤ N !xN , (6.60)

and therefore

lim
x→0

RN (x)

(N − 1)!xN−1
= 0 . (6.61)

Above we’re comparing the remainder to the last retained term in the truncated series. Because the ratio
goes to zero in the limit the series is asymptotic.

Exercise: Find another function with the same x → 0 asymptotic expansion as F (x) in (6.58).

Example: Dawson’s integral is

D(x)
def
= e−x2

∫ x

0

et
2

dt . (6.62)

The integrand is strongly peaked near t = x, where the integrand is equal to ex
2

. The width of this peak
is order x−1. Thus we expect that the answer is something like

D(x) ∼ e−x2 ?

x
ex

2

=
?

x
, (6.63)

where ? is an unidentified number.

To more precisely estimate D(x) for x ≫ 1 we try IP:∫ x

0

et
2

dt =

∫ x

0

1

2t

det
2

dt
dt , (6.64)

=

[
et

2

2t

]x
0

+

∫ x

0

et
2

2t2
dt . (6.65)
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The expression above is meaningless – we’ve taken a perfectly sensible integral and written it as the
difference of two infinities.

A correct approach is to split the integral like this∫ x

0

et
2

dt =

∫ 1

0

et
2

dt+

∫ x

1

1

2t

det
2

dt
dt , (6.66)

=

∫ 1

0

et
2

dt+

[
et

2

2t

]x
1

+

∫ x

1

et
2

2t2
dt , (6.67)

=

∫ 1

0

et
2

dt− 1
2
e︸ ︷︷ ︸

a number

+
ex

2

2x
+

∫ x

1

et
2

2t2
dt ,︸ ︷︷ ︸

R

(6.68)

∼ ex
2

2x
, as x → ∞. (6.69)

Thus

D(x) ∼ 1

2x
, as x → ∞. (6.70)

Back in (6.66) we split the range at t = 1 – this was an arbitrary choice. We could split at another
arbitrary value such as t = 32.2345465. The point is that as x → ∞ all the terms on the right of (6.68)

are much less than the single dominant term ex
2

/2x. If we want the next term in (6.70), then that comes
from performing another IP on the next biggest term on the right of (6.68), namely

R(x) =

∫ x

1

et
2

2t2
dt . (6.71)

To show that (6.69) is a valid asymptotic approximation according to the definition of Poincaré – with
ϵ = x−1 and N = 1 in definition (6.50) – we should show that R(x) in (6.71) is very much less than the
leading term, or in other words that

lim
x→∞

∫ x

1
et

2

/2t2 dt

ex2/2x
= 0 . (6.72)

Exercise: Use l’Hôpital’s rule to verify the result above.

Uniqueness

If a function has an asymptotic expansion in terms of a particular set of gauge function then
that expansion is unique. For example, using the θ → 0 gauge functions θn, the function sin 2θ
can be expanded as

sin 2θ = 2θ − 4θ3

3
+ O

(
θ5
)
, (6.73)

and that’s the only asymptotic expansion of sin θ using θn. In this sense asymptotic expansions
are unique.

The converse is not true: two different functions might share an asymptotic expansion
because they differ by a quantity that is asymptotically smaller than every gauge function. For
example, as θ ↓ 0

sin 2θ + e−1/θ ∼
∞∑

n=0

(−1)n
(2θ)2n+1

(2n+ 1)!
. (6.74)

The right of (6.74) is also the asymptotic expansion of sin 2θ in terms of the gauge functions
θn.

A given function can also have multiple asymptotic expansions in terms of different gauge
functions. For example, consider the θ → 0 gauge functions sinn θ, for which

sin 2θ = 2 sin2 θ − sin3 θ + O
(
sin5 θ

)
. (6.75)
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Or gauge functions tann θ, for which

sin 2θ = 2 tan θ − 2 tan3 θ + O
(
tan5 θ

)
. (6.76)

Manipulation of asymptotic expansions

If we have two ϵ→ 0 asymptotic power series

f ∼
∞∑

n=0

anϵ
n , and g ∼

∞∑

n=0

anϵ
n . (6.77)

then we can do what comes naturally as far as adding, multiplying and dividing these expan-
sions.

If f and g are represented by the generalized asymptotic series in (6.54) then we have a
minor problem with multiplication: ϕmϕn may not be a member of our set of gauge functions.
In this case we can simply enlarge the set of gauge functions – provided that the expanded set
can be ordered as ϵ→ 0. (I can’t think of an example in which this is not possible.)

Exercise: Noting that
1

ϵ(1 + ϵ)
∼ 1

ϵ
as ϵ → 0, (6.78)

is

exp

(
1

ϵ(1 + ϵ)

)
∼ e1/ϵ ? (6.79)

Asymptotic series can be integrated: if

f(x) ∼
∞∑

n=0

an(x− x0)
n , as x→ x0, (6.80)

then ∫ x

x0

f(t) dt ∼
∞∑

n=0

an
n+ 1

(x− x0)
n+1 , as x→ x0. (6.81)

Asymptotic series cannot in general be differentiated. Thus

x+ sinx ∼ x , as x→ ∞, (6.82)

but the derivative 1 + cosx is not asymptotic to 1. Note however that BO section 3.8 discusses
some useful special cases in which differentiation is permitted.

6.4 The Taylor series, with remainder

We can use integration by parts to prove that a function f(x) with n derivatives can be rep-
resented exactly by n terms of a Taylor series, plus a remainder. The fundamental theorem of
calculus is

f(x) = f(a) +

∫ x

a
f ′(ξ) dξ

︸ ︷︷ ︸
R1

. (6.83)
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If we drop the final term, R1(x), we have a one-term Taylor series for f(x) centered on x = a.
To generate one more terms we integrate by parts like this

f(x) = f(a) +

∫ x

a
f ′(ξ)

d

dξ
(ξ − x) dξ , (6.84)

= f(a) + (x− a)f ′(a) −
∫ x

a
f ′′(ξ)(ξ − x) dξ . (6.85)

And again

f(x) = f(a) + (x− a)f ′(a) −
∫ x

a
f ′′(ξ)

d

dξ

1

2
(ξ − x)2 dξ , (6.86)

= f(a) + (x− a)f ′(a) +
1

2
f ′′(a)(x− a)2 +

1

2

∫ x

a
f ′′′(ξ)(ξ − x)2 dξ .

︸ ︷︷ ︸
R3

(6.87)

If f(x) has n-derivatives we can keep going till we get

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + · · · +

f (n−1)(a)

(n− 1)!
(x− a)n−1

︸ ︷︷ ︸
=n terms, let’s call this fn(x)

+Rn(x) , (6.88)

where the remainder after n-terms is

Rn(x) =
1

(n− 1)!

∫ x

a
f (n)(ξ)(x− ξ)n−1 dξ . (6.89)

Using the first mean value theorem, the remainder can be represented as

Rn(x) =
f (n)(x̄)

n!
(x− a)n , (6.90)

where x̄ is some unknown point in the interval [a, x]. This is the form given in section 4.6 of
RHB.

Some remarks about the result in (6.88) through (6.90) are:

(1) f(x) need not have derivatives of all order at the point x: the representation in (6.88)
and (6.90) makes reference only to derivatives of order n, and that is all that is required.

(2) Using (6.90), we see that the ratio of Rn(x) to the last retained term in the series is
proportional to x− a and therefore vanishes as x→ a. Thus, according to our definition
in (6.50), fn(x) is an asymptotic expansion of f(x).

(3) The convergence of the truncated series fn(x) as n→ ∞ is not assumed: (6.88) is exact.
The remainder Rn(x) may decrease up to a certain point and then start increasing again.

(4) Even if fn(x) diverges with increasing n, we may obtain a close approximation to f(x) –
with a small remainder Rn – if we stop summing at a judicious value of n.

(5) The difference between the convergent case and the divergent case is that in the former
instance the remainder can be made arbitrarily small by increasing n, while in the latter
case the remainder cannot be reduced below a certain minimum.
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Above we are recapitulating many remarks we made previously regarding the asymptotic ex-
pansion of erf.

Taylor series, even when they diverge, are still asymptotic series. This follows immediately
from the results above and the definition of asymptoticity. Let’s illustrate the asymptotic nature
of divergent Taylor series with the elementary problem:

x(ϵ)2 = 9 + ϵ . (6.91)

Before taking this class you could have solved this problem by arguing that

x(ϵ) = 3
(
1 + ϵ

9

)1/2
, (6.92)

and then recollecting the standard Taylor series

(1 + z)α = 1 + αz +
α(α− 1)

2!
z2 +

α(α− 1)(α− 2)

3!
z3 + · · · (6.93)

The perturbation method is laboriously reproducing the special case α = 1/2 and z = ϵ/9.
You should recall from your undergraduate education that the radius of convergence of

(6.93) is limited by the nearest singularity to the origin in the complex z-plane. With α = 1/2
the nearest singularity is the branch point at z = −1. So the series in problem 1.1 converges
provided that ϵ < 9. Let us ignore this red flag and use the Taylor series with ϵ = 16 to estimate
x(16) =

√
25 = 5. We calculate a lot of terms with the mathematica command:

Series[Sqrt[9 + u], {u, 0, 8}].

This produces the series

x(ϵ) = 3 +
ϵ

6
− ϵ2

216
+

ϵ3

3 888
− 5ϵ4

279 936
+

7ϵ5

5 038 848
− 7ϵ6

60 466 176
+

11ϵ7

1 088 391 168
− 143ϵ8

156 728 328 192
+ O

(
ϵ9
)
.

Thus

x(16) ∼ 3 +
8

3
− 32

27︸︷︷︸
1.18519

+
256

243︸︷︷︸
1.0535

− 2560

2187︸ ︷︷ ︸
1.17055

+
28672

19683︸ ︷︷ ︸
1.45669

− 114688

59049︸ ︷︷ ︸
1.94225

+ · · · (6.94)

The fourth term is the smallest term. Stopping short of the smallest term, the sum of the first
three terms is

x(16) ≈ 121

27
= 4.48148 , (6.95)

which is a relative error of about 10%. If we include half of the smallest term then

x(16) ≈ 1217

243
= 5.00823 , (6.96)

with relative error 0.00165. This is a good result when working with the “small” parameter
16/9.

6.5 Large-s behaviour of Laplace transforms

The s→ ∞ behaviour of the Laplace transform

f̄(s)
def
=

∫ ∞

0
e−stf(t) dt (6.97)
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provides a typical and important example of IP. But before turning to IP, we argue that as
ℜs → ∞, the maximum of the integrand in (6.97) is determined by the rapidly decaying e−st

and is therefore at t = 0. In fact, e−st is appreciably different from zero only in a peak at t = 0,
and the width of this peak is s−1 ≪ 1. Within this peak t = O(s−1) the function f(t) is almost
equal to f(0) (assuming that f(0) is non-zero) and thus

f̄(s) ≈ f(0)

∫ ∞

0
e−st dt =

f(0)

s
. (6.98)

This argument suggests that the large s-behaviour of the Laplace transform of any function
f(t) with a Taylor series around t = 0 is given by

∫ ∞

0
e−stf(t) dt =

∫ ∞

0
e−st

[
f(0) + tf ′(0) +

t2

2!
f ′′(0) + · · ·

]
e−st dt , (6.99)

∼ f(0)

s
+
f ′(0)

s2
+
f ′′(0)

s3
+ · · · (6.100)

We obtain an improved version of (6.100) using successive integration by parts starting with
(6.97):

f̄(s) =
f(0)

s
+
f ′(0)

s2
+
f ′′(0)

s2
+ · · · +

f (n−1)(0)

sn
+

1

sn

∫ ∞

0
e−stf (n)(t)dt

︸ ︷︷ ︸
Rn

. (6.101)

The improvement over (6.100) is that on the right of (6.101), IP has provided an explicit
expression for the remainder Rn(s). In section 6.6 we use (6.101) to prove Watson’s lemma.

erfc(x) is a Laplace transform in disguise

Let’s convert erfc(x) to a Laplace transform. With the substitution t = w+x into the definition
of erfc in (6.2) we have

erfc(x) =
2e−x

2

√
π

∫ ∞

0
e−2xwe−w

2
dw . (6.102)

The integral above is the Laplace transform of e−w
2

with transform variable s = 2x. We can now
reproduce the full asymptotic series for erfc in (6.21) from (6.101). Even better we immediately
obtain the leading-order term of the asymptotic expansion by inspection with

∫ ∞

0
e−2xwe−w

2
dw ≈

∫ ∞

0
e−2xw dw =

1

2x
. (6.103)

Miscellaneous examples of s→ ∞ Laplace transform asymptotics

Example: A Laplace transform. Find the large-s behaviour of the Laplace transform

L
[

1√
1 + t2

]
=

∫ ∞

0

e−st

√
1 + t2

dt . (6.104)

When s is large the function e−st is non-zero only in a peak located at t = 0. The width of this peak is
s−1 ≪ 1. In this region the function (1 + t2)−1/2 is almost equal to one. Hence heuristically∫ ∞

0

e−st

√
1 + t2

dt ≈
∫ ∞

0

e−st dt =
1

s
. (6.105)
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This is the correct leading-order behaviour.

To make a more careful estimate we can use integration by parts:

L
[

1√
1 + t2

]
= −1

s

∫ ∞

0

1√
1 + t2

de−st

dt
dt , (6.106)

= −1

s

[
e−st

√
1 + t2

]∞
0

− 1

s

∫ ∞

0

te−st

(1 + t2)3/2
dt , (6.107)

=
1

s
−R1(s) . (6.108)

As s → ∞ the remainder R1(s) is negligible with respect to s−1 and the heuristic (6.105) is confirmed.
Why is R1(s) much smaller than s−1 in the limit? Notice that in the integrand of R1

te−st

(1 + t2)3/2
≤ te−st , and therefore R(s) <

1

s

∫ ∞

0

te−stdt =
1

s2
. (6.109)

The estimates between (6.106) and (6.109) are a recap of arguments we’ve been making in the previous
lectures. The proof of Watson’s lemma in section 6.6 is a slightly more general version of these same
estimates.

To get more terms in the asymptotic expansion we invoke Watson’s lemma, so as s → ∞:

L
[

1√
1 + t2

]
=

∫ ∞

0

e−st

[
1− t2

2
+

3t4

8
− 5t6

16
+O(t8)

]
dt , (6.110)

∼ 1

s
− 1

s3
+

9

s5
− 225

s7
+O

(
s−9) . (6.111)

Because of the rapid growth of the numerators this is clearly an asymptotic series. The Taylor series of
(1+ t2)−1/2 does not converge beyond t = 1. The limited radius of convergence doesn’t matter: Watson’s
lemma assures us that we get the right asymptotic expansion even if we integrate into the region where
the Taylor series diverges. In fact, the expansion of the integral is asymptotic, rather than convergent,
because we’ve integrated a Taylor series beyond its radius of convergence.

We obtain the entire asymptotic series by noting that

1√
1− 4x

= 1 + 2x+ 6x2 + 20x3 + 70x4 + · · · (6.112)

where the coefficient of xn above is the “central binomial coefficient” (2n)!/(n!)2. Thus, with x = −t2/4,
we have

L
[

1√
1 + t2

]
∼

∞∑
n=1

(2n)!

(n!)2
(−1)n

(
1
2

)2n ∫ ∞

0

t2ne−st dt , (6.113)

=
1

s

∞∑
n=0

(−1)n
(
(2n)!

n!

)2
1

(2s)2n
. (6.114)

Example: Another Laplace transform. Consider

L
[

H(t)√
1− t2

]
=

∫ 1

0

e−st

√
1− t2

dt , (6.115)

∼ 1

s
+

1

s3
+

9

s5
+

225

s7
+O

(
s−9) . (6.116)

This is the same as (6.111), except that all the signs are positive. The integrable singularity at t = 1
makes only an exponentially small contribution as s → ∞.

Example: Yet another Laplace transform. Find the large-s behaviour of the Laplace transform

L
[√

1 + et
]
=

∫ ∞

0

e−st
√
1 + et︸ ︷︷ ︸
f(t)

dt . (6.117)

In this case f(0) =
√
2 and we expect that the leading order is

f̄ ∼
√
2

s
. (6.118)
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Let’s confirm this using IP:

f̄(s) =

√
2

s
− 1

s

∫ ∞

0

e−st et

2
√
1 + et︸ ︷︷ ︸
f ′(t)

dt . (6.119)

Notice that in this example f ′(t) ∼ et/2 as t → ∞, and thus we cannot bound the remainder using
maxt>0 f

′(t). Instead, we bound the reminder like this

R1 =
1

s

∫ ∞

0

e−(s− 1
2
)t 1

2
√
1 + e−t/2︸ ︷︷ ︸

≤ 1
2

dt <
1

s

1

2s− 1
. (6.120)

This maneuver works in examples with f(t) ∼ eαt as t → ∞.

6.6 Watson’s Lemma

All the examples in the previous section are a special cases of Watson’s lemma. So let’s prove
the lemma by considering a Laplace transform

f̄(s) =

∫ ∞

0
e−st tξg(t) dt , (6.121)

where the factor tξ includes whatever singularity exists at t = 0; the singularity must be
integrable i.e. ξ > −1. We assume that the function g(t) has a Taylor series with remainder

g(t) = g0 + g1t+ · · · gntn︸ ︷︷ ︸
n+ 1 terms

+Rn+1(t) . (6.122)

This is a t→ 0 asymptotic expansion in the sense that there is some constant K such that

|Rn+1| < Ktn+1 . (6.123)

Notice we are not assuming that the Taylor series converges.
Of course, we do assume convergence of the Laplace transform (6.121) as t → ∞, which

most simply requires that f(t) = tξg(t) eventually grows no faster than eγt for some γ. Notice
that the possibility of a finite upper limit in (6.121) is encompassed if f(t) is zero once t > T .

With these modest constraints on tξg(t):

f̄(s) =

∫ ∞

0
e−st tξ

(
g0 + g1t+ · · · gntn

)
dt

︸ ︷︷ ︸
I1

+

∫ ∞

0
e−sttξRn+1(t) dt

︸ ︷︷ ︸
I2

. (6.124)

The second integral in (6.124) is

I2 < K

∫ ∞

0
e−sttn+1+ξ dt = O

(
1

sξ+n+2

)
. (6.125)

Using ∫ ∞

0
e−sttξ+n dt =

Γ(n+ ξ + 1)

sn+ξ+1
, (6.126)

we integrate I1 term-by-term and obtain Watson’s lemma:

f̄(s) ∼ g0
Γ(ξ + 1)

sξ+1
+ g1

Γ(ξ + 2)

sξ+2
+ · · · + gn

Γ(ξ + n+ 1)

sξ+n+1
+O

(
1

sξ+n+2

)
. (6.127)

Watson’s lemma justifies doing what comes naturally.
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6.7 Gaussian approximation versus Laplace transform

Consider the function defined by

U(x, y)
def
=

∫ y

0
e−x cosh t dt , (6.128)

and ask for an asymptotic approximations as x → +∞ with y fixed. With x → ∞, the main
contribution to U(x, y) in (6.128) is from t ≈ 0. According to the Gaussian approximation, the
leading-order behaviour is

U(x, y) ∼
∫ ∞

0
e−x(1+

1
2
t2) dt , (6.129)

= e−x
√

π

2x
, as x→ +∞. (6.130)

The peak of the integrand is centered on t = 0 and has width x−1/2 ≪ 1. All the approximations
we’ve made above are good in the peak region. They’re lousy approximations outside the peak
e.g. near t = 1/2. But both the integrand and our approximation to the integrand are tiny
near t = 1/2 and those errors do not seriously disturb our estimate of the integral.

Problem: Considering U(x, y) in (6.128), show that

x2Uxx + xUx − x2U = Uyy . (6.131)

Evaluate U(x,∞) in terms of modified Bessel functions.

Notice that in (6.129) the range of integration is extended to t = ∞ – we can then do
the integral without getting tangled up in error functions. The point is that the leading-order
behaviour of U(x, y) as x→ ∞ is independent of the fixed upper limit y. If you’ve understood
the argument above regarding the peak width, then you’ll appreciate that if y = 1/10 then x
will have to be roughly as big as 100 in order for (6.130) to be accurate.

Let’s bash out the second term in the x→ ∞ asymptotic expansion. According to mathe-
matica, the integrand is

e−x cosh t = e−x−xt
2/2e−xt

4/4!−xt6/6!+··· , (6.132)

≈ e−x−xt
2/2

(
1 − xt4

24
− xt6

720
+O

(
x2t8

))
. (6.133)

Notice the x2 in the big Oh error estimate above – this x2 will bite us below. We now substitute
the expansion (6.133) into the integral (6.128) and integrate term-by-term using

∫ ∞

0
tpe−at

2
dt = 1

2a
− p+1

2 Γ
(
p+1
2

)
. (6.134)

Thus we have

U(x, y) = e−x
∫ ∞

0
e−

1
2xt

2

[
1︸︷︷︸

∼x−1/2

− 1
24 xt4︸︷︷︸

∼x−3/2

− 1
720 xt6︸︷︷︸

∼x−5/2

+O
(
x2t8︸︷︷︸
x−5/2

)]
. (6.135)

The underbraces indicate the order of magnitude of each term after using (6.134) to evaluate
the integral. Notice that a term of order x2t8 is of order x−5/2 after integration. If we desire a
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Figure 6.5: Upper panel compares the two-term asymptotic expansion in (6.138) with evaluation
of the integral by numerical quadrature using the matlab routine quad. The lower panel
compares the three term expansion in (6.142) with quadrature.
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systematic expansion, we should not keep the term xt6 and drop x2t8. After integration both
these terms are order x−5/2, and we should keep them both, or drop them both.

Proceeding with the integration

U(x, y) ∼ e−x
√

2

x

∫ ∞

0
e−v

2

[
1 − v4

6x
− 8v6

720x2
+O

(
v8x−2

)]
dv , (6.136)

= e−x
√

π

2x

[
1 − 1

6x
× 3

4
− 8

720x2
× 15

8
+O

(
x−2

)]
, (6.137)

∼ e−x
√

π

2x

[
1 − 1

8x
+O

(
x−2

)]
. (6.138)

Discretion is the better part of valor, so I’ve dropped the inconsistent term and written O(x−2)
above.

Another way to generate more terms in the expansion is to convert U(x, y) into a Laplace
transform via u = cosh t− 1:

U(x, y) = e−x
∫ ∞

0

e−xu√
2u+ u2

du , (6.139)

∼ e−x
∫ ∞

0
e−xu

1√
2u

[
1 − u

4
+

3u2

32
− 5u3

128
+O

(
u4
)]

du , (6.140)

= e−x
√

1

2x

[
Γ

(
1

2

)
− 1

4x
Γ

(
3

2

)
+

3

32x2
Γ

(
5

2

)
+O

(
x−3

)]
, (6.141)

= e−x
√

π

2x

[
1 − 1

8x
+

9

128x2
+O

(
x−3

)]
. (6.142)

The Laplace-transform approach is more systematic because the coefficients in the series ex-
pansion (6.140) are not functions of x, and the expansion is justified using Watson’s lemma.
However the argument about the dominance of the peak provides insight and is all one needs
to quickly obtain the leading-order asymptotic expansion.

6.8 Problems

Problem 6.1. (i) Use integration by parts to find the leading-order term in the x → ∞
asymptotic expansion of the exponential integral:

E1(x)
def
=

∫ ∞

x

e−v

v
dv . (6.143)

Show that this approximation is asymptotic i.e. prove that the remainder is asymptotically less
than the leading term as x→ ∞. (ii) With further integration by parts, find an expression for
the n’th term, and the remainder after n terms. (iii) Show that the remainder after n terms is
asymptotically less than the n’th terms as x→ ∞.

Problem 6.2. The exponential integral of order n is

En(x)
def
=

∫ ∞

x

e−t

tn
dt . (6.144)

Show that

En+1(x) =
e−x

nxn
− En(x)

n
. (6.145)

Find the leading-order asymptotic approximation to En(x) as x→ ∞.

102



Problem 6.3. (i) Find a leading-order x→ ∞ asymptotic approximation to

A(x; p, q)
def
=

∫ ∞

x
e−pt

q
dt . (6.146)

Show that the remainder is asymptotically negligible as x → ∞. Above, p and q are both
positive real numbers.

Problem 6.4. Find two terms in the x→ ∞ behaviour of

F1/3(x) =

∫ x

0

e−v

v1/3
dv . (6.147)

Generalize to

Fα(x) =

∫ x

0

e−v

vα
dv . (6.148)

where 0 ≤ α < 1.

Problem 6.5. Consider the first-order differential equation:

y′ − y = −1

x
, with the condition lim

x→∞
y(x) = 0 . (6.149)

(i) Find a valid two-term dominant balance in the differential equation and thus deduce the
leading-order asymptotic approximation to y(x) for large positive x. (ii) Use an iterative
procedure to deduce the full asymptotic expansion of y(x). (iii) Is the expansion convergent?
(iv) Use the integrating function method to solve the differential equation exactly in terms of
the exponential integral in (6.143). Use matlab (help expint) to compare the exact solution
of (6.149) with asymptotic expansions of different order. Summarize your study as in Figure
6.6.

Problem 6.6. (i) Solve the differential equation

y′ − 2xy = −1 , with lim
x→∞

y(x) = 0 , (6.150)

in terms of erf and use the results from this lecture to find the full asymptotic expansion of the
solution as x → ∞. (ii) Find this expansion without explicit solution of the ode in (6.150):
identify a two-term x→ ∞ balance in the ode, and then proceed to higher order via iteration
or some other scheme.

Problem 6.7. Find an example of a infinitely differentiable function satisfying the inequalities

max
0<x<1

|f(x)| < 10−10 , and max
0<x<1

∣∣∣∣
df

dx

∣∣∣∣ > 1010 . (6.151)

This is why the differential operator d/dx is “unbounded”: d/dx can take a small function and
turn it into a big function.

Problem 6.8. Prove that

∫ ∞

0

e−t

1 + xt2
dt ∼

∞∑

n=0

(−1)n(2n)!xn , x→ 0 . (6.152)
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Figure 6.6: Solution of problem 6.5. Upper panel compares the exact solution with truncated
asymptotic series. Lower panel shows the asymptotic approximation at x = 5 as a function of
the truncation order n i.e. n = 1 is the one-term approximation. The solid line is the exact
answer.

Problem 6.9. True or false as x→ ∞

(i) x+
1

x

?∼ x , (ii) x+
√
x

?∼ x , (iii) exp

(
x+

1

x

)
?∼ exp(x) , (6.153)

(iv) exp
(
x+

√
x
) ?∼ exp(x) , (v) cos

(
x+

1

x

)
?∼ cosx , (v)

1

x

?∼ 0 ? (6.154)

Problem 6.10. Let’s investigate the Stieltjes series S(x) in (6.56) and the function F (x) in
(6.58) (i) Compute the integral F (0.1) numerically. (ii) With x = 0.1, compute partial sums
of the divergent series (6.56) with N = 2, 3, 4, · · · 20. Which N gives the best approximation
to F (0.1)? (iii) I think the best answer is obtained by truncating the series S(0.1) just before
the smallest term. Is that correct?

Problem 6.11. (i) Obtain the leading-order asymptotic approximation for the integral

∫ 1

−1
ext

3
dt , as x→ ∞. (6.155)

(ii) Justify the asymptoticness of the expansion. (iii) Find the leading-order asymptotic ap-
proximation for x→ −∞.

Problem 6.12. In our evaluation of Ai(0) we encountered a special case, namely n = 3, of the
integral

Z(n, x)
def
=

∫ π/(2n)

0
e−x sinnθ dθ . (6.156)

Convert Z(n, x) to a Laplace transform and use Watson’s lemma to obtain the first few terms
of the x→ ∞ asymptotic expansion.
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Problem 6.13. Consider

S(x)
def
=

∫ 1

0
ext

7
dt . (6.157)

(i) Argue heuristically that as x→ ∞, S(x) ∼?ex/x as x→ ∞ where ? is an unknown constant.
(ii) Convert S(x) to the Laplace transform

S(x) =
ex

7

∫ 1

0

e−xv dv

(1 − v)6/7
, (6.158)

and find the first two terms in the x → ∞ asymptotic expansion. (iii) Find the x → −∞
asymptotic expansion of S(x).

Problem 6.14. Use integration by parts to find x → ∞ asymptotic approximations of the
integrals

A(x) =

∫ x

0
e−t

4
dt , B(x) =

∫ x

0
e+t

4
dt , C(x) =

∫ ∞

0
e−xt ln(1 + t2) dt ,

(6.159)

D(x) =

∫ ∞

0

e−xt

ta(1 + t)
dt , with a < 1; E(x) =

∫ ∞

1
e−xt

p
dt , with p > 0. (6.160)

In each case obtain a two-term asymptotic approximation and exhibit the remainder as an
integral. Explain why the remainder is smaller than the second term as x→ ∞.

Problem 6.15. Using repeated IP, find the full x → ∞ asymptotic expansion of Dawson’s
integral (6.62). Is this series convergent?

Problem 6.16. Consider f(x) = (1+x)5/2, and the corresponding Taylor series fn(x) centered
on x = 0. (i) Show that for n ≥ 3 and x > 0:

Rn <
f (n)(0)

n!
xn ,

i.e. the remainder is smaller than the first neglected term for all positive x. (ii) The Taylor
series converges only up to x = 1. But suppose we desire f(2) = 35/2. How many terms of the
series should be summed for best accuracy? Sum this optimally truncated series and compare
with the exact answer. (iii) Argue from the remainder in (6.90) that the error can be reduced
by adding half the first neglected term. Compare this corrected series with the exact answer.

Problem 6.17. Show that

A(x)
def
=

∫ π

0
ex cosh t dt ∼ ex coshπ

x sinhπ
, as x→ ∞. (6.161)
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Lecture 7

Geometric perturbation of PDEs

Let’s consider some perturbation problems presented by partial differential equations – a main
novelty is perturbation of geometry.

7.1 Thermal diffusion in solids

We’ll use the diffusion equation as a main example. The conservation law for energy in a solid
with non-uniform temperature is

Qt + ∇·F = 0 , (7.1)

where the heat content and energy flux are

Q = ρcT , and F = −κ∇T . (7.2)

Above T is the temperature (Kelvin), c is the heat capacity (Joules/Kelvin × kilogram), ρ is
the density (kilograms per cubic meter) and and κ is the conductivity. The heat content Q has
dimensions Joules per kilogram and the heat flux, F , has dimensions Watts per square meter.

Assuming that c, ρ and κ are all constant, (7.1) is rewritten as the diffusion equation

Tt = κ∇2T , (7.3)

where κ
def
= κ/ρc is the thermal diffusivity and ∇2 is the Laplacian operator.

Diffusion a through a slab

The simplest solution of (7.3) is that T is constant. The second simplest solution is constant
flux. For example, consider a slab of thickness h with temperature T = 0 at z = 0 and T = T∗
at z = h. We look for a steady solution that depends only on z, T (z). So the problem is

κTzz = 0 , with BCs T (0) = 0 , T (h) = T∗ . (7.4)

The solution is

T =
zT∗
h

. (7.5)

For insulating houses the slab is a made of glass and the cost of heating is determined by the
energy flux through through the window

F = − ρcκ︸︷︷︸
κ

T∗
h
ẑ . (7.6)
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Figure 7.1: Heat conduction through a slab with non-uniform thickness.

(ẑ is a unit vector pointing along the z-axis.) If T∗ > 0 then the top of the slab is hot and the
bottom is cold. The heat flux F points downwards, from the top to the bottom. Is that sign
intuitive?

7.2 Diffusion through a slab with slowly changing thickness

Suppose the thickness of the slab is not constant e.g. the slab occupies the region

−∞ < x <∞ , and 0 < z < h(x) . (7.7)

For extra fun we also suppose that the top temperature is non-uniform, T (x, h) = τ(x). The
bottom temperature is still T (x, 0) = 0. (We can have even more fun by making the bottom
temperature non-uniform in x and the bottom surface vary in x. These complications are only
algebraic.)

The slab thickness h(x) has order of magnitude H and h changes on a length scale L. For
example, we consider a model such as

h = H
3 + ex/L

1 + ex/L
. (7.8)

In this example h(x) varies from 3H at x = −∞ to H at x = +∞: see figure 7.1. A factor of
three is a big change in thickness. Suppose that τ(x) provides a temperature scale T∗. Then
we non-dimensionalize with

x̄
def
=

x

L
, z̄

def
=

z

H
, T̄

def
=

T

T∗
. (7.9)

The non-dimensional problem is
ν2T̄x̄x̄ + T̄z̄z̄ = 0 , (7.10)

where ν
def
= H/L. Boundary conditions are

T̄ (x̄, 0) = 0 , and T̄ (x̄, h̄) = τ̄(x) . (7.11)

Geometry is challenging: we are confronted by Laplace’s equation within a complicated 2D
domain. (Complicated because there is no way to separate variables.) But if ν ≪ 1 in (7.10)
then there is a remarkable simplification: there is a one-term dominant balance in (7.10). The
subsequent expansion is

T =
τz

h
+ ν2T2(x, z) + ν4T4(x, z) + · · · (7.12)
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Figure 7.2: Illustration of thermal diffusion through a slab with slowly varying thickness and
uniform top temperature τ = 1. The top panel shows the leading-order solution and the bottom
panel the solution in (7.15). In a futile attempt to see the effect of the order ν2 correction I use
ν =

√
2.

The T2 problem is

T2zz = −
(τ
h

)′′
z , with BCs T2(x, 0) = T2(x, h) = 0 . (7.13)

Above ′ denotes an x-derivative. The solution of (7.13) is straightforward. The reconstituted
temperature is

T =
τz

h
+ ν2

(τ
h

)′′
1
6

(
zh2 − z3

)
+O(ν4) . (7.14)

Example: To illustrate this solution let’s take τ = 1 and use the non-dimensional slab thickness

h =
3 + ex

1 + ex
, with

(
1

h

)′′

=
2ex(ex − 3)

(3 + ex)3
. (7.15)

In figure 7.2 I compare the leading-order term, T0 = z/h, with the corrected temperature in (7.14). In
this illustration I’m using an unreasonably large value ν =

√
2. With smaller values, such as ν = 1, there

was no perceptible difference between the two panels. This might be because

max
0<ξ<1

1
6

(
ξ − ξ3

)
=

1

9
√
3
= 0.0642 ≪ 1 . (7.16)

This suggests that the approximation is excellent. It would be interesting to calculate the next term which
will involve a fifth-order polynomial in z/h.
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Heat flux

The heat flux through the bottom, F · ẑ, is proportional to

Tz(x, 0) =
τ

h
+
h2

6

(τ
h

)′′
. (7.17)

Is this the same heat flux that comes out the top of the slab?
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%% contour plot of the corrugated-slab temperature

% tau=1, h = [n+1+exp(x)]/[1+exp(x)], sig = 1/[n+1+exp(x)]

% T = (z/h) + (1/h)’’ (z h^2 - z^3)/6

% (1/h)’’ = n exp(x)[exp(x)-1]/[1+exp(x)]^3

clc

clf

epsn = sqrt(2);

n=2;

x = linspace(-5.5,5.5,200);

h = (n+1+exp(x))./(1 + exp(x));

z = linspace(0,n+1);

[xx,zz] = meshgrid(x,z);

hh = (n+1+exp(xx))./(1 + exp(xx));

TT0 = zz./hh;

figure(1)

movegui(’west’)

subplot(2,1,1)

area(x,h,n+1+0.1)

hold on

V=[0:0.1:1];

contour(xx,zz,TT0,V)

axis([min(x), max(x), 0, n+1+0.1])

text(2,2.1,’$T = \frac{z}{h}$’,...

’Interpreter’,’latex’,’fontsize’,18,’Color’,[1 1 1])

xlabel(’$x/L$’,’Interpreter’,’latex’,’fontsize’,14)

ylabel(’$z/H$’,’Interpreter’,’latex’,’fontsize’,14)

%% the correction

secDeriv = ( n*exp(xx).*(1+n-exp(xx)) )./(1+n+exp(xx)).^3;

TT1 = secDeriv.*(zz.*hh.^2- zz.^3)/6;

TTT = TT0 + epsn^2*TT1;

figure(1)

subplot(2,1,2)

area(x,h,n+1+0.1)

hold on

V=[0:0.1:1];

contour(xx,zz,TTT,V)

axis([min(x), max(x), 0, n+1+0.1])

text(0.7,2.2,’$T =\frac{z}{h}+\left(\frac{\nu^2}{h}\right)_{xx}\frac{z h^2-z^3}{6}$’,...

’Interpreter’,’latex’,’fontsize’,18,’color’,[1 1 1])

xlabel(’$x/L$’,’Interpreter’,’latex’,’fontsize’,14)

ylabel(’$z/H$’,’Interpreter’,’latex’,’fontsize’,14)

hold off

Matlab code slabTemp2023 that produced figure 7.2. The command “area” is handy.
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7.3 Diffusion along a slab with slowly changing thickness

We consider diffusion of heat within a slab with boundaries at z = ±h(x). We suppose that the thickness
h has the form

h = Hh̄(x/L) . (7.18)

The outward unit normal vectors to the surface of the slab are therefore

@z = h(x) : n =
ẑ − hxx̂√

1 + h2x
, and @z = −h(x) : n =

−ẑ − hxx̂√
1 + h2x

. (7.19)

The unsteady diffusion equation is
Tt = κ (Txx + Tzz) , (7.20)

and we suppose that there is no flux of heat through the boundaries. This means that n ·∇T = 0, or

@z = h(x) :
Tz − hxTx√

1 + h2x
= 0 , and @z = −h(x) : −Tz + hxTx√

1 + h2x
= 0 . (7.21)

(We could simplify by cancelling the factor
√

1 + h′2 from the boundary conditions above. But if you
needed to impose a flux of heat through the boundary then there’d be a non-zero right hand side and
this factor will not cancel.) The problem is completed by specifying an initial condition

T (x, z, 0) = T∗I(x/L, z/H) . (7.22)

The initial condition provokes some discussion · · ·
Let’s simplify this problem by considering the slowly varying limit in which

H

L
→ 0 . (7.23)

where H and L are supplied by specification of h(x) in (7.18). We continue to use the notation ν
def
= H/L.

If we non-dimensionalize using the anisotropic scaling x̄ = x/L and z̄ = z/H then every x-derivative
in the system above appears with a ν in front of it. We scale time as t̄ = t/τ where τ is a TBD time
scale. Thus the diffusion equation is

H2

κτ
Tt̄ = ν2Tx̄x̄ + Tz̄z̄ . (7.24)

It is necessary to pick τ = L2/κ i.e. τ is the time scale for the diffusion of heat along the slab. With
this definition of τ the diffusion equation is

ν2 (Tt̄ − Tx̄x̄) = Tz̄z̄ . (7.25)

We must also non-dimensionalize the boundary conditions in (7.21) · · ·
Drop the decoration on non-dimensional variables and expand in ν2;

T = T0 + ν2T2 + · · · (7.26)

At leading order T0zz = 0 with general solution

T0 = A(x, t) . (7.27)

At order ν2

At −Axx = T2zz . (7.28)
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7.4 A slab with small corrugations

Now consider a different type of geometric perturbation: suppose that the slab is slightly deformed so
that the thickness is no longer uniform. Let’s suppose that the solid slab is now the region

−∞ < x <∞ , a cos kx < z < H , (7.29)

The lower boundary is corrugated. We assume that there is a gap between the crests and the flat lid i.e.
a < H. The problem is to solve Laplace’s equation

Txx + Tzz = 0 (7.30)

with boundary conditions
T (x, a cos kx) = 0 , T (x,H) = T∗ . (7.31)

If a = 0 then we recover the simple solution T = T∗z/H.
The method of slow variations used in the previous section will work if kH ≪ 1. But now we want

an answer with no restriction on the size kH. Instead we use a different method based on the assumption
that ka≪ 1 i.e. the corrugations are small.

Scale using the non-dimensional variables

T̄
def
=

T

T∗
, and (x̄, z̄) = k(x, z) . (7.32)

The non-dimensional parameters are

ϵ
def
= ka , and β

def
= kH . (7.33)

In non-dimensional variables the bottom is z̄ = ϵ cosx and the top is z̄ = β. The corrugation amplitude
a is less than H and therefore ϵ < β. The heat flux through the bottom of the corrugated slab is

F = ρcκkT∗ T̄z̄(x̄, 0;β, ϵ) , (7.34)

where T̄ (x̄, z̄;β, ϵ) is the solution to the non-dimensional problem.
Dropping the decoration, the non-dimensional problem is

Txx + Tzz = 0 , (7.35)

with boundary conditions
T (x, ϵ cosx) = 0 , and T (x, β) = 1 . (7.36)

Small amplitude ripples, ϵ≪ 1

Let’s take a very small, holding all other parameters fixed. In non-dimensional variables this small-ripple
limit is ϵ → 0 with β fixed and order unity. We assume that the solution T (x, z) of Laplace’s equation
(7.35) with the BC in (7.36) is an RPS

T = T0(x, z) + ϵT1(x, z) + ϵ2T2(x, z) + · · · (7.37)

The complication is that the lower boundary condition in (7.36) becomes

T0(x, ϵ cosx) + ϵT1(x, ϵ cosx) + ϵ2T2(x, ϵ cosx) + · · · = 0 . (7.38)

In (7.38) ϵ is appearing in two different places. The standard trick (probably originating with Stokes in
1847) is to use a Taylor series about z = 0 to transfer the boundary condition in (7.38) to z = 0. Thus
each term in (7.38) is expanded like this

Tn(x, ϵ cosx) = Tn(x, 0) + ϵ cosxTnz(x, 0) + 1
2ϵ

2 cos2 xTnzz(x, 0) + · · · (7.39)
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Substituting (7.39) into (7.38) and matching up powers of ϵ we obtain the z = 0 boundary conditions

T0 = 0 , (7.40)

T1 + cosxT0z = 0 , (7.41)

T2 + cosxT1z + 1
2 cos2 xT0zz = 0 , (7.42)

T3 + cosxT2z + 1
2 cos2 xT1zz + 1

6 cos3 xT0zzz = 0 , (7.43)

T4 + cosxT3z + 1
2 cos2 xT2zz + 1

6 cos3 xT1zzz + 1
24 cos4 xT0zzzz = 0 (7.44)

and so on. The boundary condition at the top is easy

T0(x, β) = 1 , and Tn≥1(x, β) = 0 . (7.45)

To complete the formulation of the perturbation problem, each Tn(x, y) satisfies Laplace’s equation
(
∂2x + ∂2z

)
Tn = 0 . (7.46)

The leading-order solution is

T0 =
z

β
. (7.47)

At next order we have Laplace’s equation, n = 1 in (7.46) with BCs

T1(x, 0) = −cosx

β
, and T1(x, β) = 0 . (7.48)

We can solve this problem with the separable ansatz T1(x, z) = −β−1 cosxZ1(z). We find

T1(x, z) = −cosx sinh(β − z)

β sinhβ
, and T1z =

cosx cosh(β − z)

β sinhβ
. (7.49)

At this order there is no flux enhancement – the x-average of T1z is zero.
At order ϵ2, with n = 2 in (7.46), the BCs are

T2(x, 0) = − cosxT1z(x, 0) , (7.50)

= − cos2 x
cothβ

β
, (7.51)

= − 1
2 (1 + cos 2x)

cothβ

β
, (7.52)

and at the top
T2(x, β) = 0 . (7.53)

The solution is

T2(x, z) =
cothβ

2β2
(z − β) − cothβ

2β
S2(x, z) (7.54)

where

Sn(x, z)
def
=

sinhn(β − z)

sinhnβ
cosnx . (7.55)

This solution is illustrated in figure 7.3.

Remark: I went to third order and found:

T = z
β
− ϵS1

β
− ϵ2 coth β

2β2 [β − z + βS2]

− ϵ3
[(

coth β coth 2β
2β

− 1
8β

)
S3 +

(
coth β coth 2β

2β
+ coth β

2β2 − 3
8β

)
S1

]
+O(ϵ4) . (7.56)

I’m not sure if the ϵ3-term is correct. For higher-order calculations it may be more efficient to truncate
the Fourier series

T =
z

β
−

∞∑
n=1

An(ϵ, β)Sn(x, z) . (7.57)
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Figure 7.3: Contour plot of T in (??).

Each term in the series satisfies Laplace’s equation and the BC at z = β. We have to determine An such
that at the bottom T (x, ϵ cosx) = 0, or

ϵ cosx = β

∞∑
n=1

An(ϵ, β)Sn(x, ϵ cosx) (7.58)

Enhanced heat flux through the corrugated slab

Let’s calculate the heat flux flowing through the corrugated slab. Heat is diffusing in through the hot flat
top at z = β, and out through the cold corrugated bottom z = ϵ cosx. From (??), the flux in through
the flat top at z = β is

Tz(x, β) =
1

β
+ ϵ

cosx

β sinhβ
+ 1

2ϵ
2 cothβ

β2

[
1 +

2β cos 2x

sinh 2β

]
+ O

(
ϵ3
)
. (7.59)

From (7.34) the averaged flux through the slab is

F = F∗β ⟨Tz̄(x̄, β)⟩ , (7.60)

= F∗

(
1 + ϵ2

cothβ

2β
+O(ϵ4)

)

︸ ︷︷ ︸
def
= χ(β,ϵ)

. (7.61)

In (7.61) χ(β, ϵ) is a flux enhancement factor resulting from the corrugations.
Is it physically intuitive that these corrugations increase the flux of heat through the slab? One

can argue that the places where the slab is thin (above the hills) are short circuits. This suspicion
is confirmed in figure 7.3 which shows that the temperature gradient is increased over the hills and
decreased over the valleys. But this modulation is the order ϵ term in (7.59), which is proportional to
cosx and therefore integrates to zero. The flux enhancement χ in (??) is order ϵ2 – the big gradients
over the hills more than compensate for the small gradients over the valleys. This effect is subtle and I
don’t have a totally satisfactory physical explanation.
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We should also calculate the heat content of the slab

Q(x) =
1

2π

∫ π

−π

∫ β

ϵ cos x

T (x, z) dzdx . (7.62)

%% contour plot of the corrugated-slab temperature

clc

epsn = 1/3; beta = 1;

xx= linspace(-pi,pi);zz = linspace(-epsn,beta);

[X,Z] = meshgrid(xx,zz);

S1 = sinh(beta - Z)/(beta*sinh(beta));

S2 = sinh(2*(beta - Z))/(2*beta*sinh(2*beta));

T = Z/beta - epsn*cos(X).*S1 - 0.5*epsn^2*(coth(beta)/beta)...

*((beta-Z)/beta + 2*beta*cos(2*X).*S2);

figure(1)

contour(X,Z,T,20)

xlabel(’$x$’,’interpreter’,’latex’,’fontsize’,16)

ylabel(’$z$’,’interpreter’,’latex’,’fontsize’,16)

hold on

% use "area", rather than "fill"

height = epsn*cos(xx);

area(xx,height,-1.25*epsn)

text(-3,-0.37,’$\epsilon = 1/3$ and $\beta=1$’,...

’interpreter’,’latex’,’fontsize’,16)

Matlab code that produced figure 7.3 is above. The command “area” is very handy.
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Remark: We can take the limit β → ∞ in (??), to obtain

βT → z − ϵ e−z cosx− 1
2
ϵ2
[
1 + e−2z cos 2x

]
. (7.63)

A less algebra-intensive problem, corresponding to removing the lid at z = H to ∞, is to consider the
region z > ϵ cosx and require that at great distances above the corrugated boundary the temperature is
T → z + c(ϵ), where c(ϵ) is to be determined. The lower boundary condition is T (x, ϵ cos) = 0. Taking
β → ∞ in (??) we have c(ϵ) = −ϵ2/2 + O(ϵ4). Although this special case is easier, and illustrates the
method of boundary perturbation, it is less physically interesting because there is no “flux enhancement”.

Remark: The other limit is small β: if β = O(ϵ) then the series in (??) through (??) becomes disordered. For
instance, simplifying (7.59) with the assumption β ≪ 1 we have

Tz(x, β) =
1

β
+

ϵ

β2
cosx+O(ϵ2/β3) . (7.64)

If β is as small as ϵ then the terms in this perturbation series are no longer decreasing – this non-uniformity
indicates failure of the method. The problem is that our approximate solution assumed that ∂z ∼ k and
this cannot be true if the vertical thickness of the slab, H, is significantly less than the exponential decay
scale k−1. See the next section....

7.5 Slow variations again

The previous section discussed a problem in which the variations in the boundary geometry are small
i.e. the height of the corrugations is much less the average thickness of the slab. But if we lower the
lid so there is only a small gap above the hill tops then the corrugations have the same magnitude as
the thickness of the slab. We can no longer assume small corrugations. Instead there is a different
approximation: the thickness of the slab is changing on the horizontal length scale k−1, which is much
greater than both the slab thickness H and the height of the corrugations a. In this sense the thickness
of the slab is slowly varying.

So lets consider the small β case. We proceed by writing

β = ϵα , (7.65)

where α > 1 and consider the limit ϵ→ 0 with α fixed. The thickness-in-z of the slab is now of order ϵ
everywhere so it makes sense to “rescale” the vertical coordinate

z
def
=

z

ϵ
, ⇒ ∂z = ϵ−1∂ζ . (7.66)

The re-scaled problem is
ϵ2Txx + Tζζ = 0 , (7.67)

with boundary conditions
T (x, cosx) = 0 , and T (x, α) = 1 . (7.68)

Now look for a regular perturbation solution

T = T0(x, ζ) + ϵ2T2(x, ζ) + O(ϵ4) . (7.69)

The leading-order problem is
T0ζζ = 0 , (7.70)

with boundary conditions
T0(x, cosx) = 0 , and T0(x, α) = 1 . (7.71)

In (7.70) there is a “one-term dominant balance”. One-term should be simpler than the two-term
dominant balances that have figured so prominently in our earlier discussion. But the one-term dominant
balance is subtle: the main point is that (7.70) has a nontrivial general soluton

T0(x, ζ) = A(x) +B(x)ζ . (7.72)
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The boundary conditions (7.71) imply that

0 = A+B cosx , and 1 = A+B . (7.73)

Hence the leading-order solution is

T0(x, ζ) =
ζ − cosx

α− cosx
. (7.74)

We can now calculate the heat flux through the slab

⟨T0ζ(x, 1)⟩ =
1

π

∫ π

0

dx

α− cosx
, (7.75)

=
1√

α2 − 1
. (7.76)

Example: Poiseuille flow through a tube with slowly changing radius.

7.6 A slowly rotating self-gravitating mass

A mass M of incompressible, self-gravitating and non-rotating fluid, with uniform density ρ, will be in
hydrostatic equilibrium as a sphere of radius

r̄
def
=

(
3M

4πρ

)1/3

. (7.77)

The gravitational potential is determined by solving

∇2ϕ = 4πGρχ , (7.78)

where

χ =

{
1 , inside the mass;

0 , outside the mass.
(7.79)

Solving the Poisson equation (7.78), we obtain the well known spherically symmetric solution

ϕ = −GM
r̄

{
3r̄2−r2

2r̄2 , inside the sphere;
r̄
r , outside the sphere .

(7.80)

ϕ and ϕr are continuous at r = a; the second derivative is discontinuous at the surface of the sphere

ϕrr(r̄+) − ϕrr(r̄−) = −3g

r̄
, (7.81)

where the gravitational acceleration at the surface is

g
def
=

GM

r̄2
. (7.82)

The liquid mass is in equilibrium because ∇ϕ is normal to the surface of the sphere. Equivalently, the
surface of the sphere is an equipotential surface.

Solid body rotation, the geopotential and the equilibrium condition

Now suppose that the mass is in slow solid-body rotation about the z-axis with angular velocity Ω = Ωẑ.
The mass is no longer perfectly spherical – the equator is slightly bulged out and the poles are flattened.
If we knew the shape of the mass we could determined the potential ϕ by solving (7.78). Assuming
that the rotation is weak, and that the deformation from a perfect sphere is small, we proceed to
perturbatively solve (7.78) in combination with the momentum equation.
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In solid body rotation
u = Ωẑ × x (7.83)

where x = xx̂ + yŷ + zẑ is position relative to the center of mass and u the fluid velocity. Thus the
acceleration is

Du

Dt
= Ωẑ × u , (7.84)

= Ω2ẑ × (ẑ × x) , (7.85)

= −Ω2 (xx̂ + yŷ) , (7.86)

= −∇ 1
2Ω2(x2 + y2) . (7.87)

The momentum equation,
Du

Dt
= −∇

(
p

ρ
+ ϕ

)
, (7.88)

is therefore equivalent to
p

ρ
+ ϕ− Ω2 1

2 (x2 + y2) = constant. (7.89)

In (7.89) the gravitational potential ϕ is obtained from the solution of the Newtonian potential equation
(7.78). The effective potential

ϕ− Ω2

2
(x2 + y2) (7.90)

in (7.89) is known as the geopotential.
The equilibrium condition is that at the unknown surface of the mass the pressure is zero and (7.89)

becomes
@r = s(θ) : ϕ− 1

2Ω2r2 sin2 θ = constant . (7.91)

Above, r = s(θ) is the location of the surface and θ is the usual polar angle in spherical coordinates.
Later we need a expression for the unit normal n to the surface. The vector n is proportional to

∇[r − s(θ)], or

n =
sr̂ − sθθ̂√
s2 + s2θ

. (7.92)

Thus the normal derivative of the potential, evaluated on the surface of the mass, is

n · ∇ϕ|r=s︸ ︷︷ ︸
def
= ϕn

=
s2ϕr − sθϕθ

s
√
s2 + s2θ

. (7.93)

The normal derivative above is continuous at the surface.

Perturbative solution

Scale analysis identifies a single dimensionless parameter

ϵ =
Ω2

ρG
=

4π

3

Ω2r̄

g
. (7.94)

“Slow rotation” means that ϵ≪ 1. Instead of non-dimensionalizing the problem and expanding in ϵ, we
live dangerously by expanding in terms of the dimensional parameter Ω2:

s = r̄ + Ω2s1(θ) + O
(
Ω4
)
, (7.95)

and

ϕ = −GM
r︸ ︷︷ ︸

ϕ0

+Ω2ϕ1 + O
(
Ω4
)
. (7.96)

118



The boundary condition (7.91) is first transferred to r = r̄ via the expansion

ϕ(s(θ), θ) = ϕ(r̄) + (s− r̄)︸ ︷︷ ︸
=Ω2s1

ϕr(r̄, θ) + O
(
Ω4
)
. (7.97)

Thus at the convenient boundary

@r = r̄ : ϕ+ Ω2
(
s1 ϕr − 1

2 r̄
2 sin2 θ

)
+ O

(
Ω4
)

= constant . (7.98)

The normal derivative in (7.93) is

@r = r̄ : ϕn = ϕr(r̄, s) + Ω2

(
s1ϕrr −

s1θϕθ
r̄2

)
+ O

(
Ω4
)
. (7.99)

The problem for ϕ1 is therefore
∇2ϕ1 = 0 , (7.100)

with
@a : ϕ1 = −gs1 + 1

2 r̄
2 sin2 θ + constant. (7.101)

In addition, continuity of the normal derivative of ϕ implies that

ϕ1r(r̄+) − ϕ1r(r̄−) = −s1
(
ϕ0rr(r̄+) − ϕ0rr(r̄−)

)
︸ ︷︷ ︸

=−3g/r̄

(7.102)

This ϕ1-problem is forced by
1
2 sin2 θ = 1

3 − 1
3P2(θ) (7.103)

where P2(µ) = (3µ2 − 1)/2 is the second Legendre polynomial. Thus we try to solve the ϕ1-problem
with

s1 = αr̄ P2(cos θ) , (7.104)

and

ϕ1 = β P2(cos θ)

{
(r/r̄)2 , inside the mass;

(r/r̄)−3 , outside the mass.
(7.105)

The construction in (7.105) satisfies Laplace’s equation (7.100) and also continuity of ϕ1 at the surface.
Substituting (7.104) and (7.105) into (7.101) we obtain

β = −r̄gα− 1
3 r̄

2 . (7.106)

Noting that ϕ1r(r̄+) − ϕ1r(r̄−) = −5βP2/r̄, the normal derivative condition in (7.102) gives

5β = −3gr̄α . (7.107)

Solving for α and β one obtains

α = −5

6

r̄

g
and β =

r̄2

2
. (7.108)

To summarize, the surface of the mass is r = s(θ) where

s = r̄ − 5

6

r̄2Ω2

g
P2(cos θ) . (7.109)

The polar radius (θ = 0) is

rpol = r̄ − 5

6

r̄2Ω2

g
, (7.110)
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and the equatorial radius (θ = π/2) is

req = r̄ +
5

12

r̄2Ω2

g
. (7.111)

Thus the “flattening” is
req − rpol

r̄
=

5

4

r̄Ω2

g
. (7.112)

The external potential is

ϕ = − r̄
2g

r
+ P2(cos θ)

Ω2r̄5

2r3
. (7.113)
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7.7 Problems

Problem 7.1. Consider the partial differential equation

κ (Cxx + Czz) − µC = 0 (7.114)

in the region above z = h(x), with h(x) = a cos kx. The boundary conditions are C(x, a cos kx) = C∗
and C(x, z) → 0 as z → ∞. (i) Describe a physical situation governed by this boundary value problem.
(ii) Solve the problem with a = 0. (iii) Based on your exact solution, non-dimensionalize the problem
with non-zero a and determine the non-dimensional control parameters. (iv) Use perturbation theory
to find the first effects of small non-zero a on the “inventory”

A
def
=

k

2π

∫ ∞

h(x)

∫ 2π/k

0

C(x, z) dxdz . (7.115)

(I think you’ll have to go to second order in a.)

Problem 7.2. Consider the diffusion problem

ψxx + ψyy = −e−y (7.116)

in the “corrugated half-plane” defined by

−∞ < x <∞ , and ϵ cos kx < y . (7.117)

At the wavy boundary:
ψ(x, ϵ cos kx) = 0 . (7.118)

The condition at infinity is
lim
y→∞

ψ(x, y) = A(ϵ, k) , (7.119)

where A(ϵ, k) is an unknown function. (i) Solve the problem with ϵ = 0 and show that A(0, k) = 1. (ii)
Use a perturbation expansion (ϵ≪ 1) to determine the first non-zero correction to A = 1.

Problem 7.3. Consider 2D potential flow (no vorticity) around an cylindrical object whose cross section
in the (x, y)-plane is a slightly distorted circle

r = a
(
1 − ϵ sin2 θ

)
. (7.120)

Using a stream function ψ(x, y), with u = −ψy and v = ψx, the mathematical problem is

∇2ψ = 0 , (7.121)

where
∇2 = ∂2x + ∂2y = ∂2r + r−1∂r + r−2∂2θ (7.122)

is the Laplacian operator. Boundary conditions are ψ = 0 on the surface of the body and ψ → −Uy
at great distances from the body. (i) Review the standard solution for potential flow around a circular
cylinder i.e. the case ϵ = 0. This solution is in all fluid mechanics textbooks. Above I’m using cylindrical
coordinates r and θ that feature prominently in those textbooks. (ii) Non-dimensionalize the problem
and identify all non-dimensional control parameters. (iii) Use the boundary perturbation method to
find the first effects of small distortion, ϵ ≪ 1. Visualize the solution with matlab or some other
computational tool.

Problem 7.4. Consider Laplace’s equation,

ϕxx + ϕyy = 0 , (7.123)
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Figure 7.4: My solution to problem 7.5 with k = 2 and ϵ = 0.3. The lower panel is an expanded
view of the lower boundary. Some errors in the boundary condition T = 0 are evident near
kx = 0 and 2π. At this largish value of ϵ another term wouldn’t hurt.

in a domain which is a periodic-in-x channel with walls at y = ±(1 + ϵ cos kx). The boundary condition
on the walls is

(∇ϕ+ ı̂) · n̂ = 0 , (7.124)

where n̂ is the outward normal and ı̂ is the unit vector in the x-direction. Obtain two terms in the
expansion of

J(ϵ)
def
=

∫∫
ϕx dxdy . (7.125)

Problem 7.5. Consider a uniformly heated 2D metal ribbon of width 2h(x). The ribbon is cooled by
fixing T (x, h(x)) = 0 at the two boundaries. Thus the steady state temperature is determined by

Txx + Tyy = −1 , for − h(x) < y < +h(x) , (7.126)

where h
def
= 1 + ϵ cos kx. The boundary conditions are

T (x,±h) = 0 . (7.127)

We particularly desire the heat content of the ribbon

J(ϵ, k)
def
=

k

2π

∫ 2π/k

0

∫ h

−h

T dxdy . (7.128)

Use the boundary perturbation method to show that

J =
2

3
+ ϵ2 (1 − k tanh k) + O

(
ϵ4
)
. (7.129)
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Lecture 8

Boundary Layers

8.1 Stommel’s dirt pile

Consider a pile of dirt formed by a rain of sediment falling onto a conveyor belt. The belt stretches
between x = 0 and x = ℓ and moves to the left with speed −c: see the figure. If h(x, t) denotes the
height of a sandpile, then a very simple model is

ht − chx = s+ κhxx , (8.1)

with boundary conditions
h(0, t) = 0 , and h(ℓ, t) = 0 . (8.2)

The term s(x) on the right of (8.1) is the rate (meters per second) at which sand is falling from the sky
onto the belt.

We can make a sanity check by integrating (8.1) from x = 0 to x = ℓ:

d

dt

∫ ℓ

0

h(x, t) dx

︸ ︷︷ ︸
rate of accumulation

=

∫ ℓ

0

s(x, t) dx

︸ ︷︷ ︸
sedimentation from above

+ κhx(ℓ, t) − κhx(0, t)︸ ︷︷ ︸
loss of dirt by falling over the edges

. (8.3)

The advective term, chx, does not contribute to the budget above – advection is moving dirt but because
h = 0 at the boundaries advection is not directly contributing to the fall of dirt over the edges.

Exercise: Find the steady solution of (8.1) and (8.2) if the conveyor belt is switched off i.e. c = 0.

The steady solution with a uniform source

If the sedimentation rate, s(x, t), is a constant then we can easily obtain the steady state (t → ∞)
solution:

h(x,∞) =
sℓ

c

1 − e−cx/κ

1 − e−cℓ/κ
− sx

c
. (8.4)

If the diffusion is very weak, meaning that

ϵ
def
=

κ

cℓ
≪ 1 , (8.5)

then there is a region of rapid variation, the boundary layer, at x = 0. This is where all the sand
accumulated on the conveyor belt is pushed over the edge. Obviously if we reverse the direction of the
belt, then the boundary layer will move to x = ℓ. We assume that c > 0 so that ϵ > 0.

If we introduce non-dimensional variables

x̄
def
=

x

ℓ
, and h̄ =

ch

sℓ
, (8.6)
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z = h(x,t)
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Figure 8.1: Stommel’s boundary-layer problem.
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(x
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Figure 8.2: The solution in (8.7). The solid curve is ϵ = 0.1, the dashed curve is ϵ = 0.025 and
the dash-dot curve is ϵ = 0.005.

124



then the solution in (8.4) is

h(x, ϵ) =
1 − e−x/ϵ

1 − e−1/ϵ
− x . (8.7)

This solution is shown in figure 8.2 with various values of ϵ. We can consider two different limiting
processes in (8.7):

1. The outer limit: ϵ → 0, with x fixed. Under this limit, the exact solution in (8.7) is h → 1 − x.
The outer limit produces a good approximation to the exact h(x, ϵ), except close to x = 0 where
the boundary condition is not satisfied.

2. The inner limit: ϵ → 0 with X
def
= x/ϵ fixed. Under this limit the exact solution in (8.7) is

h→ 1− e−X . The inner limit produces a good approximation to the solution within the boundary
layer. This is a small region in which x is order ϵ. It is vital to understand that the term ϵhxx is
leading order within the boundary layer, and enables the solution to satisfy the boundary condition
at x = 0.

Thus the function in (8.7) has two different asymptotic expansions. Each expansion is limited by non-
uniformity as ϵ→ 0.

8.2 Leading-order solution of the dirt-pile model

We want to take the inner and outer limits directly in the differential equation, before we have a solution.
To make the problem a little more interesting, suppose that the sedimentation rate is some function of
x:

s = smaxs̄
(x
ℓ

)
. (8.8)

We use smax to define the non-dimensional h̄ back in (8.6). Dropping the bars, the non-dimensional
problem is

ϵhxx + hx = −s , (8.9)

with boundary conditions
h(0) = h(1) = 0 . (8.10)

We’re going to use boundary layer theory to obtain a quick and dirty leading-order solution of this
problem. We’ll return later to a more systematic discussion.

The outer expansion

Start the attack on (8.9) with a regular perturbation expansion

h(x, ϵ) = h0(x) + ϵh1(x) + ϵ2h2(x) + · · · (8.11)

We’re assuming that as ϵ → 0 with fixed x – the outer limit – that the solution has the structure in
(8.19). Note that in the outer limit the hn’s in (8.11) are independent of ϵ.

Exercise: Consider the special case s = 1, with the exact solution in (8.7). Does the outer limit of that exact
solution agree with the assumption in (8.11)?

The leading order is
h0x = −s , (8.12)

and we can solve this problem as

h0(x) =

∫ 1

x

s(x′) dx′

︸ ︷︷ ︸
correct

, or perhaps as h0(x) = −
∫ x

0

s(x′) dx′

︸ ︷︷ ︸
incorrect

. (8.13)
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Looking at the exact solution in (8.7) we know that the correct choice satisfies the BC at x = 1. If you
think about conveyor belts and falling dirt then this choice of boundary condition is also “physically
obvious”. Whether it is obvious or not, we proceed satisfying the BC at x = 1:

h0(x) =

∫ 1

x

s(x′) dx′ (the correct outer solution). (8.14)

We return later to show that the alternative ends in tears.

The inner expansion, and a quick-and-dirty matching argument

The inner region is the region near x = 0 in which (8.14) doesn’t work. We define

X
def
=

x

δ
, so that

d

dx
=

1

δ

d

dX
. (8.15)

δ is the boundary layer thickness – we’re pretending that δ is unknown. Using the inner variable X, the
problem (8.9) becomes is

ϵδ−2hXX + δ−1hX︸ ︷︷ ︸
two term balance

= −s(δX) . (8.16)

We get a nice two-term balance if
δ = ϵ . (8.17)

With this definition of δ we have the rescaled problem

hXX + hX = −ϵs(ϵX) . (8.18)

Now attack (8.18) with a a regular perturbation expansion

h(x, ϵ) = H0(X) + ϵH1(X) + ϵ2H2(X) + · · · (8.19)

In (8.19) we’re assuming that the Hn’s are independent of ϵ.
At leading order

H0XX +H0X = 0 , with solution H0 = A0

(
1 − e−X

)
. (8.20)

We’ve satisfied the BC at X = 0. But we still have an unknown constant A0.
To determine A0 we insist that “the inner limit of the outer solution is equal to the outer limit of

the inner limit solution”. This means that there is a region of overlap in which

A0

(
1 − e−X

)
︸ ︷︷ ︸
Inner solution

≈
∫ 1

x

s(x′) dx′

︸ ︷︷ ︸
Outer solution

. (8.21)

For instance, if x = O(ϵ1/2) ≪ 1 then X = O(ϵ−1/2) ≫ 1, and (8.21) tells us that

A0 =

∫ 1

0

s(x′) dx′ . (8.22)

Construction of a uniformly valid solution

With A0 determined by (8.22) we have completed the leading-order solution. We can combine our two
asymptotic expansions into a single uniformly valid solutions using the recipe

uniformly valid = outer + inner − match , (8.23)

=

∫ 1

x

s(x′) dx′ +

∫ 1

0

s(x′) dx′
(
1 − e−X

)
−
∫ 1

0

s(x′) dx′ , (8.24)

=

∫ 1

x

s(x′) dx′ −
∫ 1

0

s(x′) dx′ e−x/ϵ . (8.25)

This is also known as the composite expansion.
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Why can’t we have a boundary layer at x = 1?

Now we return to (8.13) and discuss what happens if we make the incorrect choice

h0(x)
?
= −

∫ x

0

s(x′) dx′ . (8.26)

This outer solution satisfies the BC at x = 0.
On physical grounds we are deeply suspicious of (8.26): the height of the dirt pile is negative. Unless

the dirt is adhering to the bottom of the belt this makes no sense at all. We proceed by abandoning
physical arguments and discussing the failure of (8.26) as a mathematical issue.

We try to put a boundary layer at x = 1. Again we introduce a boundary-layer coordinate:

X
def
=

x− 1

δ
, so that

d

dx
=

1

δ

d

dX
. (8.27)

The dominant balance argument convinces us that δ = ϵ, and using (8.19) we find exactly the same
leading-order solution as before:

H0 = A0

(
1 − e−X

)
, except that now X =

x− 1

δ
. (8.28)

H0(X) above satisfies the BC at X = 0, which is the same as x = 1. But now when we attempt to match
the outer solution in (8.26) it all goes horribly wrong: we take the limit X → −∞ and the exponential
explodes. It is impossible to match the outer solution (8.26) with the inner solution in (8.28).

8.3 Stommel’s problem at infinite order

The special case s(x) = 1

This special case is very simple: the infinite-order uniform solution is

H = 1 − e−X

︸ ︷︷ ︸
H0

− ϵ X︸︷︷︸
H1

. (8.29)

And the infinite-order outer solution is simply

h = 1 − x︸ ︷︷ ︸
h0

. (8.30)

All the higher-order terms are zero. With the recipe

uniform = outer + inner − match , (8.31)

we assemble an infinite-order uniform approximation:

huni(x) = 1 − x− e−x/ϵ . (8.32)

The exact solution is

h(x) =
1 − e−x/ϵ

1 − e−1/ϵ
− x ; (8.33)

this differs from the infinite-order approximation by the exponentially small e−1/ϵ.
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A general source s(x)

To expose the complete structure of higher-order boundary-layer problems let us discuss the form of the
high-order terms in Stommel’s problem with a general source function. Recall our model for the steady
state sandpile is

ϵhxx + hx = −s . (8.34)

We assume that the source s(x) has the Taylor series expansion around x = 0:

s(x) = s(0) + s′(0) + 1
2x

2s′′(0) + · · · , (8.35)

and around x = 1:
s(x) = s(1) + (x− 1)s′(1) + 1

2 (x− 1)2s′′(1) + · · · (8.36)

The outer solution

The leading-order outer problem is

h0x = −s , ⇒ h0 =

∫ 1

x

s(x′) dx′ , (8.37)

and the following orders are

h1x = −h0xx = +sx , ⇒ h1 = s(x) − s(1) , (8.38)

h2x = −h1xx = −sxx , ⇒ h2 = s′(1) − s′(x) , (8.39)

h3x = −h2xx = +sxxx , ⇒ h3 = s′′(x) − s′′(1) . (8.40)

At every order hn(1) = 0. It is clear how this series continues to higher order. We can assemble the first
three terms of the outer solution as

h =

∫ 1

0

s(x′) dx′ −
∫ x

0

s(x′) dx′ + ϵ [s(x) − s(1)] + ϵ2 [s′(1) − s′(x)] +O(ϵ3) . (8.41)

The inner solution

In the boundary layer, we must expand the source in a Taylor series

s(ϵX) = s0 + ϵXs′(0) + 1
2ϵ

2X2s′′(0) + · · · (8.42)

If we don’t expand the source then there is no way to collect powers of ϵ and maintain our assumption
that the Hn’s in

h(x, ϵ) = H0(X) + ϵH1(X) + ϵ2H2(X) + · · · (8.43)

are independent of ϵ. The RPS above leads to

H0XX +H0X = 0 , ⇒ H0 = A0

(
1 − e−X

)
, (8.44)

H1XX +H1X = −s(0) , ⇒ H1 = A1

(
1 − e−X

)
− s(0)X , (8.45)

H2XX +H2X = −s′(0)X , ⇒ H2 = A2

(
1 − e−X

)
− s′(0)

(
1
2X

2 −X
)
. (8.46)

At every order we’ve satisfied the boundary condition Hn(0) = 0. Matching determines the constants
An.

Remark: To solve the BL equation at order n we need particular solutions obtained from

PnXX + PnX = Xn−1 , Pn(0) = 0 . (8.47)

Integrating once

PnX + Pn =
Xn

n
(8.48)
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The definition of Pn(X) is completed by setting the integration constant above to zero. Then with an
integrating factor

Pn(X) =
e−X

n

∫ X

0

tnet dt , (8.49)

=
Xn

n
− e−X

∫ X

0

tn−1et dt , (8.50)

=
Xn

n
− (n− 1)Pn−1 . (8.51)

Thus

P1 = X , P2 =
X2

2
−X , P3 =

X3

3
−X2 + 2X , (8.52)

P4(X) =
X4

4
−X3 + 3X2 − 6X , etc. (8.53)

Matching

In the matching region X ≫ 1 and we simplify the boundary layer solution by neglecting all the
exponentially small terms involving e−X . This gives

h ∼ A0︸︷︷︸
H0

+ ϵA1 − ϵs(0)X︸ ︷︷ ︸
ϵH1

+ ϵ2A2 − ϵ2s′(0)
(
1
2X

2 −X
)

︸ ︷︷ ︸
ϵ2H2

+O(ϵ3) . (8.54)

We rewrite the outer solution in (8.38) through (8.40) in terms of X = x/ϵ and take the inner limit,
keeping terms of order ϵ2:

h ∼
∫ 1

0

s(x′) dx′ − ϵs(0)X − 1
2ϵ

2s′(0)X2

︸ ︷︷ ︸
h0

+ϵ [s(0) + ϵXs′(0) − s(1)]︸ ︷︷ ︸
h2

+ϵ2 [s′(1) − s′(0)]︸ ︷︷ ︸
h2

+O(ϵ3) . (8.55)

The inner limit of h0(x) produces terms of all order in ϵ – above we’ve explicitly written only terms up
to O(ϵ2).

A marriage between the different expansions (8.54) and (8.55) of the same function h(x, ϵ) implies
that

A0 =

∫ 1

0

s(x′) dx′ , A1 = s(0) − s(1) , A2 = s′(1) − s′(0) . (8.56)

All the other terms in (8.54) and (8.55) match. Notice that terms from h0 match terms from H1 and
H2. If we continue to higher order then terms from H3(x) will match some terms from h0(x). It is
interesting that the boundary layer constants A1 and A2 involve properties s(1) and s′(1) of the source
at x = 1.

8.4 Variable speed

Suppose the conveyor belt is a stretchy membrane which moves with non-uniform speed −c(x). With
non-constant c, the dirt conservation equation in (8.1) generalizes to

ht − (ch)x = s+ κhxx , (8.57)

with boundary conditions unchanged: h(0, t) = 0 and h(ℓ, t) = 0.

Exercise: Make sure you understand why it is (ch)x, rather than chx, in (8.57). Nondimensionalize (8.57) so
that the steady state problem is

ϵhxx − (ch)x = −s , h(0) = h(1) = 0 , (8.58)

with max c(x) = 1 and max s(x)=1.
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Example: Slow-down and pile-up

Suppose that the belt slows near x = 0. Specifically, let’s assume that the belt speed is

c =
√
x . (8.59)

The speed is zero at x = 0, so we expect that dirt will start to pile up. If the source is uniform then the
steady-state problem is

ϵhxx +
(√
xh
)
x

= −1 , with BCs h(0) = h(1) = 0. (8.60)

Exercise: Show that a particle starting at x = 1 and moving with ẋ = −xβ , with β < 1, reaches x = 0 in a
finite time. What happens if β ≥ 1?

The first two terms in the interior solution are

h(x, ϵ) =
(
x−1/2 − x1/2

)
+ ϵ

(
1

2
x−2 +

1

2
x−1 − x−1/2

)
+ O(ϵ2) . (8.61)

We’ve satisfied the BC at x = 1 and the pile-up at x = 0 is evident via the divergence of the outer
solution as x → 0. The divergence is stronger at higher orders, and the RPS above is disordered as
x→ 0.

Turning to the boundary layer at x = 0, we introduce

X
def
=

x

δ
(8.62)

so that
ϵ

δ2
hXX +

1

δ1/2

(√
Xh
)
X

= −1 . (8.63)

A dominant balance between the first two terms is achieved with ϵ = δ3/2, or

δ = ϵ2/3 . (8.64)

With this definition of δ, and
h = H(X, ϵ) , (8.65)

the boundary layer equation is

HXX +
(√

XH
)
X

= −ϵ1/3 . (8.66)

We attack with an RPS: h = H0(X) + ϵ1/3H1(x) + · · ·
At leading order

H0XX +
(√

XH0

)
X

= 0 , (8.67)

with first integral
H0X +

√
XH0 = A0 . (8.68)

Solving this first-order equation with an integrating factor we obtain

H0(X) = A0e−2X3/2/3

∫ X

0

e2t
3/2/3 dt . (8.69)

We’ve satisfied the boundary condition at x = 0, and we must determine the remaining constant of
integration A0 by matching to the interior solution.

To match the interior, we need the asymptotic expansion of (8.69) as X → ∞: this can be obtained
by following our earlier discussion of Dawson’s integral:

H0(X) ∼ A0√
X
, as X → ∞, (8.70)

=
ϵ1/3A0

x1/2
. (8.71)
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An alternative, and more efficient, derivation of (8.71) is to write (8.68) as

H0 =
A0

X1/2
− H0X

X1/2
(8.72)

and proceed iteratively starting with H0 ∼ A0X
−1/2 as X → ∞.

On the other hand the inner expansion of the outer solution in (8.61) is

h =
1

x1/2
+O

(
x1/2, ϵx−2

)
. (8.73)

We almost have a match – it seems we should take A0 = ϵ−1/3 in (8.71) so that both functions are equal
to x−1/2 in the matching region. But remember that we assumed that H0(x) is independent of ϵ, so A0

cannot depend on ϵ. Our expansion has failed.

Exercise: How would you gear so that the term ϵx−2 in (8.71) is asymptotically negligible relative to x−1/2 in
the matching region?

It is easy to rescue our expansion: the correct definition of the boundary layer solution – which
replaces (8.65) – is

h = ϵ−1/3H(X, ϵ) . (8.74)

In retrospect perhaps the rescaling in (8.74) is obvious – the interior RPS in (8.61) is becoming disordered
as x→ 0. The problem is acute once the second term in the expansion is comparable to the first term,
which happens once

x−1/2 ∼ ϵx−2 or x ∼ ϵ2/3 = δ . (8.75)

This the boundary layer scale, and as we enter this region the interior solution is of order x−1/2 ∼ ϵ−1/3

– this is why the rescaling in (8.74) is required. If we’d been smart we would have made this argument
immediately after (8.61) and avoided the mis-steps in (8.65) and (8.66).

Using the rescaled variable in (8.71), the boundary layer equation that replaces (8.66) is

HXX +
(√

XH
)
X

= −ϵ2/3 . (8.76)

Now we can try the RPS
H(X, ϵ) = H0(X) + ϵ2/3H1(X) + · · · (8.77)

We quickly find the leading-order solution

H0 = e−2X3/2/3

∫ X

0

e2t
3/2/3 dt . (8.78)

This satisfies the x = 0 boundary condition and also matches the x−1/2 from the interior.
We can now construct a leading-order uniformly valid solution as

huni(x, ϵ) = ϵ−1/3e−2X3/2/3

∫ X

0

e2t
3/2/3 dt− x1/2 . (8.79)

Figure 8.3 compares the uniformly valid approximation (8.79) with an exact solution of (8.60).

Exercise: evaluate the integral
∫ 1

0
h(x, ϵ) dx to leading order as ϵ → 0.

Example: higher-order corrections

To illustrate how to bash out higher order corrections let’s calculate the first two terms in the BL solution
of the BVP

ϵhxx + [exh]x = −2e2x , (8.80)

with BCs
h(0) = h(1) = 0 . (8.81)
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Figure 8.3: Comparison of (8.79) with the exact solution of (8.60).

We suspect there is a BL at x = 0. So we first develop the interior solution

h(x, ϵ) = h0(x) + ϵh1(x) + ϵh2(x) + · · · (8.82)

by satisfying the boundary condition at x = 1 at every order.
The leading-order term is

[exh0]x = −2e2x , ⇒ h0 = e2−x − ex . (8.83)

The next two orders are

[exh1]x = −h0xx , ⇒ h1 = 1 − 2e1−x + e2−2x , (8.84)

[exh2]x = −h1xx , ⇒ h2 = 2
(
e2−3x − e1−2x

)
. (8.85)

Later, to perform the match, we will need the inner limit of this outer solution. So in preparation for
that, as x→ 0,

h0 + ϵh1 + ϵ2h2 = (e2 − 1) − (e2 + 1)x+ 1
2 (e2 − 1)x2

+ ϵ(1 − e)2 − ϵx2(e2 − e)

+ ϵ22(e2 − e) + O(x3, ϵx2, ϵ2x) . (8.86)

Turning to the boundary layer, we use the inner variable X = x/ϵ so that the rescaled differential
equation is

hXX +
[
eϵXh

]
X

= −2ϵe2ϵX . (8.87)

We substitute the inner expansion

h = H0(X) + ϵH1(X) + ϵ2H2(X) + · · · (8.88)

into the differential equation and collect powers of ϵ. The first three orders of the boundary-layer problem
are

H0XX +H0X = 0 , (8.89)

H1XX + [H1 +XH0]X = −2 , (8.90)

H2XX +
[
H2 +XH1 + 1

2X
2H0

]
X

= −4X . (8.91)

Note that it is necessary to expand the exponentials within the boundary layer, otherwise we cannot
ensure that the Hn’s do not depend on ϵ.

The solution for H0 that satisfies the boundary condition at x = 0, and also matches the first term
on the right of (8.86), is

H0 = (e2 − 1)
(
1 − e−X

)
. (8.92)
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The solution for H1 that satisfies the boundary condition at x = 0 is

H1 = A1(1 − e−X) + (e2 + 1)
(
1 −X − e−X

)
+ 1

2 (e2 − 1)X2e−X . (8.93)

The constant A1 is determined by matching to the interior solution. We can do this by taking the limit
as X → ∞ in the boundary layer solution H0 + ϵH1. Effectively this means that all terms involving
e−X are exponentially small and therefore negligible in the matching. To help with pattern recognition
we rewrite the outer limit of the boundary-layer solution in terms of the outer variable x. Thus, in the
matching region where X ≫ 1 and x≪ 1, the boundary-layer solution in (8.92) and (8.93) is:

H0 + ϵH1 → (e2 − 1) + ϵA1 + ϵ(1 + e2) − (1 + e2)x . (8.94)

To match the first term on the second line of (8.86) with (8.94) we require

ϵA1 + ϵ(1 + e2) = ϵ(1 − e)2 , ⇒ A1 = −2e . (8.95)

The final term in (8.94), namely −(1 + e2)x, matches against a term on the first line of (8.86). That’s
interesting, because −(1 + e2)x comes from H1 and matches against h0.

There are many remaining ummatched terms in (8.86) e..g, 1
2 (e2 − 1)x2 on the first line. This term

will match against terms from H2 i.e. it will require an infinite number of terms in the boundary layer
expansion just to match terms arising from the expansion of the leading-order interior solution.

Now we construct a uniformly valid approximation using the recipe

uniform = outer + inner − match . (8.96)

This gives

huni = e2−x − ex − (e2 − 1)e−X

+ ϵ
[
1 − 2e1−x + e2−2x + e−X

(
1
2X

2(e2 − 1) − (e − 1)2
)]
. (8.97)

This construction satisfies the x = 0 boundary condition exactly. But there is an exponentially small
embarrassment at x = 1. Figure 8.4 compares the numerical solution of (8.80) with the approximation
in (8.97). At ϵ = 0.2 the two-term approximation is significantly better than just the leading-order term.
We don’t get line-width agreement – the ϵ2 term would help.
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function StommelBL

% Solution of epsilon h_{xx} +(exp(x) h)_x = - 2 \exp(2 x)

epsilon = 0.2;

solinit = bvpinit(linspace(0 , 1 , 10) , @guess);

sol = bvp4c(@odez,@bcs,solinit);

% My fine mesh

xx = linspace(0,1,100); hh = deval(sol,xx);

figure; subplot(2,1,1)

plot(xx , hh(1,:),’k’)

hold on

xlabel(’$x$’,’interpreter’,’latex’,’fontsize’,16)

ylabel(’$h$’,’interpreter’,’latex’,’fontsize’,16,’rotation’,0)

axis([0 1 0 3.5])

% The BL solution

XX = xx/epsilon; EE =exp(-XX);

hZero = exp(2-xx) - exp(xx) - (exp(2) - 1).*EE;

hOne = 1 - 2*exp(1-xx) + exp(2-2*xx)...

+ EE.*( 0.5*XX.^2*(exp(2) - 1) - (exp(1) - 1)^2);

plot(xx, hZero+epsilon*hOne,’-.r’ , xx,hZero,’--g’)

legend(’bvp4c’,’two terms’ , ’one term’)

text(0.02,3.2,’$\epsilon =0.2$’,’interpreter’,’latex’,’fontsize’,16)

%% Inline functions

%The differential equations

function dhdx = odez(x,h)

dhdx = [h(2)/epsilon ; ...

- exp(x).*h(2)/epsilon - exp(x).*h(1) - 2*exp(2*x)];

end

%residual in the boundary condition

function res = bcs(um,up)

res = [um(1) ; up(1) ];

end

% Inital guess at the solution

function hinit = guess(x)

hinit = [(1-x^2) ; 2*x];

end

end
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8.5 A nonlinear Stommel problem

Consider the Stommel model with nonlinear diffusivity:

ϵ
(
1
2h

2
)
xx

+ hx = −1 , with BCs: h(0) = h(1) = 0 . (8.98)

Diffusion is bigger where the pile is deeper because there is more height for diffusion to move dirt around.
If we assume that the boundary layer is at x = 0 then an easy calculation shows that the leading-order

interior solution is
h0 = 1 − x . (8.99)

The interior series continues as
h =

(
1 + ϵ+ 2ϵ2 + · · ·

)
(1 − x) . (8.100)

This perturbation series indicates that there is a simple exact solution that satisfies the x = 1 boundary
condition:

h = A(ϵ) (1 − x) , where ϵA2 −A+ 1 = 0 . (8.101)

This is pleasant, but it does not help with the boundary condition at x = 0.
Introducing the boundary layer variable

X
def
= x/ϵ , (8.102)

we have the re-scaled equation (
1
2h

2
)
XX

+ hX = −ϵ . (8.103)

We try for a solution with h = H0(X) + ϵH1(X) + · · · The leading-order equation is

(
1
2H

2
0

)
XX

+H0X = 0 , (8.104)

which integrates to
H0H0X +H0 = C . (8.105)

This leading-order solution must satisfy both the X = 0 boundary condition and the matching condition

H0(0) = 0 , and lim
X→∞

H0(X) = 1 . (8.106)

If we apply the x = 0 boundary condition to (8.105), and assume that

lim
X→0

H0H0X
?
= 0 , (8.107)

then we conclude that C = 0. But C = 0 in (8.105) quickly leads to H0 = −X. This satisfies the
boundary condition at x = 0, but not the matching condition. We are forced to consider that the limit
above is non-zero. In that case we can determine the constant C in (8.105) by matching to the interior.
Thus C = 1 and

H0X =
1

H0
− 1 . (8.108)

We solve (8.108) via separation of variables

H0 dH0

1 −H0
= dX , (8.109)

integrating to

−H0 + ln
1

1 −H0
= X +A . (8.110)

Applying the boundary condition at X = 0 shows that A = 0, and thus H0(X) is determined implicitly
by

H0 = 1 − e−X−H0 . (8.111)
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Figure 8.5: The boundary-layer solution in (8.111) of the nonlinear Stommel problem in (8.98).

This implicit solution is shown in figure 8.5. As X → ∞ we use iteration to obtain the large-X behaviour
of the boundary layer solution

H0(X) ∼ 1 − e−X−1 + e−2X−2 + · · · as X → ∞ . (8.112)

This demonstrates matching to the leading-order interior solution.
Might we find another solution of (8.98) with a boundary layer at x = 1? The answer is yes: (8.98)

has both the reflection symmetry

h→ −h , and x→ −x , (8.113)

and the translation symmetry
x→ x+ a . (8.114)

Thus we can define x1 = x − 1/2 so that the boundary conditions are applied at x1 = ±1/2. The
reflection symmetry then implies that if h(x1) is a solution then so is −h(−x1). With this trickery the
solution we’ve just described is transformed into a perfectly acceptable solution but with a boundary
layer at the other end of the domain.

Exercise: Assume that the boundary layer is at x = 1, so that the leading-order outer solution is now h0 = −x.
Construct the boundary-layer solution using the inner variable X = (x − 1)/ϵ – you’ll be able to satisfy
both the x = 1 boundary condition and match onto the inner limit of the outer solution. This solution
has h(x) ≤ 0.

Reformulation of the nonlinear diffusion model

As a solution of the dirt-pile model the second solution above makes no sense: dirt piles can’t have
negative height. And the physical intuition that put the boundary layer at x = 0 can’t be wrong simply
because we use a more complicated model of diffusion. The problem is that the nonlinear diffusion
equation in (8.98) should be

ϵ
(
1
2 |h|h

)
xx

+ hx = −1 , h(0) = h(1) = 0 . (8.115)

In other words, the diffusivity should vary with |h|, not h. Back in (8.98), our translation of the physical
problem into mathematics was faulty. Changing h to |h| in destroys the symmetry in (8.113).

Now let’s use the correct model in (8.115) and show that the boundary layer cannot be at x = 1. If
we try to put the boundary layer at x = 1 then the leading-order interior solution is

h0 = −x . (8.116)

Using the boundary layer coordinate

X
def
=

x− 1

ϵ
, (8.117)
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the leading-order boundary layer equation is

−
(

1
2H

2
0

)
XX

+H0X = 0 , (8.118)

Above we have assumed that H0(X) < 0 so that |H0| = −H0. The differential equation in (8.121) must
be solved with boundary and matching conditions

H0(0) = 0 , and lim
X→−∞

H0 = −1 . (8.119)

The second condition above is matching onto the inner limit of the outer solution. We can integrate
(8.121) and apply the matching condition to obtain

dH0

dX
=
H0 + 1

H0
. (8.120)

Now if −1 < H0 < 0 then the equation above implies that

dH0

dX
< 0 . (8.121)

The sign in (8.121) is not consistent with a solution that increases monotonically from H0(−∞) = −1 to
H0(0) = 1. Moreover if we integrate (8.120) with separation of variables we obtain an implicit solution

X = H0 − ln(1 +H0) , or equivalently H0 = −1 + e−X+H0 . (8.122)

But as X → −∞ we do not get a match – the boundary layer cannot be at x = 1. Thus we cannot
construct a solution of the |h|-model in (8.115) with a boundary layer at x = 1

8.6 Problems

Problem 8.1. (i) Find a leading order uniformly valid solution of

−hx = ϵhxx + x , h(0) = h(1) = 0 . (8.123)

(ii) Solve the BVP above exactly and compare the exact solution to the boundary layer approximation
with ϵ = 0.1.

Problem 8.2. (i) Solve the boundary value problem

hx = ϵhxx + sinx , h(0) = h(π) = 0 , (8.124)

exactly. To assist communication, please use the notation

X
def
=

x− π

ϵ
, and E

def
= e−π/ϵ . (8.125)

This should enable you to write the exact solution in a compact form. (ii) Now solve the problem with
boundary-layer theory. Begin with the interior. Applying the x = 0 boundary condition, find the first
three terms in the regular perturbation expansion:

h(x) = h0(x) + ϵh1(x) + ϵ2h2(x) +O
(
ϵ3
)
. (8.126)

(iii) There is a boundary layer at x = π. “Rescale” the equation using X above as the independent
variable and denote the solution in the boundary layer by H(X). Find the first three terms in the regular
perturbation expansion of the boundary-layer equation:

H = H0(X) + ϵH1(X) + ϵ2H2(X) +O
(
ϵ3
)
. (8.127)

(iv) The Hn’s above will each contain an unknown constant. Determine the three constants by matching
to the interior solution. (v) Construct a uniformly valid solution, up to an including terms of order ϵ2.
You can check your algebra by comparing your boundary layer solution with the expansion of the exact
solution from part (i). (vi) With ϵ = 0.2 and 0.5, use matlab to compare the exact solution from part
(i) with the approximation in part (v).
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Figure 8.6: Solution with a = −1.

Problem 8.3. Suppose ϵ is a real number with |ϵ| ≪ 1. (For the moment we relax our usual rule that
ϵ > 0.) Consider the boundary value problem

ϵy′′ + y′ = −e−x , (8.128)

posed on the interval 0 < x < 1 with boundary conditions y(0) = y(1) = 0. (i) Solve the problem
exactly. (You might need to consider the case ϵ = 1 separately.) (ii) Plot the exact solution for ϵ = 1,
1/4, 1/10. (iii) Plot the exact solution for ϵ = +1/100 and ϵ = −1/100. The limiting function depends
on whether ϵ approaches zero through positive or negative values. (iv) Now assume that ϵ→ 0 through
positive values. Use boundary layer analysis to obtain a leading order, uniform approximation, y0(x).
Make a graphical comparison of y0(x) with the exact solution at ϵ = 1/4. (v) Now obtain the first-order
in ϵ uniform approximation. Add this new and improved approximation to your figure.

Problem 8.4. Consider

ϵhxx + hx = −ea(x−1) , with BCs h(0) = h(1) = 0 . (8.129)

(i) Show that the interior solution, to infinite order, is

h =
(
1 − ϵa+ ϵ2a2 − ϵ3a3 + · · ·

)
︸ ︷︷ ︸

1
1+ϵa

1

a

[
1 − ea(x−1)

]
. (8.130)

(ii) Obtain the BL solution that matches the first three terms of the interior problem. (iii) Make a
numerical comparison between the BL solution and the exact solution e.g. see figure 8.6 .

Problem 8.5. Find the leading-order uniformly valid boundary-layer solution to the Stommel problem

− (exg)x = ϵgxx + 1 , with BCs g(0) = g(1) = 0 . (8.131)

Do the same for
(exf)x = ϵfxx + 1 , with BCs f(0) = f(1) = 0 . (8.132)
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Figure 8.7: Figure for problem 8.11.

Problem 8.6. Analyze the variable-speed Stommel problem

ϵhxx + (xah)x = −1 , with BCs h(0) = h(1) = 0 , (8.133)

using boundary layer theory. Limit attention to a ≥ 0. (The cases a = 0 and a = 1/2 are discussed in
the lecture.) How thick is the boundary layer at x = 0, and how large is the solution in the boundary
layer? Check your reasoning by constructing the leading-order uniformly valid solution when a = 2.

Problem 8.7. Analyze the variable-speed Stommel problem

ϵhxx +
(
x−bh

)
x

= −1 , with BCs h(0) = h(1) = 0 . (8.134)

Limit attention to b ≥ 0. (i) Use boundary-layer theory to solve the special case b = 1. (ii) With b = 1
as a sanity check, discuss the general case i.e. construct the solution taking advantage of ϵ≪ 1.

Problem 8.8. Find the leading-order, uniformly valid solution of

ϵhxx + (sinxh)x = −1 , with BCs h(0) = h
(π

2

)
= 0 . (8.135)

Problem 8.9. Find a leading-order boundary layer solution to

ϵhxx + (sinxh)x = −1 , with BCs h(0) = h(π) = 0 . (8.136)

(I think there are boundary layers at both x = 0 and x = 1.)

Problem 8.10. Considering the pile-up example (8.60), find the next term in the boundary-layer
solution of this problem. Make sure you explain how the term ϵx−2 in the outer expansion is matched
as x→ 0.

Problem 8.11. Find a leading-order boundary layer solution to the forced Burgers equation

ϵhxx +
(
1
2h

2
)
x

= −1 , h(0) = h(1) = 0 . (8.137)

Use bvp4c to solve this problem numerically, and compare your leading order solution to the numerical
solution: see figure 8.7.

Problem 8.12. The result of problem 8.11 is disappointing: even though ϵ = 0.05 seems rather small,
the approximation in Figure 8.7 is only so-so. Calculate the next correction and compare the new
improved solution with the bvp4c solution. (The numerical solution seems to have finite slope at x = 1,
while the leading-order outer solution has infinite slope as x→ 1: perhaps there a higher-order boundary
layer at x = 1 is required to heal this singularity?)

Problem 8.13. Use boundary layer theory to find leading order solution of

hx = ϵ
(
1
3h

3
)
xx

+ 1 , (8.138)

on the domain 0 < x < 1 with boundary conditions h(0) = h(1) = 0. You can check your answer by
showing that h = 1/2 at x ≈ 1 − (ln 2 − 5/8)ϵ.
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Lecture 9

Evaluating integrals by matching

9.1 Singularity subtraction

Considering

F (ϵ) =

∫ π

0

cosx√
x2 + ϵ2

dx , as ϵ→ 0, (9.1)

we cannot set ϵ = 0 because the resulting integral is logarithmically divergent at x = 0. An easy way to
make sense of this limit is to write

F (ϵ) = −
∫ π

0

1 − cosx√
x2 + ϵ2

dx +

∫ π

0

dx√
x2 + ϵ2︸ ︷︷ ︸

an elementary integral

, (9.2)

∼ −
∫ π

0

1 − cosx

x
dx+ ln

(
π +

√
π2 + ϵ2

)
− ln ϵ , (9.3)

∼ ln
1

ϵ
−
∫ π

0

1 − cosx

x
dx+ ln 2π , (9.4)

with errors probably O(ϵ). This worked nicely because we could exactly evaluate the elementary integral
above. This method is called singularity subtraction – to evaluate a complicated nearly-singular integral
one finds an elementary integral with the same nearly-singular structure and subtracts the elementary
integral from the complicated integral. To apply this method one needs a repertoire of elementary nearly
singular integrals.

Exercise: Generalize the example above to

F (ϵ) =

∫ a

0

f(x)√
x2 + ϵ2

dx . (9.5)

Example: Find the small x behaviour of the exponential integral

E(x) =

∫ ∞

x

e−t

t
dt . (9.6)

Notice that
dE

dx
= −e−x

x
= − 1

x
+ 1− x

2
+ · · · (9.7)

If we integrate this series we have

E(x) = − lnx+ C + x− x2

4
+O(x3) . (9.8)

The problem has devolved to determining the constant of integration C. We do this by subtracting the
singularity. We use an elementary nearly-singular-as x → 0 integral:

lnx = −
∫ 1

x

dt

t
. (9.9)
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We use this elementary integral to subtract the logarithmic singularity from (9.6):

E(x) + lnx = −
∫ 1

x

1− e−t

t
dt+

∫ ∞

1

e−t

t
dt . (9.10)

Now we take the limit x → 0 and encounter only convergent integrals:

C = lim
x→0

[E(x) + lnx] , (9.11)

= −
∫ 1

0

1− e−t

t
dt+

∫ ∞

1

e−t

t
dt , (9.12)

= −γE . (9.13)

Above, we’ve used the result from problem 4.7 to recognize Euler’s constant γE ≈ 0.57721. To summarize,
as x → 0

E(x) ∼ − lnx− γE + x− x2

4
+O

(
x3) . (9.14)

9.2 Local and global contributions

Consider

A(ϵ)
def
=

∫ 1

0

ex dx√
ϵ+ x

. (9.15)

The integrand is shown in Figure 9.1. How does the function A(ϵ) behave as ϵ→ 0? The leading order
behaviour is perfectly pleasant:

A(0) =

∫ 1

0

ex dx√
x
. (9.16)

This integral is well behaved and we can just evaluate it, for example as

A(0) =

∫ 1

0

1√
x

+ x1/2 +
x3/2

2!
+
x5/2

3!
+ · · · dx ,

≈ 2 +
2

3
+

1

5
+

2

21
,

= 2.91429 . (9.17)

Alternatively, with the mathematica command NIntegrate, we find A(0) = 2.9253.
To get the first dependence of A on ϵ, we try taking the derivative:

dA

dϵ
= −1

2

∫ 1

0

ex dx

(ϵ+ x)3/2
. (9.18)

But now setting ϵ = 0 we encounter a divergent integral. We’ve just learnt that the function A(ϵ) is not
differentiable at ϵ = 0. Why is this?

Referring to Figure 9.1, we can argue that the peak contribution to the integral in (9.15) is

peak width, O(ϵ) × peak height, O(ϵ−1/2) = O
(
ϵ1/2

)
. (9.19)

Therefore the total integral is

A(ϵ) = an O(1) global contribution

+ an O
(
ϵ1/2

)
contribution from the peak

+ higher-order terms – probably a series in
√
ϵ. (9.20)

The O
(
ϵ1/2

)
is not differentiable at ϵ = 0 – this is why the integral on the right of (9.18) is divergent.

Ths argument suggests that

A(ϵ) = 2.9253 + c
√
ϵ+ higher-order terms. (9.21)

How can we obtain the constant c above?
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Figure 9.1: The integrand in (9.15) with ϵ = 0.01. There is a peak with height ϵ−1/2 ≫ 1 and
width ϵ ≪ 1 at x = 0. The peak area scales as ϵ1/2, while the outer region makes an O(1)
contribution to the integral.

Method 1: subtraction

We have

A(ϵ) −A(0) =

∫ 1

0

ex
(

1√
ϵ+ x

− 1√
x

)
dx , (9.22)

∼
∫ ∞

0

1√
ϵ+ x

− 1√
x

dx , (9.23)

=
√
ϵ

∫ ∞

0

1√
1 + t

− 1√
t

dt , (9.24)

= −2
√
ϵ . (9.25)

Exercise: Explain the transition from (9.22) to (9.23). If you don’t believe it, then plot the difference ex/
√
ϵ+ x−

ex/
√
x.

Although this worked very nicely, it is difficult to get further terms in the series with singularity sub-
traction.

Method 2: range splitting and asymptotic matching

We split the range at x = δ, where
ϵ≪ δ ≪ 1 , (9.26)

and write the integral as

A(ϵ)
def
=

∫ δ

0

ex dx√
ϵ+ x︸ ︷︷ ︸

A1(ϵ,δ)

+

∫ 1

δ

ex dx√
ϵ+ x︸ ︷︷ ︸

A2(ϵ,δ)

. (9.27)

We can simplify A1(ϵ, δ) and A2(ϵ, δ) and add the results together to recover A(ϵ). Of course, the
artificial parameter δ must disappear from the final answer. This cancellation provides a good check on
the consistency of our argument and the correctness of algebra.

For A1(ϵ, δ) I used mathematica

A1(ϵ, δ) =

∫ δ

0

1 + x+ O(x2) dx√
ϵ+ x

, (9.28)

= −2ϵ1/2 +
4

3
ϵ3/2 + 2

√
δ + ϵ+

2

3
δ
√
δ + ϵ− 4

3
ϵ
√
δ + ϵ+O

(
δ5/2, ϵδ3/2, ϵ2δ1/2

)
. (9.29)
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(The contents of the O-garbage are also provided by mathematica.) Because x is small everywhere in
the range of integration this is a splendid approximation Simplify further with δ ≫ ϵ:

A1 = 2δ1/2 +
2

3
δ3/2 + ϵδ−1/2 − ϵδ1/2 − 2ϵ1/2 +

4

3
ϵ3/2 +O

(
δ5/2, ϵδ3/2, ϵ2δ1/2, ϵ5/2

)
(9.30)

(At this stage I’m not keeping careful track of the O-garbage.)
To simplify A2 we use the approximation

A2 =

∫ 1

δ

ex
(

1√
x
− ϵ

2x3/2
+ O(ϵ2x−5/2)

)
dx . (9.31)

This approximation is good because x ≥ δ ≫ ϵ everywhere in the range of integration. Now we can
evaluate some elementary integrals:

A2 =

∫ 1

0

ex√
x

dx−
∫ δ

0

ex√
x

dx+ ϵ

∫ 1

δ

ex
d

dx
x−1/2 dx+ O

(
ϵ2

δ3/2

)
, (9.32)

= A(0) −
∫ δ

0

x−1/2 + x1/2 dx+ ϵ
[
x−1/2ex

]1
δ
− ϵ

∫ 1

δ

x−1/2ex dx+ O

(
ϵ2

δ3/2
, δ5/2

)
, (9.33)

= A(0) − 2δ1/2 − 2

3
δ3/2 + ϵe − ϵδ−1/2 − ϵA(0) + O

(
ϵ2

δ3/2
, δ5/2, ϵδ1/2

)
. (9.34)

The proof of the pudding is when we sum (9.30) and (9.34) and three large terms containing the
arbitrary parameter δ, namely

2δ1/2 ,
2

3
δ3/2 , and ϵδ−1/2 , (9.35)

all cancel. (Some smaller terms involving δ don’t cancel – we need to go to higher oder to get rid of
these.) We are left with

A(ϵ) = A(0) − 2ϵ1/2 + [e −A(0)] ϵ+
4

3
ϵ3/2 + O

(
ϵ2
)
. (9.36)

The terms of order ϵ0 and ϵ1 come from the outer region, while the terms of order ϵ1/2 and ϵ3/2 came
from the inner region (the peak).

Remark: mathematica assures us that

A(ϵ) = 2e daw(
√
1 + ϵ)− 2 daw(

√
ϵ) . (9.37)

9.3 A very eccentric ellipse

Recall from lecture 1 that the perimeter of an ellipse can be written as

ℓ = 2πa × 2

π

∫ π/2

0

√
1 − e2 sin2 θ dθ

︸ ︷︷ ︸
f(e)

, (9.38)

where f(e) is a dimensionless “reduction factor” relative to a circle with radius a. We easily obtained a
few terms in the e≪ 1 expansion of f(e). But when we considered the other case, in which e is close to
one, we encountered a divergent integral.

With our new understanding of matching, let’s try a direct assault on the integral in (9.38). We
write

ϵ2
def
= 1 − e2 , (9.39)
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and assume ϵ≪ 1. The obvious approach is

f(e) =
2

π

∫ π/2

0

√
1 − (1 − ϵ2) sin2 θ dθ , (9.40)

=
2

π

∫ π/2

0

√
cos2 θ + ϵ2 sin2 θ dθ , (9.41)

=
2

π

∫ π/2

0

cos θ
√

1 + ϵ2 tan2 θ dθ , (9.42)

?
≈ 2

π

∫ π/2

0

cos θ + ϵ2 1
2

sin2 θ

cos θ
+ O(ϵ4) dθ . (9.43)

Unfortunately the coefficient of the ϵ2-term is infinite – the integral diverges because of a singularity
near θ = π/2. Another way to see this is that we made the dubious approximation

√
1 + ϵ2 tan2 θ

?
≈ 1 + 1

2ϵ
2 tan2 θ . (9.44)

This is dubious because ϵ2 tan2 θ is not small relative to 1 if θ is close to π/2.
Let’s go back to (9.41) and make a cosmetic change of variable

ϕ = π
2 − θ , ⇒ sin θ = cosϕ , cos θ = sinϕ . (9.45)

This is cosmetic because we have moved the difficulty to ϕ = 0 – I find it easier to expand around ϕ = 0
than around θ = π/2. Here is new form:

f(e) =
2

π

∫ π/2

0

√
sin2 ϕ+ ϵ2 cos2 ϕ dϕ (9.46)

Now the tricky part: split the range of integration at ϕ = δ and write the reduction factor as

f(e) =
2

π

∫ δ

0

√
sin2 ϕ+ ϵ2 cos2 ϕ dϕ

︸ ︷︷ ︸
f1(ϵ,δ)

+
2

π

∫ π/2

δ

√
sin2 ϕ+ ϵ2 cos2 ϕ dϕ

︸ ︷︷ ︸
f2(ϵ,δ)

(9.47)

The parameter δ is our creation – we can do anything we want with δ. So let’s choose δ satisfying the
double inequality

ϵ≪ δ ≪ 1 . (9.48)

Now we can greatly simplify f1 and f2 using (9.48).
First consider simplification of f1(ϵ, δ). As an organizing principle we drop terms smaller than or

equal to ϵ2δ2 and ϵ3. Thus

f1 ≈ 2

π

∫ δ

0

√
ϕ2 + ϵ2 dϕ , (9.49)

=
2

π
ϵ2
∫ δ/ϵ

0

√
1 + x2 dx , (9.50)

=
2

π

ϵ2

2

[
δ

ϵ

√
1 +

δ2

ϵ2
+ ln

(
δ

ϵ
+

√
1 +

δ2

ϵ2

)]
, (9.51)

=
2

π

ϵ2

2

[
δ2

ϵ2

√
1 +

ϵ2

δ2
+ ln

(
δ

ϵ
+
δ

ϵ

√
1 +

ϵ2

δ2

)]
, (9.52)

≈ 2

π

ϵ2

2

[
δ2

ϵ2

(
1 +

ϵ2

2δ2

)
+ ln

(
2δ

ϵ

)
+

1

2
ln

(
1 +

ϵ2

4δ2

)]
, (9.53)

=
2

π

[
δ2

2
+
ϵ2

4
+
ϵ2

2
ln

2δ

ϵ

]
. (9.54)
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We simplified by dropping the green term: this term produces an ϵ4 contribution to f1.
The second integral is

f2 ≈ 2

π

∫ π/2

δ

sinϕ+
ϵ2

2

cos2 ϕ

sinϕ
dϕ , (9.55)

=
2

π

∫ π/2

δ

sinϕ+
ϵ2

2

1

sinϕ
− ϵ2

2
sinϕ dϕ , (9.56)

=
2

π

[
cos δ − ϵ2

2
ln

(
tan

δ

2

)
− ϵ2

2
cos δ

]
, (9.57)

≈ 2

π

[
1 − δ2

2
− ϵ2

2
ln

(
δ

2

)
− ϵ2

2

]
. (9.58)

Now sum (9.54) and (9.58). With the gratifying cancellation of terms involving δ2 and ln δ we emerge
triumphantly with

f(ϵ) ≈ 2

π

[
1 − ϵ2

4
+
ϵ2

2
ln

(
4

ϵ

)]
. (9.59)
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Elementary integrals

In working the examples in this section I was troubled by the following results

sinh−1(x) = cosh−1
(√

1 + x2
)

= tanh

(
x√

1 + x2

)
= ln

(
x+

√
1 + x2

)
,

and, assuming 0 < a,

sinh−1
(x
a

)
= ln

(
x+

√
x2 + a2

a

)
=

1

2
ln

(√
x2 + a2 + x√
x2 + a2 − x

)
.

Related integrals are ∫
dx√
x2 + a2

= ln
(
x+

√
x2 + a2

)
,

and
∫ √

x2 + a2 dx = 1
2x
√
x2 + a2 + 1

2a
2 ln

(
x+

√
x2 + a2

)
,

∫
dx

x
√
a2 + x2

= −1

a
ln

∣∣∣∣∣
a+

√
a2 + x2

x

∣∣∣∣∣ = − 1

2a
ln

(√
a2 + x2 + a√
a2 + x2 − a

)
.

mathematica sometimes uses sinh−1(x) and other times switches to ln(x+
√

1 + x2). I don’t know
why.

Some useful trigonometric integrals are

∫
dx

sinx
= ln tan

∣∣∣x
2

∣∣∣ =
1

2
ln

(
1 − cosx

1 + cosx

)
.

and ∫
dx

cosx
= ln tan

(x
2

+
π

4

)
=

1

2
ln

(
1 + sinx

1 − sinx

)
.
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9.4 An electrostatic problem – H section 3.5

Here is a crash course in the electrostatics of conductors:

∇ · e = ρ , and ∇× e = 0 . (9.60)

Above e(x) is the electric field at point x and ρ(x) is the density of charges (electrons per cubic meter).
Both equations can be satisfied at once by introducing the electrostatic potential ϕ:

e = −∇ϕ , and therefore ∇2ϕ = −ρ . (9.61)

To obtain the electrostatic potential ϕ we must solve Poisson’s equation above.
This is accomplished using the Green’s function

∇2g = −δ(x) , ⇒ g =
1

4πr
, (9.62)

where r
def
= |x| is the distance from the singularity (the point charge). Hence if there are no boundaries

ϕ(x) =
1

4π

∫
ρ(x′)

|x− x′|
dx . (9.63)

So far, so good: in free space, given ρ(x), we must evaluate the three dimensional integral above. The
charged rod at the end of this section is a non-trivial example.

If there are boundaries then we need to worry about about boundary conditions e.g. on the surface
of a charged conductor (think of a silver spoon) the potential is constant, else charges would flow along
the surface. In terms of the electric field e, the boundary condition on the surface of a conducting body
B is that

e · tB = 0 , and e · nB = σ , (9.64)

where tB is any tangent to the surface of B, nB is the unit normal, pointing out of B, and σ is the charge
density (electrons per square meter) sitting on the surface of B.

Example: The simplest example is sphere of radius a carrying a total charge q, with surface charge density

σ =
q

4πa2
. (9.65)

Outside the sphere ρ = 0 and the potential is

ϕ =
q

4πr
, so that e =

qr

4πr2
, (9.66)

where r is a unit vector pointing in the radial direction (i.e., our notation is x = rr). The solution above
is the same as if all the charge is moved to the center of the sphere.

For a non-spherical conducting body B things aren’t so simple. We must solve ∇2ϕ = 0 outside the
body with ϕ = ϕB on the surface B of the body, where ϕB is an unknown constant. (We are considering
an isolated body sitting in free space so that ϕ(x) → 0 as r → ∞.) We don’t know the surface charge
density σ(x), but only the total charge q, which is the surface integral of σ(x):

q =

∫

B
σ dS =

∫

B
e · nB dS . (9.67)

This is a linear problem, so the solution ϕ(x) will be proportional to the total charge q. We define the
capacity CB of the body as

q = CBϕB . (9.68)

The capacity is an important electrical property of B.
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Example The electrostatic energy is defined via the volume integral

E
def
=

1

2

∫
|e|2 dV , (9.69)

where the integral is over the region outside of B. Show that

E =
1

2
CBϕB . (9.70)

If you have a sign error, consider that the outward normal to body, nB, is the inward normal to free space.

Example: Find the potential due to a line distribution of charge with density η (electrons per meter) along
−a < z < a.

In this example the charge density is

ρ = η
δ(s)χ(z)

2πs
, (9.71)

where s =
√

x2 + y2 is the cylindrical radius. The signature function χ(z) is one if −a < z < +a, and
zero otherwise.

We now evaluate the integral in (9.63) using cylindrical coordinates, (θ, s, z) i.e., dx = dθsdsdz. The s
and θ integrals are trivial, and the potential is therefore

ϕ(s, z) =
η

4π

∫ a

−a

dξ√
(z − ξ)2 + s2

, (9.72)

=
η

4π

∫ +(a−z)/s

−(a+z)/s

dt√
1 + t2

, (9.73)

=
η

4π

[
ln(t+

√
1 + t2)

]+(a−z)/s

−(a+z)/s
, (9.74)

=
η

4π
ln

[
r+ − z + a

r− − z − a

]
, (9.75)

where
r± ≡

√
s2 + (a∓ z)2 . (9.76)

r± is the distance between x and the end of the rod at z = ±a.

Using

z =
r2− − r2+

4a
, (9.77)

the expression in (9.75) can alternatively be written as

ϕ =
η

4π
ln

(
r+ + r− + 2a

r+ + r− − 2a

)
. (9.78)

If you dutifully perform this algebra you’ll be rewarded by some remarkable cancellations. The expression
in (9.78) shows that the equipotential surfaces are confocal ellipsoids – the foci are at z = ±a. The
solution is shown in Figure 9.2.

A slender body

In section 5.3, H considers an axisymmetric body B defined in cylindrical coordinates by

√
x2 + y2︸ ︷︷ ︸
def
= s

= ϵB(z) . (9.79)

(I’m using different notation from H: above s is the cylindrical radius.) The integral equation in H is
then

1 =
1

4π

∫ 1

−1

f(ξ; ϵ) dξ√
(z − ξ)2 + ϵ2B(z)2

. (9.80)
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Figure 9.2: Equipotential contours, ϕ(x, z) in (9.78), surrounding a charged rod that lies along
the z-axis between z = −a and z = a. The surfaces are confocal ellipsoids.

I think it is easiest to attack this integral equation by first asymptotically estimating the integral

ϕ(s, z) =
1

4π

∫ 1

−1

f(ξ; ϵ) dξ√
(z − ξ)2 + s2

, as s→ 0. (9.81)

Notice that we can’t simply set s = 0 in (9.81) because the “simplified” integral,

1

4π

∫ 1

−1

f(ξ; ϵ) dξ

|z − ξ|
,

is divergent. Instead, using the example below, we can show that

ϕ(s, z) =
f(z)

2π
ln

(
2
√

1 − z2

s

)
+

1

4π

∫ 1

−1

f(ξ) − f(z)

|ξ − z|
dξ +O(s) . (9.82)

Thus the integral equation (9.80) is approximated by

1 ≈ f(z; ϵ)

2π
ln

(
2
√

1 − z2

ϵB(z)

)
+

1

4π

∫ 1

−1

f(ξ; ϵ) − f(z; ϵ)

|ξ − z|
dξ . (9.83)

As ϵ→ 0 there is a dominant balance between the left hand side and the first term on the right, leading
to

f(z; ϵ) ≈ 2π

ln
(

2
√
1−z2

ϵB(z)

) , (9.84)

=
2π

L− ln
(

B(z)

2
√
1−z2

) , (9.85)

where L
def
= ln 1

ϵ ≫ 1. Thus expanding the denominator in (9.85) we have

f(z; ϵ) ≈ 2π

L
+

2π

L2
ln

(
B(z)

2
√

1 − z2

)
+ O

(
L−3

)
. (9.86)
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This is the solution given by H. For many purposes we might as well stop at (9.84), which provides the
sum to infinite order in L−n. However if we need a nice explicit result for the capacity,

C(ϵ) =

∫ 1

−1

f(z; ϵ) dz , (9.87)

then the series in (9.86) is our best hope.

Example: obtain the approximation (9.83). This is a good example of singularity subtraction. We subtract the
nearly singular part from (9.81):

ϕ(s, z) =
1

4π

∫ 1

−1

f(ξ)− f(z)√
(z − ξ)2 + s2

dξ +
f(z)

4π

∫ 1

−1

dξ√
(z − ξ)2 + s2

. (9.88)

In the first integral on the right of (9.88) we can set s = 0 without creating a divergent integral: this move
produces the final term in (9.83), with the denominator |z − ξ|.
The final term in (9.88) is the potential of a uniform line density of charges on the segment −1 < z < 1
i.e., the potential of a charged rod back in (9.75) (but now with a = 1). We don’t need (9.75) in its full
glory – we’re taking s → 0 with −1 < z < 1. In this limit (9.78) simplifies to

1

4π

∫ 1

−1

dξ√
(z − ξ)2 + s2

≈ 1

2π
ln

(
2
√
1− z2

s

)
. (9.89)

Thus we have

ϕ(s, z) =
1

4π

∫ 1

−1

f(ξ)− f(z)

|z − ξ| dξ +
f(z)

2π
ln

(
2
√
1− z2

s

)
. (9.90)

9.5 Problems

Problem 9.1. Find the leading-order behavior of

H(ϵ) =

∫ π

0

cosx

x2 + ϵ2
dx , as ϵ→ 0. (9.91)

Problem 9.2. Consider the integral

I(x) ≡
∫ ∞

x

W (z)

z
dz , (9.92)

where W (x) is a smooth function that decays at x = ∞ and has a Taylor series expansion about x = 0:

W (x) = W0 + xW ′
0 +

1

2
x2W ′′

0 + · · · (9.93)

Some examples are: W (z) = exp(−z), W (z) = sech(z), W (z) = (1 + z2)−1 etc. (i) Show that the
integral in (4) has an expansion about x = 0 of the form

I(x) = W0 ln

(
1

x

)
+ C −W ′

0x− 1

4
W ′′

0 x
2 +O(x3) , (9.94)

where the constant C is

C =

∫ 1

0

[W (z) +W (1/z) −W0]
dx

z
. (9.95)

(ii) Evaluate C if W (z) = (1 + z2)−1. (iii) Evaluate the integral exactly with W (z) = (1 + z2)−1, and
show that the expansion of the exact solution agrees with the formula above.

Problem 9.3. Let us complete problem 5.5 by finding a few terms in the t → 0 asymptotic expansion
of

ẋ(t) =

∫ ∞

0

ve−vt

1 + v2
dv . (9.96)
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If we simply set t = 0 then the integral diverges logarithmically. We suspect ẋ ∼ ln t. Let’s calculate
ẋ(t) at small t precisely by splitting the range at v = a, where

1 ≪ a≪ 1

t
. (9.97)

For instance, we could take a = O(t−1/2). Then we have

ẋ =

∫ a

0

v − v2t+ · · ·
1 + v2

dv +

∫ ∞

a

e−vt

(
1

v
− 1

v3
+ · · ·

)
dv (9.98)

Now we have a variety of integrals that can be evaluated by elementary means, and by recognizing the
exponential integral:

ẋ ∼ 1
2 ln(1 + a2) − at+ t tan−1 a+ E(at) + · · · (9.99)

∼ ln a− at+
πt

2
− ln(at) − γE + at︸ ︷︷ ︸

from E(at)

+O

(
a2t2,

t

a
, a−2

)
, (9.100)

= ln
1

t
− γE +

πt

2
+ O(t2) . (9.101)

Problem 9.4. Find useful approximations to

F (x)
def
=

∫ ∞

0

du√
x2 + u2 + u4

(9.102)

as (i) x→ 0; (ii) x→ ∞.

Problem 9.5. Consider

A(ϵ)
def
=

∫ 1

0

√
(1 − x)2 + ϵ2x2 dx . (9.103)

Evaluate A(0). Determine the ϵ≪ 1 correction to A(0)?

Problem 9.6. Find the first two terms in the ϵ→ 0 asymptotic expansion of

F (ϵ)
def
=

∫ ∞

0

dy

(1 + y)1/2(ϵ2 + y)
. (9.104)

Problem 9.7. Consider

H(r)
def
=

∫ ∞

0

xdx

(r2 + x)3/2(1 + x)
. (9.105)

(i) First, with r → 0, find the first two non-zero terms in the expansion of H. (ii) With r → ∞, find
the first two non-zero terms, counting constants and ln r as the same order.

Problem 9.8. Find two terms in the expansion the elliptic integral

K(m)
def
=

∫ π/2

0

dθ√
1 −m2 sin2 θ

, (9.106)

as m ↑ 1.

Problem 9.9. This is H exercise 3.8. Consider the integral equation

x =

∫ 1

−1

f(t; ϵ) dt

ϵ2 + (t− x)2
, (9.107)

posed in the interval −1 ≤ x ≤ 1. Assuming that f(x; ϵ) is O(ϵ) in the end regions where 1− |t| = O(ϵ),
obtain the first two terms in an asymptotic expansion of f(x; ϵ) as ϵ→ 0.

Problem 9.10. Show that as ϵ→ 0:
∫ 1

0

lnx

ϵ+ x
dx = −1

2
ln2

(
1

ϵ

)
− π2

6
+ ϵ

(
1 − ϵ

4
+
ϵ2

9
− ϵ3

16
+ · · ·

)
. (9.108)
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Lecture 10

More boundary layer theory

10.1 A second-order BVP with a boundary layer

At the risk of repetition, let’s discuss another elementary example of boundary layer theory, focussing
on intuitive concepts and on finding the leading-order uniformly valid solution. We use the BVP

ϵy′′ + a(x)y′ + b(x)y = 0 , (10.1)

with BCs
y(0) = p , y(1) = q , (10.2)

as our model.

The case a(x) > 0

We start with a the special case in which a(x) is strictly positive throughout the interval 0 < x < 1. We
begin with some heuristic considerations. Suppose we drop ϵy′′ and start by solving

a(x)y′ + b(x)y ≈ 0 . (10.3)

There are at least two possible interior solutions

L(x)
def
= p exp

(
−
∫ x

0

a(t)

b(t)
dt

)
, or R(x)

def
= q exp

(
+

∫ 1

x

a(t)

b(t)
dt

)
. (10.4)

L(x) satisfies the left hand BC at x = 0 and R(x) satisfies the right hand BC at x = 1.
Do we use R(x) or L(x) as an interior solution? If we use L(x) then we will need a BL at x = 1. We

anticipate that within this BL the ode simplifies to

ϵy′′ + a(1)y′ ≈ 0. (10.5)

The general solution is

y = C +D exp

(
−a(1)

x− 1

ϵ

)
. (10.6)

But this is not a BL solution – the exponential term above explodes (x − 1)/ϵ → −∞ i.e. as we move
into the interior of the domain where x−1 is negative. OK – it seems that if a(x) > 0 we must use R(x)
as the interior solution.

The argument above is correct: if a(x) > 0 we use R(x) as the interior solution. And if a(x) < 0
then the boundary layer is at x = 1 and we should use L(x) as the interior solution.

Let’s now proceed more formally. In the interior we can look for a solution with the expansion

y(x, ϵ) = y0(x) + ϵy1(x) + · · · (10.7)
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The leading-order term satisfies
ay′0 + by0 = 0 . (10.8)

With the construction

y0(x) = q exp

(∫ 1

x

b(v)

a(v)
dv

)
(10.9)

we have satisfied the boundary condition at x = 1. We return later to discuss why this is the correct
choice if a(x) > 0.

Unless we’re very lucky, (10.9) will not satisfy the boundary condition at x = 0. We fix this problem
by building a boundary layer at x = 0. Introduce a boundary layer coordinate

X
def
=

x

ϵ
, (10.10)

and write
y(x, ϵ) = Y (X, ϵ) . (10.11)

Then “re-scale” the differential equation (10.1) using the boundary-layer variables:

YXX + a(ϵX)YX + ϵb(ϵX)Y = 0 . (10.12)

Within the boundary layer, where X = O(1),

a(ϵX) = a(0) + ϵXa′(0) + 1
2ϵ

2X2a′′(0) + O
(
ϵ3
)
. (10.13)

There is an analogous expansion for b(ϵX).
In the boundary layer we use the “inner expansion”:

Y (X, ϵ) = Y0(X) + ϵY1(X) + · · · (10.14)

The leading-order term is
ϵ0 : Y0XX + a(0)Y0X = 0 , (10.15)

and, for good measure, the next term is

ϵ1 : Y1XX + a(0)Y1X + a′(0)XY0X + b(0)Y0 = 0 . (10.16)

Terms in the Taylor series (10.13) will impact the higher orders.
The solution of (10.15) that satisfies the boundary condition at X = 0 is

Y0 = p+A0

(
1 − e−a(0)X

)
, (10.17)

where A0 is a constant of integration. We are assuming that a(0) > 0 so that the exponential in (10.17)
decays to zero as X → ∞. This is why the boundary layer must be at x = 0. The constant A0 can then
be determined by demanding that in the outer solution (10.9) agrees with the inner solution (10.17) in
the matching region where X ≫ 1 and x≪ 1. This requirement determines A0:

p+A0 = q exp

(∫ 1

0

b(v)

a(v)
dv

)
. (10.18)

Hence the leading order boundary-layer solution is

Y0 = p+

[
q exp

(∫ 1

0

b(v)

a(v)
dv

)
− p

] (
1 − e−a(0)X

)
, (10.19)

= pe−a(0)X + q exp

(∫ 1

0

b(v)

a(v)
dv

)(
1 − e−a(0)X

)
. (10.20)

We construct a uniformly valid solutions using the earlier recipe

uniformly valid = outer + inner − match . (10.21)

In this case we obtain

yuni = q exp

(∫ 1

x

b(v)

a(v)
dv

)
+

[
p− q exp

(∫ 1

0

b(v)

a(v)
dv

)]
e−a(0)x/ϵ . (10.22)

Exercise: Find the analog of (10.22) if a(x) < 0 throughout the interval 0 < x < 1.
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Figure 10.1: Solutions of (10.25) with α = −1 < 0 and ϵ = 0.1 (solid blue) and 0.02 (dashed
black). There are boundary layers at x = ±1. The interior solution is zero to all orders in ϵ.
There is no internal boundary layer at x = 0.

10.2 Internal boundary layers

BO section 9.6 has an extensive discussion of the boundary layer problem

y′′ + ay′ + by = 0 , (10.23)

in which a(x) has an internal zero. The problem is posed on −1 < x < 1 with boundary conditions

y(−1) = p , y(+1) = q . (10.24)

The zero of a(x) is at x = 0 where a(x) = αx+O(x2). The differential equation

ϵy′′ +
αx

1 + x2
y + βy = 0 (10.25)

is a typical example. I’ll give a simplified treatment of (10.25) and defer to BO for more details of the
general case.

Case 1: α < 0 (easy)

There are boundary layers at both x = 1 and x = −1: see figure 10.1 for numerical solutions of (10.25)
using the matlab routine bvp4c.

Exercise: Use BL theory to construct ϵ ≪ 1 approximations to the numerical solution in figure 10.1 .

Case 2: α > 0 (hard)

Next consider (10.25) with α > 0 and boundary conditions

y(−1) = 1 , y(+1) = 0 . (10.26)

This example will reveal all the main features of the general case. Earlier arguments indicate that
boundary layers not possible at either end of the domain. Instead we have two interior solutions – one
for 0 < x < 1 and the other for −1 < x < 0.

The left interior solution, u(x), satisfies the boundary condition at x = −1:

y = u0 + ϵu1 + · · · (10.27)

with leading order

αx

1 + x2
u0x + βu0 = 0 , ⇒ u0 = |x|−β/α exp

[
− β

2α

(
x2 − 1

)]
. (10.28)
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Figure 10.2: Internal boundary layer solution of (10.25) with p = 1 and q = 0, and ϵ = 0.05
(green dotted) and 0.005 (red dashed) and 0.0005 (solid black).
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There is also a right interior solution v(x), satisfying the boundary condition at x = +1:

y = v0 + ϵv1 + · · · (10.29)

In this case, with y(1) = 0, the right interior solution is zero at all orders

vn = 0 . (10.30)

We need a boundary layer at x = 0 to heal the x→ 0 singularity in (10.28) and to connect the right
interior solution to the left interior solution. A distinguished-limit shows that the correct boundary-layer
coordinate is

X
def
=

x√
ϵ
. (10.31)

We must also re-scale the solution:
y = ϵ−β/2αY (X) . (10.32)

The scaling above is indicated because the interior solution in (10.28) is order ϵ−β/2α once x ∼
√
ϵ.

Without much work we have now determined the boundary layer thickness and the amplitude of the
solution within the boundary layer. This is valuable information in interpreting the numerical solution
in figure 10.2 – we now understand how the vertical axis must be rescaled if we reduce ϵ further.

Using the boundary-layer variables, the BL equation is

YXX +
αX

1 + ϵX2
YX + βY = 0 . (10.33)

We solve (10.33) with the RPS
Y = Y0(X) + ϵY1(X) + · · · (10.34)

Leading order is the three-term balance

Y0XX + αXY0X + βY0 = 0 , (10.35)

with matching conditions

Y0 → |X|−β/αeβ/2α , as X → −∞, (10.36)

Y0 → 0 , as X → +∞. (10.37)

We have to solve (10.35) exactly. When confronted with a second-order differential equation it is
always a good idea to remove the first derivative term with the standard multiplicative substitution. In
this case the substitution

Y0 = W e−αX2/4 (10.38)

into (10.35) results in
WXX +

(
β − 1

2α− 1
4α

2X2
)
W = 0 . (10.39)

Then, with Z
def
=

√
αX, we obtain the parabolic cylinder equation

WZZ +

(
β

α
− 1

︸ ︷︷ ︸
ν+

1
2

− 1
4Z

2

)
W = 0 , (10.40)

of order

ν
def
=

β

α
− 1 . (10.41)

Provided that
β

α
̸= 1, 2, 3, · · · (10.42)

the general solution of (10.35) is

Y0 = e−αX2/4
[
ADν

(√
αX
)

+BDν

(
−
√
αX
)]
. (10.43)

We return to the exceptional case, in which ν = 0, 1, 2 · · · , later.
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Parabolic Cylinder Functions

The parabolic cylinder equation is

y′′ +
(
ν + 1

2 − 1
4x

2
)
y = 0 .

If ν is not an integer then the general solution can be constructed as y = c1Dν(x) + c2Dν(−x).
Values at the origin are

Dν(0) =
√
π2ν/2/Γ

(
1
2 − 1

2ν
)
, and D′

ν(0) = −
√
π2(ν+1)/2/Γ

(
− 1

2ν
)
.

Asymptotic expansions on the real axis are

Dν(x) ∼ xνe−x2/4 , as x→ ∞,

and

Dν(x) ∼ |x|νe−x2/4 −
√

2π

Γ(−ν)
eiπν |x|−ν−1ex

2/4 , as x→ −∞.

If ν is a nonnegative integer n = 0, 1, 2, · · · then

Dn = e−x2/4 2−n/2Hn

(
x/

√
2
)
,

where Hn(x) is a Hermite polynomial.
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To take the outer limits, X → ±∞, of the internal boundary layer solution in (10.43) we look up the
asymptotic expansion of the parabolic cylinder functions e.g. in the appendix of BO, or in the DLMF:

Dν(t) ∼ tνe−t2/4 , as t→ ∞, (10.44)

Dν(−t) ∼
√
2π

Γ(−ν) t
−ν−1et

2/4 , as t→ ∞. (10.45)

Matching in the right-hand outer limit, X → +∞, implies that B = 0. Matching in the left-hand
outer limit X → −∞ requires that

A = (αe)
(ν+1)/2 Γ(−ν)√

2π
. (10.46)

10.3 Initial layers

The over-damped oscillator

With our knowledge of boundary layer theory, let’s reconsider the over-damped harmonic oscillator from
problem 3.9. With a change of notation, the problem in (3.126) is:

ϵxtt + xt + x = 0 , with the IC: x(0) = 0 , xt(0) = 1 . (10.47)

This scaling is convenient for the long-time solution, but not for satisfying the two initial conditions.
We are going to use a boundary-layer-in-time, also known as an initial layer, to solve this problem.

To address the initial layer we introduce

T
def
= t/ϵ , and X(T, ϵ) = x(t, ϵ) . (10.48)

The rescaled problem is

XTT +XT + ϵX = 0 , with the IC: X(0) = 0 , Xt(0) = ϵ . (10.49)

Because X satisfies both the initial conditions it is convenient to attack this problem by first solving the
initial-layer equation with

X(T, ϵ) = ϵX1(T ) + ϵ2X2(T ) + · · · (10.50)

One finds

X1TT +X1T = 0 , ⇒ X1 = 1 − e−T , (10.51)

X2TT +X2T = −X1 , ⇒ X2 = 2(1 − e−T ) − T − T e−T , (10.52)

X3TT +X3T = −X2 , ⇒ X3 = 6(1 − e−T ) − 3T (1 + e−T ) − 1
2T

2e−T + 1
2T

2 . (10.53)

All the constants of integration are determined because the initial-layer solution satisfies both initial
conditions. Once T ≫ 1, the initial-layer solution is

X → ϵ+ ϵ2 (2 − T ) + ϵ3(6 − 3T + 1
2T

2) + O(ϵ4) , (10.54)

= ϵ(1 − t+ 1
2 t

2) + ϵ2(2 − 3t) + 6ϵ3 + O(ϵ4) . (10.55)

To facilitate matching at higher order in (10.55) we’ve written the solution in terms of the outer time
t. Terms switch order in passing from (10.54) to (10.55). We can anticipate that there are further
switchbacks from the O(ϵ4) terms.

We obtain the outer solution by solving (10.47) (without the initial conditions!) with the RPS

x(t, ϵ) = ϵx1(t) + ϵ2x2(t) + · · · (10.56)

The first two terms are

x1t + x1 = 0 , ⇒ x1 = A1e−t , (10.57)

x2t + x2 = −x1tt , ⇒ x2 = A1te
−t +A2e−t , (10.58)
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Figure 10.3: Comparison of (10.62) with the exact solution of (10.47).

and the reconstituted outer solution is

x = ϵA1e−t + ϵ2
(
A1te

−t +A2e−t
)
. (10.59)

In the matching region, ϵ≪ t≪ 1, the outer solution in (10.59) is

x→ ϵA1

(
1 − t+ 1

2 t
2
)

+ ϵ2 (A2 + (A1 −A2)t) + O(ϵ3, ϵt2, ϵ2t2) (10.60)

Comparing (10.60) with (10.55) we see that

A1 = 1 , and A2 = 2 . (10.61)

Finally we can construct a uniformly valid solution as

xuni = ϵ
(
e−t − e−T

)
+ ϵ2

(
te−t − T e−T + 2e−t − 2e−T

)
+ O(ϵ3) . (10.62)

Figure 10.3 compares (10.62) with the exact solution

x =
2ϵ√

1 − 4ϵ
e−t/2ϵ sinh

(√
1 − 4ϵ t

2ϵ

)
. (10.63)

Remark: Might there be a problem in figure 10.3 – seems like the second-order uniform solution is not accurate
in the outer region?

Example: Consider
ẋ = −x− xy + ϵκy , ϵẏ = x− xy − ϵκy . (10.64)

10.4 Other BL examples

Not all boundary layers have thickness ϵ. Let’s consider a medley of examples.

Example:
ϵy′′ − y = −f(x) , y(−1) = y(1) = 0 , (10.65)

If we solve the simple case with f(x) = 1 exactly we quickly see that y ≈ 1, except that there are boundary
layers with thickness

√
ϵ at both x = 0 and x = 1.

Thus we might hope to construct the outer solution of (10.65) via the RPS

y = f + ϵf ′′ + ϵ2f
′′′′

+O(ϵ3) . (10.66)

The outer solution above doesn’t satisfy either boundary condition: we need boundary layers at x = −1,
and at x = +1.
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Turning to the boundary layer at x = −1 we introduce

X
def
=

x+ 1√
ϵ

, and y(x, ϵ) = Y (X,
√
ϵ) . (10.67)

The re-scaled differential equation is

YXX − Y = f
(
−1 +

√
ϵX
)
, (10.68)

and we look for a solution with

Y = Y0(X) +
√
ϵY1(X) + ϵY2(X) + · · · (10.69)

The leading-order problem is
Y0XX − Y0 = −f(−1) , (10.70)

with solution
Y0 = f(−1) +A0e

−X + B0︸︷︷︸
=0

eX . (10.71)

We quickly set the constant of integration B0 to zero – the alternative would prevent matching with the
interior solution. Then the other constant of integration A0 is determined so that the boundary condition
at X = 0 is satisfied:

Y0 = f(−1)
(
1− e−X

)
. (10.72)

The boundary condition at x = +1 is satisfied with an analogous construction using the coordinate

X
def
= (x− 1)/

√
ϵ. One finds

Y0 = f(1)
(
1− eX

)
. (10.73)

The outer limit of this boundary layer is obtained by taking X → −∞.

Finally we can construct a uniformly valid solutions via

yuni(x) = f(x)− f(−1)e−(x+1)/
√
ϵ − f(+1)e(x−1)/

√
ϵ . (10.74)

Example:
ϵy′′ + y = f(x) , y(0) = y(1) = 0 , (10.75)

If we solve the simple case with f(x) = 1 exactly we quickly see that this is not a boundary layer problem.
This belongs in the WKB lecture.

Example: Find the leading order BL approximation to

ϵu′′ − u = − 1√
1− x2

, with BCs u(±1) = 0 . (10.76)

The leading-order outer solution is

u0 =
1√

1− x2
. (10.77)

Obviously this singular solution doesn’t satisfy the boundary conditions. We suspect that there are
boundary layers of thickness

√
ϵ at x = ±1. NThe interior solution (10.77) is ∼ ϵ−1/4 as x moves into this

BL. Moreover, considering the BL at x = −1, we use X = (1 + x)/
√
ϵ as the boundary layer coordinate,

so that
1√

1− x2
=

1

ϵ1/4
√

X(2−
√
ϵX)

. (10.78)

Hence we try a boundary-layer expansion with the form

u(x, ϵ) = ϵ−1/4 [U0(X) +
√
ϵU1(X) +O(ϵ)

]
. (10.79)

A main point of this example is that it is necessary to include the factor ϵ−1/4 above.

The leading-order term in the boundary layer expansion is then

U ′′
0 − U0 = − 1√

X
, (10.80)
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which we solve using variation of parameters

U0(X) = 1
2
e−X

∫ X

0

ev√
v
dv︸ ︷︷ ︸

∼eX/
√
X

− 1
2
eX
∫ X

0

e−v

√
v
dv︸ ︷︷ ︸

∼
√
π−(e−X/

√
X)

+P eX +Qe−X . (10.81)

The boundary condition at X = 0 requires

P +Q = 0 . (10.82)

To match the outer solution as X → ∞, we must use the X → ∞ asymptotic expansion of the integrals
in (10.81), indicated via the underbrace. We determine P so that the exponentially growing terms are
eliminated, which requires that P =

√
π/2. Thus the boundary layer solution is

U0(X) =
√
π sinhX −

∫ X

0

sinh(X − v)√
v

dv . (10.83)

(Must check this, and then construct the uniformly valid solution!)

Example: Find the leading-order BL approximation to

ϵy′′ + xy′ + x2y = 0 , with BCs y(0) = p , y(1) = q . (10.84)

We divide and conquer by writing the solutions as

y = pf(x, ϵ) + qg(x, ϵ) , (10.85)

where
ϵf ′′ + xf ′ + x2f = 0 , with BCs f(0) = 1 , f(1) = 0 , (10.86)

and
ϵg′′ + xg′ + x2g = 0 , with BCs g(0) = 0 , g(1) = 1 , (10.87)

The outer solution of the g-problem is

g = e(1−x2)/2 + ϵg1 + · · · (10.88)

We need a BL at x = 0. A dominant balance argument shows that the correct BL variable is

X =
x√
ϵ
. (10.89)

If g(x, ϵ) = G(X,
√
ϵ) then the rescaled problem is

GXX +XGX + ϵX2G = 0 . (10.90)

The leading-order problem is
G0XX +XG0X = 0 , (10.91)

with general solution

G0 = P︸︷︷︸
=0

+ Q︸︷︷︸√
2e/π

∫ X

0

e−v2/2 dv . (10.92)

To satisfy the X = 0 boundary condition we take P = 0, and to match the outer solution we require

Q

∫ ∞

0

e−v2/2 dv =
√
e . (10.93)

The uniformly valid solution is

guni(x, ϵ) = e(1−x2)/2 +

√
2e

π

∫ x/
√

ϵ

0

e−v2/2 dv −
√
e , (10.94)

= e(1−x2)/2 −
√

2e

π

∫ ∞

x/
√

ϵ

e−v2/2 dv . (10.95)

Now turn to the f -problem. The outer solution is fn(x) = 0 at all orders. The solution of the leading-order
boundary-layer problem is

F0(X) =
1√
2π

∫ ∞

X

e−v2/2 dv . (10.96)

This is a stand-alone boundary layer.
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Example: Let’s analyze the higher-order terms in the BL solution of our earlier example

ϵy′′ − y = −f(x) , y(−1) = y(1) = 0 . (10.97)

Our provisional outer solution is

y(x) = f(x) + ϵf ′′(x) + ϵ2f ′′′′(x) +O(ϵ3) . (10.98)

Let’s rewrite this outer solution in terms of the inner variable X
def
= (x− 1)/

√
ϵ

y(x) = f(1 +
√
ϵX) + ϵf ′′(1 +

√
ϵX) + ϵ2f ′′′′(1 +

√
ϵX) +O(ϵ3) . (10.99)

Assuming that
√
ϵX is small in the matching region, we expand the outer solution:

y(x) = f(1) +
√
ϵXf ′(1) + ϵ

(
1
2
X2 + 1

)
f ′′(1) + ϵ3/2

(
X +

1

6
X3

)
f ′′′(1)

+ ϵ2
(
1 +

1

2
X2 +

1

24
X4

)
f ′′′′(1) +O

(
ϵ5/2

)
. (10.100)

We hope that the outer expansion of the inner solution at x = 1 will match the series above.

The rescaled inner problem is

YXX − Y = −f(1 +
√
ϵX) , (10.101)

= −f(1)−
√
ϵXf ′(1)− ϵ

1

2
X2f ′′(1) +O(ϵ3/2) . (10.102)

The RPS is
Y = f(1)

(
1− eX

)
+

√
ϵY1(X) + ϵY2(X) + ϵ3/2Y3(X)O(ϵ2) , (10.103)

with

Y ′′
1 − Y1 = −Xf ′(1) , (10.104)

Y ′′
2 − Y2 = − 1

2
X2f ′′(1) , (10.105)

Y ′′
3 − Y3 = −1

6
X3f ′′′(1) . (10.106)

We solve the equations above, applying the boundary condition Yn(0) = 0, to obtain

Y1(X) = Xf ′(1) , Y2(X) =
(
1 + 1

2
X2 − eX

)
f ′′(1) , (10.107)

and Y3(X) =

(
X +

1

6
X3

)
f ′′′(1) . (10.108)

The inner limit of the leading-order outer solution, y0(x) = f(x), produces terms at all orders in the
matching region. In order to match all of y0(x) one requires all the Yn(X)’s.

10.5 Problems

Problem 10.1. Assuming that a(x) < 0, construct the uniformly valid leading-order approximation to
the solution of

ϵy′′ + ay′ + by = 0 , with BCs y′(0) = p , y′(1) = q . (10.109)

(Consider using linear superposition by first taking (p, q) = (1, 0), and then (p, q) = (0, 1).)

Problem 10.2. Consider

ϵy′′ +
√
xy′ + y = 0 , with BCs y(0) = p , y(1) = q . (10.110)

(i) Find the rescaling for the boundary layer near x = 0, and obtain the leading order inner approx-
imation. Then find the leading-order outer approximation and match to determine all constants of
integration. (ii) Repeat for

ϵy′′ −
√
xy′ + y = 0 , with BCs y(0) = p , y(1) = q . (10.111)
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Problem 10.3. (a) Consider the nonlinear boundary value problem

ϵu′′ + u′ +
1

2
u2 = 0 , (10.112)

posed on 0 < x < 1 with boundary conditions

u(0) = 1 , and u(1) = 1 . (10.113)

(a) Use boundary layer theory to construct a leading order uniformly valid solution in the limit ϵ → 0.
(b) (b) Consider the boundary value problem

ϵv′′ − v′ +
1

2
v2 = 0 , (10.114)

posed on 0 < x < 1 with boundary conditions

v(0) = 1 , and v(1) = 1 . (10.115)

Use boundary layer theory to construct a leading order uniformly valid solution in the limit ϵ → 0. (c)

Find a leading order ϵ→ 0 approximations to
∫ 1

0
u(x) dx and

∫ 1

0
v(x) dx.

Problem 10.4. Find a leading order, uniformly valid solution of

ϵy′′ +
√
xy′ + y2 = 0 , (10.116)

posed on 0 < x < 1 with boundary conditions y(0, ϵ) = 2 and y(1, ϵ) = 1/3.

Problem 10.5. Find a leading order, uniformly valid solution of

ϵy′′ − (1 + 3x2)y = x , with BCs y , (0, ϵ) = y(1, ϵ) = 1 . (10.117)

Problem 10.6. Find a leading-order, uniformly valid solution of

ϵy′′ − y′

1 + 2x
− 1

y
= 0 , with BCs y(0, ϵ) = y(1, ϵ) = 3 . (10.118)

Problem 10.7. In an earlier problem you were asked to construct a leading order, uniformly valid
solution of

ϵy′′ − (1 + 3x2)y = x with BCs y(0, ϵ) = y(1, ϵ) = 1 . (10.119)

Now construct the uniformly valid two-term boundary layer approximation.

Problem 10.8. Consider

ϵy′′ + (1 + ϵ)y′ + y = 0 , y(0) = 0 , y(1) = e−1 , (10.120)

m′ = y , m(1) = 0 . (10.121)

Find two terms in the outer expansion of y(x) and m(x), applying only boundary conditions at x = 1.
Next find two terms in the inner approximation at x = 0, applying the boundary condition at x = 0.
Determine the constants of integration by matching. Calculate m(0) correct to order ϵ.

Problem 10.9. Use boundary-layer theory to construct a leading-order solution of the IVP

ϵxtt + xt + x = te−t , with x(0) = ẋ(0) = 0 , as ϵ→ 0. (10.122)

Problem 10.10. Find the leading order ϵ→ 0 solution of

du

dt
= v , ϵ

dv

dt
= −v − u2 , (10.123)

for t > 0 with initial conditions u(0) = 0 and v(0) = 1.
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Problem 10.11. Find the leading order ϵ→ 0 solution of

ϵü+ (1 + t)u̇+ u = 1 , (10.124)

for t > 0 with initial conditions u(0) = 1 and u̇(0) = −ϵ−1.

Problem 10.12. A function y(t, x) satisfies the integro-differential equation

ϵyt = −y + f(t) + Y (t) , (10.125)

where

Y (t)
def
=

∫ ∞

0

y(t, x)e−βx dx , (10.126)

with β > 1. The initial condition is y(0, x) = a(x). (This is the Grodsky model for insulin release.)
Use boundary layer theory to find the composite solution on the interval 0 < t < ∞. Compare this
approximate solution with the exact solution of the model. To assist communication, use the notation

α
def
= 1 − β−1 and A

def
= Y (0) , and τ

def
=

t

ϵ
. (10.127)

Problem 10.13. Solve the previous problem with β = 1.

Problem 10.14. The Michaelis-Menten model for an enzyme catalyzed reaction is

ṡ = −s+ (s+ k − 1)c , ϵċ = s− (s+ k)c , (10.128)

where s(t) is the concentration of the substrate and c(t) is the concentration of the catalyst. The initial
conditions are

s(0) = 1 , c(0) = 0 . (10.129)

Find the first term in the: (i) outer solution; (ii) the “initial layer” (τ
def
= t/ϵ); (iii) the composite

expansion.
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Lecture 11

Multiple scale theory

11.1 Introduction to two-timing

Begin by considering the damped harmonic oscillator

d2x

dt2
+ β

dx

dt
+ x = 0 , (11.1)

with initial conditions

x(0) = 0 , and
dx

dt
(0) = 1 . (11.2)

You should recall that the exact solution is

x = ν−1e−βt/2 sin νt , with ν
def
=

√
1 − β2

4
. (11.3)

A good or useful β ≪ 1 approximation to this exact solution is

x ≈ e−βt/2 sin t . (11.4)

Let’s use this example to motivate the multiple-scale method.

Failure of the regular perturbation expansion

If β ≪ 1 we might be tempted to try an RPS on (11.1):

x(t, β) = x0(t) + βx1(t) + β2x2(t) + · · · (11.5)

A reasonable goal is to produce the good approximation (11.4). The RPS will not be successful and this
failure will drive us towards the method of multiple time a scales, also know as “two timing”.

The leading-order problem is

ẍ0 + x0 = 0 , with IC x0 = 0 , ẋ0(0) = 1 . (11.6)

The solution is
x0 = sin t . (11.7)

The first-order problem is

d2x1
dt2

+ x1 = − cos t , with IC x̄1(0) = 0 ,
dx1
dt

(0) = 0 . (11.8)

This is a resonantly forced oscillator equation, with solution

x1 = − t

2
sin t . (11.9)
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Figure 11.1: Comparison of the exact solution in (11.3) (the solid black curve), with the two-term RPS
in (11.10) (the blue dotted curve) and the two-time approximation in (11.23) (the dashed red curve). It
is difficult to distinguish the two-time approximation from the exact result.

Thus the developing RPS is

x(t, β) = sin t− βt

2
sin t+ β2x2(t) + · · · (11.10)

At this point we recognize that the RPS is misleading: the exact solution damps to zero on a time scale
2/β, while the RPS suggests that the solution is growing linearly with time. With hindsight we realize
that the RPS is producing the Taylor series expansion of the exact solution in (11.3) about β = 0. Using
mathematica, this series is

x(t, β) = sin t− βt

2
sin t+

β2

8

[
t2 sin t+ sin t− t cos t

]
+O(β3) . (11.11)

Calculating more terms in the RPS will not move us closer to the useful approximation in (11.4): instead
we’ll grind out the useless approximation in (11.11). In this example the small term in (11.1) is small
relative to the other terms at all times. Yet the small error slowly accumulates over long times ∼ β−1.
This is a secular error.

Two-timing

Looking at the good approximation in (11.4) we are inspired to introduce a slow time:

s
def
= βt . (11.12)

We assume that x(t, β) has a perturbation expansion of the form

x(t, β) = x0(t, s) + βx1(t, s) + β2x3(t, s) + · · · (11.13)

Notice how this differs from the RPS in (11.5).
At each order xn is a function of both s and t a function of both t and s. To keep track of all the

terms we use the rule
d

dt
= ∂t + β∂s , (11.14)

and the equation of motion is

(∂t + β∂s)
2
x+ β (∂t + β∂s)x+ x = 0 . (11.15)

At leading order

β0 : ∂2t x0 + x0 = 0 , with general solution x0 = A(s)eit +A∗(s)e−it . (11.16)
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The “constant of integration” is actually a function of the slow time s. We determine the evolution of
this function A(s) at next order1.

At next order

β1 : ∂2t x1 + x1 = −2x0ts − x0t , (11.18)

= −2iAse
it − iAeit + cc (11.19)

Again we have a resonantly forced oscillator. but this time we can prevent the secular growth of x1 on
the fast time scale by requiring that

2As +A = 0 . (11.20)

Thus the leading-order solution is

x0(s, t) = A0e−s/2eit +A∗
0e−s/2e−it . (11.21)

The constant of integration A0 is determined to satisfy the initial conditions. This requires

0 = A0 +A∗
0 , 1 = iA0 − iA∗

0 , ⇒ A0 = 1
2 i . (11.22)

Thus we have obtained the good approximation

x0 = e−βt/2 sin t . (11.23)

Averaging

11.2 The Duffing oscillator

We consider an oscillator with a nonlinear spring

mẍ+ k1x+ k3x
3 = 0 , (11.24)

and an initial condition
x(0) = x0 , ẋ(0) = 0 . (11.25)

If k3 > 0 then the restoring force is stronger than linear – this is a stiff spring. With k3 < 0 we have a
soft spring

We can non-dimensionalize this problem into the form

ẍ+ x+ ϵx3 = 0 , (11.26)

with the initial condition
x(0) = 1 ẋ(0) = 0 . (11.27)

We use this Duffing oscillator as an introductory example of the multiple time scale method.
Energy conservation,

1
2 ẋ

2 + 1
2x

2 + 1
4ϵx

4 = E︸︷︷︸
=

1
2+

1
4 ϵ

, (11.28)

immediately provides a phase-plane visualization of the solution and shows that the oscillations are
bounded.

Exercise: Show that in (11.26), ϵ = k3x
2
0/k1.

1We could alternatively write the general solution of the leading-order problem as

x0 = r cos(t+ ϕ) , (11.17)

where the amplitude r and the phase ϕ are as yet undetermined functions of s. I think the complex notation in
(11.16) is a little simpler.
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Exercise: Derive (11.28).

The naive RPS
x = x0(t) + ϵx1(t) + · · · (11.29)

leads to
ẍ0 + x0 = 0 , ⇒ x0 = cos t , (11.30)

and at next order

ẍ1 + x1 = − cos3 t , (11.31)

= − 1
8

(
e3it + 3eit + cc

)
, (11.32)

= − 1
4 cos 3t− 3

4 cos t . (11.33)

The x1-oscillator problem is resonantly forced and the solution will grow secularly, with x1 ∝ t sin t.
Thus the RPS fails once t ∼ ϵ−1.

Two-timing

Instead of an RPS we use the two-time expansion

x = x0(s, t) + ϵx1(s, t) + · · · (11.34)

where s = ϵt is the slow time. Thus the expanded version of (11.26) is

(∂t + ϵ∂s)
2

(x0(s, t) + ϵx1(s, t) + · · · ) + (x0(s, t) + ϵx1(s, t) + · · · )

+ ϵ (x0(s, t) + ϵx1(s, t) + · · · )3 = 0 . (11.35)

The leading order is
∂2t x0 + x0 = 0 , (11.36)

with general solution
x0 = A(s)eit +A∗(s)e−it . (11.37)

The amplitude A is a function of the slow time s. At next order, ϵ1, we have

∂2t x1 + x1 = −2∂t∂sx0 − x30 , (11.38)

= −2iAse
it −A3e3it − 3A2A∗eit + cc (11.39)

To prevent the secular growth of x1 we must remove the resonant terms, e±it on the right of (11.39).
This prescription determines the evolution of the slow time:

2iAs + 3|A|2A = 0 . (11.40)

The remaining terms in (11.39) are

∂2t x1 + x1 = −A3e3it + cc (11.41)

The solution is

x1 =
1

8
A3e3it +A1eit + cc (11.42)

where A1(s) is a slow-time amplitude. The main point is that x1(s, t) remains bounded.
Discuss application of the initial conditions in (11.30). Can we argue that A1(s) = 0?
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Polar coordinates

To solve (11.40) it is best to transform to polar coordinates

A = r(s)eiθ(s) and As = (rs + irθs) eiθ ; (11.43)

substituting into the amplitude equation (11.40)

rs = 0 , and θs =
3

2
r2 . (11.44)

The energy of this nonlinear oscillator is constant and thus r is constant, r(s) = r0. The phase θ(s)
therefore evolves as θ = θ0 + 3r20s/2.

The reconstituted solution is

x = r0 exp
[
i
(
1 + 3

2ϵr
2
0

)
t+ iθ0

]
+ cc + O(ϵ) . (11.45)

The velocity of the oscillator is

dx

dt
= ir0 exp

[
i
(
1 + 3

2ϵr
2
0

)
t+ iθ0

]
+ cc + O(ϵ) . (11.46)

To satisfy the initial condition in (11.27) at leading order, we take θ0 = 0 and r0 = 1/2. Thus, with this
particular initial condition,

x = cos

[(
1 +

3ϵ

8

)
t

]
+ O(ϵ) . (11.47)

The frequency of the oscillator in (11.45),

ν = 1 + 3
2ϵr

2
0 , (11.48)

depends on the amplitude r0 and the sign of ϵ. If the spring is stiff (i.e. k3 > 0) then ϵ is positive and
bigger oscillations have higher frequency.

Exercise: Now investigate nonlinear damping

d2x

dt2
+ ϵ

(
dx

dt

)3

+ x = 0 . (11.49)

11.3 The quadratic oscillator

The quadratic oscillator is
ẍ+ x+ ϵx2 = 0 . (11.50)

The conserved energy is
E = 1

2 ẋ
2 + 1

2x
2 + 1

3ϵx
3 , (11.51)

and the curves of constant energy in the phase plane are shown in Figure 11.2.
Following our experience with the Duffing oscillator we try the two-time expansion

(∂t + ϵ∂s)
2

(x0(s, t) + ϵx1(s, t) + · · · ) + (x0(s, t) + ϵx1(s, t) + · · · )

+ ϵ (x0(s, t) + ϵx1(s, t) + · · · )2 = 0 . (11.52)

The leading-order solution is again

x0 = A(s)eit +A∗(s)e−it , (11.53)

and at next order

∂2t x1 + x1 = −2
(
iAse

it − iA∗
se−it

)
−
(
A2e2it + 2|A|2 +A∗2e−2it

)
︸ ︷︷ ︸

x2
0

. (11.54)
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Figure 11.2: Quadratic oscillator phase plane.

Elimination of the resonant terms e±it requires simply As = 0, and then the solution of the remaining
equation is

x1 = 1
3A

2e2it − 2|A|2 + 1
3A

∗2e−2it . (11.55)

This is why the quadratic oscillator is not used as an introductory example: there is no secular forcing
at order ϵ.

To see the effects of nonlinearity in the quadratic oscillator, we must press on to higher orders, and
use a slower slow time:

s = ϵ2t . (11.56)

Thus we revise (11.52) to

(
∂t + ϵ2∂s︸︷︷︸

NB

)2
(x0(s, t) + ϵx1(s, t) + · · · ) + (x0(s, t) + ϵx1(s, t) + · · · )

+ ϵ (x0(s, t) + ϵx1(s, t) + · · · )2 = 0 . (11.57)

The solutions at the first two orders are the same as (11.53) and (11.55). At order ϵ2 we have

∂2t x2 + x2 = −2∂t∂sx0 − 2x0x1 , (11.58)

= −2
(
iAse

it − iA∗
se−it

)
− 2

(
Aeit +A∗e−it

) (
1
3A

2e2it − 2|A|2 + 1
3A

∗2e−2it
)

︸ ︷︷ ︸
x0x1

. (11.59)

Eliminating the e±it resonant terms produces the amplitude equation

iAs =
5

3
|A|2A . (11.60)

Although the nonlinearity in (11.50) is quadratic, the final amplitude equation in (11.60) is cubic. In
fact, despite the difference in the original nonlinear term, the amplitude equation in (11.60) is essentially
the same as that of the Duffing oscillator in (11.40).

Example: The Morse oscillator. Using dimensional variables, the Morse oscillator is

ẍ+
dU

dx
= 0 with the potential U =

ν

2

(
1− e−αx)2 . (11.61)
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The phase plane is shown in figure 11.3 – the orbits are curves of constant energy

E =
1

2
ẋ2 +

ν

2

(
1− e−αx)2 . (11.62)

There is a turning point at x = ∞ corresponding to the “energy of escape” Eescape = ν/2.

A “natural” choice of non-dimensional variables is

x̄
def
= αx , and t̄ = α

√
νt . (11.63)

In these variables, ν → 1 and α → 1 in the barred equations. Thus, the non-dimensional equation of
motion is

ẍ+ e−x (1− e−x) = 0 . (11.64)

If we’re interested in small oscillations around the minimum of the potential at x = 0, then the small
parameter is supplied by an initial condition such as

x(0) = ϵ , and ẋ(0) = 0 . (11.65)

We rescale with
x = ϵX , (11.66)

so that the equation is

ϵẌ + e−ϵX
(
1− e−ϵX

)
= 0 , (11.67)

or

Ẍ +X − ϵ
3

2
X2 +

7

6
ϵ2X3 = O

(
ϵ3
)
. (11.68)

The multiple time scale expansion is now

X = X0(s, t) + ϵX1(s, t) + ϵ2X2(s, t) + · · · (11.69)

with slow time s = ϵ2t.

The main point of this example is that it is necessary to proceed to order ϵ2, and therefore to retain the
term 7ϵ2X3/6, to obtain the amplitude equation. One finds

iAs = (11.70)
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11.4 Symmetry and universality of the Landau equation

So far the two-time expansion always leads to the Landau equation

As = pA+ q|A|2A . (11.71)

If you dutifully solve some of the early problems in this lecture you’ll obtain (11.71) again and again.
Why is that? If we simply list all the terms up to cubic order that might occur in an amplitude equation
we have

As = ?A+?A∗+?A2+?|A|2+?A∗2+?A3 + ?|A|2A+?|A|2A∗+?A∗3 + · · · (11.72)

The coefficients are denoted by “?” and we’re not interested in the precise value of these numbers, except
in so far as most of them turn out to be zero. The answer in (11.71) is simple because we have two terms
on the right, instead of the nine in (11.72). We’ve been down in the weeds calculating, but we have not
asked the big question why do we have to calculate only the two coefficients p and q?

Remark: Why no terms such as A2|A| in (11.72)? They’re “nonanalytic” because |A| =
√
AA∗. Can one devise

an example in which such terms appear?

We have been considering only autonomous differential equations, such as

dx

dt
+ x+ ϵx5 = 0 . (11.73)

This means that if x(t) is a solution of (11.73) then so is x(t − α), where α is any constant. In other
words, the equations we’ve been considering are unchanged (“invariant”) if

t→ t+ α . (11.74)

Now if we try to solve (11.71) with a solution of the form

x(t) = A(s)eit +A∗(s)e−it + ϵx1(t, s) + · · · (11.75)

then
x(t+ α) = Aeiα eit +A∗e−iα e−it + ϵx1 + · · · (11.76)

Thus the time-translation symmetry of the original differential equation implies that the amplitude
equation should be invariant under the rotation

A→ Aeiα , (11.77)

where α is any constant. Only the underlined terms in (11.72) respect this symmetry and therefore only
the underlined terms can appear in the amplitude equation.

Exercise: many of our examples have time reversal symmetry i.e. the equation is invariant under t → −t. For
example, the nonlinear oscillator (with no damping) is invariant under t → −t. Show that this implies
that p and q in (11.71) must be pure imaginary.

11.5 Parametric instability

Consider an oscillator whose frequency is changing slightly

d2x

dt2
+
(
ω2 + ν2 cosσt

)
x = 0 . (11.78)

How does the small fluctuation ν2 cosσt affect the oscillations? To motivate arguments below, notice
that the energy equation for (11.78) is

d

dt

(
1
2 ẋ

2 + 1
2ω

2x2
)

+ ν2 cosσt
d

dt
1
2x

2 = 0 , (11.79)
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or alternatively
d

dt

(
1
2 ẋ

2 + 1
2ω

2x2 + 1
2ν

2 cosσt x2
)

+ 1
2x

2 σ sinσt = 0 . (11.80)

If x(t) ≈ cosωt then x2 has a 2ω-harmonic and x2 sinσt will result in a “rectified” energy source

σ = 2ω . (11.81)

We live dangerously by rewriting (11.78) as

d2x

dt2
+
(
ω2 + ϵ cosσt

)
x = 0 , (11.82)

where ϵ = ν2 is the perturbation parameter. Note dim ϵ = dimω2 = dimσ2 = T−2. Let’s apply a
multiple time scale approximation to (11.78). We’ll write the unperturbed (ϵ = 0) solution as

x = Aeiωt +A∗e−iωt . (11.83)

When we switch on the perturbation the amplitude A becomes a function of slow time s = ϵt.

Remark: Before doing the algebra, we show that the only amplitude equation consistent with all symmetries
of (11.78) is

As = inA+ imA∗ , (11.84)

where m and n are real.

Because the linear equation (11.78) is invariant under x → αx the amplitude equation must also be linear:

As = pA+ qA∗ . (11.85)

But (11.78) is also invariant under time reversal t → −t. Time reversal applied to the amplitude-equation
ansatz in (11.83) is equivalent to A → A∗. Hence time reversing (11.85)

−A∗
s = pA∗ + qA , ⇒ A∗

s = −pA∗ − qA . (11.86)

But the complex conjugate of (11.85) is

A∗
s = p∗A∗ + q∗A . (11.87)

Comparing (11.86) with (11.87) we conclude that p and q in (11.85) must be pure imaginary.

A further remark: In a 2025 lecture I remarked that if the forcing in (11.82) was presented as sinσt then
we could use the quarter wave symmetry to change sin t to cos t and thus recover t → −t symmetry and
its consequence (11.84). The class was in open revolt against this maneuver. I believe there is nothing
wrong with this argument. But perhaps there is another way to argue that if the forcing is cos(σt + χ)
the amplitude equation will have the form (11.84).

We attack (11.82) with the multiple scale expansion

x = A(s)eiωt +A∗(s)e−iωt

︸ ︷︷ ︸
x0(s,t)

+ϵx1(s, t) + · · · (11.88)

where s = ϵt. At order ϵ1:

(
∂2t + ω2

)
x1 + 2iωAse

iωt − 2iωA∗
se−iωt + 1

2

(
eiσt + e−iσt

) (
Aeiωt +A∗e−iωt

)
= 0 . (11.89)

Resonant terms are e±iωt. The final term contains frequencies

ω + σ , −ω + σ , ω − σ − ω − σ . (11.90)

Can any of these four frequencies equal ω and resonantly force x1? Yes:

ω = −ω ± σ ⇒ ω = ± 1
2σ . (11.91)
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Taking ω = 1
2σ and eliminating the resonant terms we emerge triumphantly with the amplitude equation

2i 12σAs + 1
2A∗ = 0 , or σAs = 1

2 iA∗ , (11.92)

implying that
σ2Ass − 1

4A = 0 . (11.93)

Thus A will grow exponentially ∼ es/2σ = eν
2t/2σ. This is parametric subharmonic instability : the

natural frequency of the oscillator, ω, is one-half is a subharmonic of the forcing frequency σ. Equivalently
the period of the forcing is half the period of the oscillator. (You pump a swing twice in one period.)

Example: What happens if ω is not exactly equal to one half?

We investigate this by introducing a slight de-tuning :

d2x

dt̄2
+
(
1
4
+ ϵβ + ϵ cos t̄

)
x = 0 . (11.94)

Above we have non-dimensionalized time via t̄ = σt and the order parameter is ϵ
def
= ν2/σ2. The natural

frequency is written as ω = σ
√

1
4
+ ϵβ. Proceeding as before, we find the amplitude equation

As = iβA+ 1
2
iA∗ , ⇒ Ass +

(
β2 − 1

4

)
A = 0 . (11.95)

If |β| ≥ 1
2
then the de-tuning quenches the parametric subharmonic instability.

11.6 The resonantly forced Duffing oscillator

The linear oscillator

First consider the forced linear oscillator

ẍ+ µẋ+ ω2x = f cosσt . (11.96)

We can find the “permanent oscillation” with

x = Xeiσt +X∗e−iσt . (11.97)

After some algebra

X =
f

2

1

ω2 − σ2 + iµσ
, (11.98)

and the squared amplitude of the response is

|X|2 =
f2

4

1

(ω2 − σ2)2 + µ2σ2
. (11.99)

We view |X|2 as a function of the forcing frequency σ and notice there is a maximum at σ = ω i.e. when
the oscillator is resonantly forced. The maximum response, namely

max
∀σ

|X| =
f

2µσ
, (11.100)

is limited by the damping µ. In the neighbourhood of this peak, where ω ≈ σ, the amplitude in (11.99)
can approximated by the Lorentzian

|X|2 ≈ f2

4σ2

1

4(ω − σ)2 + µ2
. (11.101)

The difference between ω and σ is de-tuning.
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Nondimensionalization of the nonlinear oscillator

Now consider the forced and damped Duffing oscillator:

ẍ+ µẋ+ ω2x+ ηx3 = f cosσt . (11.102)

We’re interested in the weakly damped and nearly resonant problem. That is µ/ω is small and σ is close
to ω. Inspired by the linear solution we define non-dimensional variables

t̄ = σt , and therefore
d

dt
= σ

d

dt̄
, (11.103)

and the amplitude scaling

x =
f

µσ
x̄ . (11.104)

(Note particularly the definition of the non-dimensional displacement x̄ in (11.104). Naively we
might have balanced the restoring force ω2x against the forcing and introduced the non-dimensional
displacement

x̂
def
=

ω2x

f
=
µ

σ
x̄ . (11.105)

This is not the most convenient scaling for analysis of the near-resonant excitation of a weakly damped
oscillator. As an exercise you can try to repeat the following calculations using this alternative scaling
– you’ll encounter a problem right at leading order.)

The non-dimensional equation is then

x̄t̄t̄ +
µ

σ
x̄t̄ +

(ω
σ

)2
x̄+

ηf2

µ2σ4
x̄3 =

µ

σ
cos t̄ . (11.106)

To proceed with the perturbation expansion we define the small parameter

ϵ
def
=

µ

σ
. (11.107)

We must also ensure that the nonlinearity and de-tuning appear at order ϵ1 in the expansion. We do
this by introducing the detuning parameter β and the nonlinearity parameter γ defined by

(ω
σ

)2
= 1 + ϵβ , and

ηf2

µ2σ4
= ϵγ . (11.108)

Dropping the decoration, the non-dimensional equation (11.106) is now

xtt + ϵxt + (1 + ϵβ)x+ ϵγx3 = ϵ cos t . (11.109)

We have used the exact solution of the linear problem to make a non-obvious definition of the non-
dimensional amplitude in (11.104). Even in the linear case – η = 0 in (11.102) – one might not guess
that the forcing should be scaled so that it appears at order ϵ in (11.109). In (11.109) we can now take
the distinguished limit ϵ → 0 with β and γ fixed and use two-timing to understand the different effects
of nonlinearity and de-tuning on a resonantly forced oscillator.

Exercise: Suppose one naively balances the restoring force ω2x against the forcing f cosσt in (11.102) and
therefore introduces the non-dimensional displacement

x̂
def
=

ω2

f
x =

ω2

µσ
x̄ . (11.110)

Find the x̂-version of (11.109) and explain why it is not suitable for the two time expansion.
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Figure 11.4: The amplitude as
a function of detuning obtained
from (11.116).

The amplitude equation and its solution

We attack (11.109) with our multiple-scale expansion

x = x0(t, s) + ϵx1(t, s) + · · · (11.111)

with slow time s = ϵt. The leading-order balance is

(
∂2t + 1

)
x0 = 0 . (11.112)

Because of our amplitude scaling in (11.104) the forcing does not appear at this order. The familiar
leading order solution is therefore

x0 = Aeit +A∗e−it . (11.113)

At order ϵ1 we have (
∂2t + 1

)
x1 + 2x0st + x0t + βx0 + γx30 = 1

2eit + 1
2e−it . (11.114)

Eliminating the resonant terms we obtain the amplitude equation

2As + (1 − iβ)A− 3iγ|A|2A = − 1
2 i . (11.115)

The scaled problem (11.109) has three non-dimensional parameters, ϵ, β and γ. But in the amplitude
equation (11.115) only β and γ appear. (Of course ϵ is hidden in the definition of the slow time s.)
These perturbation expansions are called reductive because they reduce the number of non-dimensional
parameters by taking a distinguished limit.

Steady solutions of the amplitude equation

Although (11.115) is simpler than the original forced Duffing equation (11.106), it is still difficult to
solve. We begin by looking for special solutions, namely steady solution As = 0. In this case we find

|A|2 =
1

4

1

1 + (β + 3γ|A|2)2
. (11.116)

If we set γ = 0 we recover a non-dimensional version of our earlier Lorentzian approximation (11.101)
to the response curve of a linear oscillator. With non-zero β we can exhibit the response curve, while
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avoiding the solution of a cubic equation, by solving (11.116) for the de-tuning β as a function of |A|2:

β = −3γ|A|2 ±

√
1

4|A|2
− 1 . (11.117)

Figure 11.5 is constructed by specifying |A|2 and then calculating β from (11.117). There are “multiple
solutions” i.e. for the same detuning β there as many as three solutions for |B|2. The middle branch
is unstable – the system ends up on either the lower or upper branch, depending on initial conditions.
Figure 11.5 illustrates the two different attracting solutions.

Solutions of the amplitude equation

We can try attacking (11.115) with A = reiθ · · ·
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Figure 11.5: Energy E = (ẋ2 + ω2x2)/2 + βx4/4 as a function of time for five ode45 solutions of the
forced Duffing equation (11.102) differing only in initial conditions. There is a high energy attractor
that collects two of the solutions, and a low energy attractor that gets the other three solutions. The
matlab code is below. Note how the differential equation is defined in the nested function oscill so
that the parameters om, mu defined in the main function ForcedDuffing are passed.

function ForcedDuffing

% Multiple solutions of the forced Duffing equation

% Slightly different initial conditions fall on different limit cycles

tspan = [0 300]; om =1; mu =0.05; beta = 0.1; f = 0.25;

sig = 1.2*om; yinit = [0 1 1.0188 1.0189 2];

for n=1:1:length(yinit)

yZero=[yinit(n) 0];

[t,y] = ode45(@oscill,tspan,yZero);

%Use the energy E as an index of amplitude

E = 0.5*( om*om* y(:,1).^2 + 0.5*beta*y(:,1).^4 + y(:,2).^2 );

subplot(2,1,1) plot(t,E(:))

xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,16)

ylabel(’$E(t)$’,’interpreter’,’latex’,’fontsize’,16)

hold on

end

%--------- nested function --------------%

function dydt = oscill(t,y)

dydt = zeros(2,1);

dydt(1) = y(2);

dydt(2) = - mu*y(2) - om^2*y(1) - beta*y(1)^3 + f*cos( sig*t );

end

end
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11.7 Problems

Problem 11.1. In an early lecture we compared the exact solution of the initial value problem

f̈ + (1 + ϵ)f = 0 , with ICs f(0) = 1 , and ḟ(0) = 0 , (11.118)

with an approximation based on a regular perturbation expansion – see the discussion surrounding
(3.101). Redo this problem with a two-time expansion. Compare your answer with the exact solution
and explain the limitations of the two-time expansion.

Problem 11.2. Consider

d2g

dt2
+

[
1 + ϵ

(
dg

dt

)2
]
g = 0 , with ICs g(0) = 1 , and

dg

dt
(0) = 0 . (11.119)

(i) Show that a RPS fails once t ∼ ϵ−1. (ii) Use the two-timing method to obtain the solution on the
long time scale.

Problem 11.3. Consider the initial value problem:

d2u

dt2
+ u = 2 + 2ϵu2 , with ICs u(0) =

du

dt
(0) = 0 . (11.120)

(i) Supposing that ϵ ≪ 1, use the method of multiple time scales (s = ϵt) to obtain an approximate
solution valid on times of order ϵ−1. (ii) Consider

d2v

dt2
+ v = u , with ICs v(0) =

dv

dt
(0) = 0 , (11.121)

where u(t, ϵ) on the right is the solution from part (i). Find a leading-order approximation to v(t, ϵ),
valid on the long time scale t ∼ ϵ−1.

Problem 11.4. Consider the initial value problem:

d2w

dt2
+ w = 2 cos(ϵt) + 2ϵw2 , with ICs w(0) =

dw

dt
(0) = 0 . (11.122)

Supposing that ϵ≪ 1, use the method of multiple time scales (s = ϵt) to obtain an approximate solution
valid on times of order ϵ−1.

Problem 11.5. Use multiple scale theory to find an approximate solution of

d2x

dt2
+ x = 2eϵ

2t + ϵ2e−ϵtx2 , with ICs x(0) =
dx

dt
(0) = 0 , (11.123)

valid on the time scale t ∼ ϵ−1 ≪ ϵ−2.

Problem 11.6. Consider an oscillator parametrically forced at its natural frequency:

d2x

dt2
+ (1 + ϵ cos t)x = 0 . (11.124)

Show that x(t) will grow exponentially, and calculate the growth-rate. (Following the discussion of
parametric instability in the lecture, you won’t find resonance at order ϵ1. So go to higher order.) Study
the effect of slightly detuning the frequency: 1 → 1 + ϵ?β. How large must β be to prevent exponential
growth?
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Problem 11.7. (a) Use multiple scales to derive a set of amplitude equations for the two coupled, linear
oscillators:

ẍ+ 2ϵαẋ+ (1 + kϵ)x = 2ϵµ(x− y) ,

ÿ + 2ϵβẏ + (1 − kϵ)y = 2ϵµ(y − x) . (11.125)

(b) Consider the special case α = β = k = 0. Solve both the amplitude equations and the exact equation
with the initial condition x(0) = 1, y(0) = ẏ(0) = ẋ(0) = 0. Show that both methods give

x(t) ≈ cos [(1 − ϵµ)t] cos(ϵµt) . (11.126)

Problem 11.8. Consider two nonlinearly coupled oscillators:

ẍ+ 4x = ϵy2 , ÿ + y = −ϵαxy , (11.127)

where ϵ≪ 1. (i) Show that the nonlinearly coupled oscillators in (1) have an energy conservation law.
(ii) The multiple scale method begins with

x(t) = A(s)e2it + cc , y(t) = B(s)eit + cc , (11.128)

where s
def
= ϵt is the “slow time” and A and B are “amplitudes”. Find the coupled evolution equations for

A and B using the method of multiple scales. (iii) Show that the amplitude equations have aconservation
law

|B|2 − 2α|A|2 = E . (11.129)

Use this result to show that
4Ass − αEA− 2α2|A|2A = 0 . (11.130)

Obtain the analogous equation for B(s). (iv) Describe the solutions of (11.130) in qualitative terms.
Does the sign of α have a qualitative impact on the solution?

Problem 11.9. The equation of motion of a pendulum with length ℓ in a gravitational field g is

θ̈ + ω2 sin θ = 0 , with ω2 def
=

g

ℓ
. (11.131)

Suppose that the maximum displacement is θmax = ϕ. (i) Show that the period P of the oscillation is

ωP = 2
√

2

∫ ϕ

0

dθ√
cos θ − cosϕ

. (11.132)

(ii) Suppose that ϕ ≪ 1. By approximating the integral above, obtain the coefficient of ϕ2 in the
expansion:

ωP = 2π
[
1+?ϕ2 +O(ϕ3)

]
(11.133)

(iii) Check this result by re-derving it via a multiple scale expansion applied to (11.131). (iv) A grand-
father clock swings to a maximum angle ϕ = 5◦ from the vertical. How many seconds does the clock
lose or gain each day if the clock is adjusted to keep perfect time when the swing is ϕ = 2◦?

Problem 11.10. (H) Find a leading order approximation to the general solution x(t, ϵ) and y(t, ϵ) of
the system

d2x

dt2
+ 2ϵy

dx

dt
+ x = 0 , and

dy

dt
= 1

2ϵ lnx2 , (11.134)

which is valid for t = O(ϵ−1). You can quote the result

1

2π

∫ 2π

0

ln cos2 θ dθ = − ln 4 . (11.135)

Problem 11.11. (H) Find the leading order approximation, valid for times of order ϵ−1, to the solution
x(t, ϵ) and y(t, ϵ) of the system

ẍ+ ϵyẋ+ x = y2 , and ẏ = ϵ(1 + x− y − y2) , (11.136)

with initial conditions x = 1, ẋ = 0 and y = 0.
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Lecture 12

Rapid fluctuations, Stokes drift and
averaging

12.1 A Lotka-Volterra Example

Consider the Lotka-Volterra equation with a sinusoidally varying carrying capacity. Using non-dimensional
variables the problem is

dn

dt
= n

(
1 − n

1 + κ cosωt

)
. (12.1)

Problem 3.5 asked you to analyze this equation with κ ≪ 1 i.e. small fluctuations in the carrying
capacity. Here we consider the case of rapid fluctuations: ω → ∞, with κ fixed and order unity. In this
limit the small parameter is

ϵ
def
=

1

ω
. (12.2)

Figure 12.1 shows a numerical solution with the carrying capacity 1 + κ cosωt varying by a factor of
seven over a cycle. After an initial population explosion n(t) fluctuates about an average value which is
close to

√
7/16 = 0.6614. This average population is quite different from the average carrying capacity,

namely 1.

Method 1: heuristic averaging

We introduce an average over the fast oscillation

⟨A(t)⟩ def
=

ω

2π

∫ t+π/ω

t−π/ω

A(t′) dt′ . (12.3)

This average is a low-pass filter: ⟨⟩ removes variability with frequencies greater than ω.
The numerical solution n(t) exhibits two time scales: fast wiggles with small amplitude superposed

on a slower evolution that looks like a Lotka-Volterra solution. Although the carrying capacity is varying
rapidly, the population n(t) hardly reacts to these fast, large-amplitude fluctuations. Clouds blowing
overhead lead to modulations in sunlight on the scale of minutes. But plants don’t die when the sun is
momentarily obscured by a cloud.

It is important that the fast wiggles in n(t) have small amplitude so that

⟨n⟩ ≈ n , (12.4)

and 〈
dn

dt

〉
≈ d⟨n⟩

dt
. (12.5)

181



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

t

N
(t
)

Figure 12.1: Solution
of (12.1) with ω = 20
and κ = 3/4. The
blue line is at

√
7/4 =

0.6614.

Thus averaging (12.1)
d⟨n⟩
dt

=

〈
n

(
1 − n

1 + κ cosωt

)〉
. (12.6)

But the fast oscillations in n(t) have small amplitude, so

〈
n

(
1 − n

1 + κ cosωt

)〉
≈ ⟨n⟩

(
1 −

〈
1

1 + κ cosωt

〉
⟨n⟩
)
. (12.7)

The average of the reciprocal carrying capacity is calculated by invoking a favourite textbook example
of the residue theorem

1

2π

∫ 2π

0

dτ

1 + κ cos τ
=

1√
1 − κ2

. (12.8)

Putting it all together, (12.6) becomes

d⟨n⟩
dt

≈ ⟨n⟩
(

1 − ⟨n⟩√
1 − κ2

)
. (12.9)

Thus, the long time limit is

lim
t→∞

⟨n⟩ =
√

1 − κ2 . (12.10)

This prediction is in agreement with the matlab solution in Figure 12.1.

Method 2: two-timing

Define a fast time

τ
def
= ωt =

t

ϵ
, (12.11)

and assume that the solution has the multiple time scale expansion

n = n0(t, τ) + ϵn1(t, τ) + · · · (12.12)

depending on both t and τ . Thus the expanded version of (12.1) is

(∂τ + ϵ∂t) (n0 + ϵn1) = ϵn0

(
1 − n0

1 + κ cos τ

)
+ O

(
ϵ2
)
. (12.13)

At leading order
ϵ0 : ∂τn0 = 0 , with solution n0 = g(t) . (12.14)

We decide to define g(t) so that all subsequent terms in the expansion have zero average i.e.

g = ⟨n⟩ . (12.15)

This definition has the implication that g(t) does not satisfy the initial condition on n(t) i.e. g(0) ̸= n(0).
(See the discussion of the “guiding center” in section 12.2.)
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At next order

ϵ1 : ∂τn1 +
dg

dt
= g

(
1 − g

1 + κ cos τ

)
. (12.16)

Using (12.8), we average the equation above over the fast time scale to obtain

dg

dt
= g

(
1 − g√

1 − κ2

)
. (12.17)

This confirms the earlier heuristic average.
To determine the fluctuations about this average g(t) we can subtract (12.17) from (12.16) to obtain

∂τn1 =

(
1√

1 − κ2
− 1

1 + κ cos τ

)
g2 . (12.18)

To perform the integration and obtain n1(τ) one can invoke the Fourier series

1√
1 − κ2

− 1

1 + κ cos τ
= − 2√

1 − κ2

∞∑

n=1

(√
1 − κ2 − 1

κ

)n

cosnτ . (12.19)

This may be more than we need to know. The main point is that the fast fluctuations about the mean
solution g(t) scale with ω−1 i.e. faster fluctuations in the carrying capacity induce smaller variations in
population.

Example: Consider
dx

dt
= −αx cosωt . (12.20)

Example: Consider
dx

dt
= −α(x+ cos2 ωt) . (12.21)

12.2 Stokes drift

An acoustic wave

Consider the motion along the x-axis of a fluid particle in a simple compressive wave e.g. a sound wave.
The position of the particle is determined by solving the nonlinear differential equation

dx

dt
= u cos(kx− ωt) , (12.22)

with an initial condition x(0) = a. We non-dimensionalize this problem by defining

x̄
def
= kx and t̄

def
= ωt . (12.23)

The non-dimensional problem is

dx̄

dt̄
= ϵ cos(x̄− t̄) , with IC x̄(0) = ā . (12.24)

The non-dimensional wave amplitude,

ϵ
def
=

uk

ω
, (12.25)

is the ratio of the maximum particle speed u to the phase speed ω/k. We proceed dropping all bars.
Figure 12.2 shows some numerical solutions of (12.24) with ϵ = 0.3. Even though the time-average

velocity at a fixed point is zero there is a slow motion of the particles along the x-axis with constant
average velocity. If one waits long enough then a particle will move very far from its initial position and
travel through many wavelengths.
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Figure 12.2: Solutions of ẋ = 0.3 cos(x− t).

Method 1: Exact solution

We can reduce (12.24) to quadratures with the substitution X = x− t, leading to

dX

dt
+ 1 = ϵ cosX . (12.26)

Now separate variables etc.

Method 2: Two-timing

To analyze this problem with multiple scale theory we introduce

s
def
= ϵ2t . (12.27)

Why ϵ2 above? Because we tried ϵ1 and found that there were no secular terms on this time scale.

Exercise: Assume that s = ϵt and repeat the following calculation. Does it work?

With the slow time s, the dressed-up problem is

ϵ2xs + xt = ϵ cos(x− t) . (12.28)

We now go to town with the RPS:

x = x0(s, t) + ϵx1(s, t) + ϵ2x2(s, t) + · · · (12.29)

Notice that

cos(x− t) = cos(x0 − t)− sin(x0 − t)
[
ϵx1(s, t) + ϵ2x2(s, t) + · · ·

]

− cos(x0 − t)
[
ϵx1(s, t) + ϵ2x2(s, t) + · · ·

]2
+ · · · (12.30)

We cannot assume that x0 is smaller than one, so must keep cos(x0−t) and sin(x0−t). We are assuming
the higher order xn’s are bounded, and since ϵ≪ 1 we can expand the sinusoids as above.

At leading order, ϵ0:
x0t = 0 , ⇒ x0 = f(s) . (12.31)

The function f(s) is the slow drift. At next order, ϵ1:

x1t = cos(f − t) ⇒ x1 = sin f − sin(f − t) . (12.32)

We determined the constant of integration above so that x1 is zero initially i.e. we are saying that f(0)
is equal to the initial position of the particle.
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At ϵ2

fs + x2t = − sin(f − t) [sin f − sin(f − t)]︸ ︷︷ ︸
=x1

. (12.33)

Averaging over the fast time t we obtain

fs =
〈

sin2(f − t)
〉

=
1

2
. (12.34)

Thus the average position of the particle is

f =
s

2
+ a =

ϵ2

2
t+ a . (12.35)

The prediction is that the averaged velocity in figure 12.2 is (0.3)2/2 = 0.045. You can check this by
noting that the final time is 20π.

Subtracting (12.34) from (12.33) we have the remaining oscillatory terms:

x2t = − sin(f − t) sin f − sin(2f − 2t) . (12.36)

Integrating and applying the initial condition we have

x2 = − cos(f − t) sin f + 1
4 cos(2f − 2t) + cos f sin f − 1

4 cos 2f . (12.37)

This is bounded and all is well.
The solution we’ve constructed consists of a slow drift and a rapid oscillation about this slowly

evolving mean position. Note however that the mean position of the particle is

⟨x⟩ = f + ϵ sin f︸︷︷︸
⟨x1⟩

+ϵ2
[
1
2 sin 2f − 1

4 cos 2f
]

︸ ︷︷ ︸
⟨x2⟩

+O(ϵ2) (12.38)

In other words, the mean position is not the same as the leading-order term.
The guiding center: In this variant we use the two-timing but insist that the leading-order term

is the mean position of the particle. This means that the leading-order solution no longer satisfies the
initial condition, and that constants of integration at higher orders are determined by insisting that

∀n ≥ 1 : ⟨xn⟩ = 0 . (12.39)

OK, let’s do it, starting with the scaled two-time equation in (12.28). The leading order is

x0t = 0 , ⇒ x0 = g(s) . (12.40)

The function g(s) is the “guiding center” – it’s different from f(s) in the previous method.
At next order, ϵ1:

x1t = cos(g − t) ⇒ x1 = − sin(g − t) . (12.41)

This is not the same as the first-order term in (12.32): in (12.41) we have determined the constant of
integration so that ⟨x1⟩ = 0.

At order ϵ2 we have
gs + x2t = sin2(g − t) = 1

2 − 1
2 cos(2g − 2t) . (12.42)

The average of (12.42) is the motion of the guiding center:

gs = 1
2 ⇒ g =

ϵ2

2
t+ g(0) . (12.43)

The oscillatory part of the solution, with zero time average, is

x2 = 1
4 sin(2g − 2t) . (12.44)

Now we must satisfy the initial conditions by requiring that

a = g(0) − ϵ sin (g(0)) + ϵ2 1
4 sin (2g(0)) + · · · (12.45)

We can invert this series to obtain
g(0) = a+ ϵ sin a+ · · · (12.46)

I prefer this guiding-center method. But in either case the essential point is that the leading-order drift
velocity is ϵ2/2.
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A deepwater surface gravity wave

Following Stokes 1847 we consider an irrotational deepwater surface gravity wave with velocity potential

ϕ(x, z, t) =
U

k
ekz sin(kx− σt) , (12.47)

and free surface displacement
s(x, t) = a cos(kx− σt) . (12.48)

Above σ =
√
gk and U = aσ where g is the gravitational acceleration. The velocity is

u = ϕx = Uekz cos(kx− σt) , and w = ϕz = Uekz sin(kx− σt) . (12.49)

Sanity check: Verify the kinematic boundary condition that at the surface st = w(0). The pressure is p = −ϕt

and verify that p(0) = gs.

To track particles we must solve

dx

dt
= Uekz cos(kx− σt) , (12.50)

dz

dt
= Uekz sin(kx− σt) . (12.51)

The “natural” non-dimensionalization is

(x̄, z̄)
def
= (kx, kz) , and t̄ = σt . (12.52)

Dropping the bar, the scaled equations are then

dx

dt
= ϵ ez cos(x− t) , (12.53)

dz

dt
= ϵ ez sin(x− t) , (12.54)

where the “wave steepness” is

ϵ
def
=

Uk

σ
= ka . (12.55)

We proceed with

s = ϵ2t , and
d

dt
= ∂t + ϵ2∂s (12.56)

The displacement is expanded as

x = X(s) + ϵξ(s, t) + ϵ2x2(s, t) + · · · (12.57)

z = Z(s) + ϵζ(s, t) + ϵ2z2(s, t) + · · · (12.58)

To avoid a lot of subscripts we use the distinctive notation (X,Z) and (ξ, ζ). We have anticipated that
the leading-order displacement, (X,Z), does not depend on the fast time t. We anticipate needing

u(x, z) = u(X,Z) + ϵξux(X,Z) + ϵζuz(X,Z) +O(ϵ2) , (12.59)

w(x, z) = w(X,Z) + ϵξwx(X,Z) + ϵζwz(X,Z) +O(ϵ2) . (12.60)

We are suppressing the t and s arguments of all variables above. We resist the temptation to write out
the various derivatives above in terms of cos(X − t), sin(X − t) etc.

The leading-order, ϵ0 terms from (12.53) and (12.54) are satisfied because X and Z do not depend
on fast time t. At order ϵ1:

ξt = u(X,Z) = eZ cos(X − t) , and ζt = w(X,Z) = eZ sin(X − t) . (12.61)
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We integrate the equations above with the guiding-center prescription

ξ = −eZ sin(X − t) , and ζ = +eZ cos(X − t) . (12.62)

At order ϵ2:

x2t +Xs = ξux + ζuz , and z2t + Zs = ξwx + ζwz . (12.63)

Averaging over the fast time

Xs = ⟨ξux⟩ + ⟨ζuz⟩ , and Zs = ⟨ξwx⟩ + ⟨ζwz⟩ . (12.64)

Computing the averages above
Xs = e2Z , and Zs = 0 . (12.65)

Returning to dimensional variables with ∂s = (ϵ2σ)−1∂t, X 7→ kX and Z 7→ kZ we have

Xt = σka2e2kZ . (12.66)

Remark: We should calculate the RHS of (12.63) before averaging. I find

ξux + ζuz = e2Z , and ξwx + ζwz = 0 . (12.67)

In this case we are left with x2t = z2t = 0.

12.3 The Kapitsa pendulum

If you google “Kapitsa pendulum” you’ll find videos which show the stabilization of an inverted pendulum
by a rapidly vibrating point of support. The equation of motion of this system is

d2φ

dt2
+

(
g

ℓ
+
aν2

ℓ
cos νt

)
sinφ = 0 , (12.68)

where a is the amplitude of vibration and ν is the frequency. There is a steady solution φ = π and in
the absence of vibrati on (a = 0) this solution is unstable.

Let’s scale the equation and show that if ν is large enough then solution φ = π becomes stable. We
begin the analysis by introducing a nondimensional time

t̄
def
= ωt , (12.69)

where ω
def
=
√
g/ℓ is the linear frequency of the pendulum. The non-dimensional equation of motion can

then be written as
d2φ

dt̄2
+

[
1 +

α

ϵ
cos

(
t̄

ϵ

)]
sinφ = 0 , (12.70)

where
ϵ
def
=

ω

ν
, and α

def
=

aων

g
. (12.71)

To investigate the stability of φ = π we introduce θ = π − φ so that

sinφ = − sin θ = −θ + O(θ3) . (12.72)

Dropping the bar on the nondimensional time, the linearized problem is

d2θ

dt2
−
(

1 +
α

ϵ
cos

(
t

ϵ

))
θ = 0 . (12.73)

We take the distinguished limit ϵ→ 0 with α fixed.
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Introduce the fast time τ = t/ϵ so that

d

dt
=

1

ϵ
∂τ + ∂t , (12.74)

and use the two-time expansion
θ = θ0(t, τ) + ϵθ1(t, τ) + · · · (12.75)

The expanded equation of motion is

(
∂τ + 2ϵ∂t∂τ + ϵ2∂2t

) (
θ0 + ϵθ1 + ϵ2θ2

)
− ϵ2θ0 − ϵα cos τ (θ0 + ϵθ1) = O

(
ϵ3
)
. (12.76)

At order ϵ0 we have
∂2τθ0 = 0 , ⇒ θ0 = S(t) . (12.77)

Above, at leading order, the leading order displacement is a function of only the slow time t. At next
order ϵ1:

∂2τθ1 + 2 ∂t∂τS︸ ︷︷ ︸
=0

−αS cos τ = 0 , ⇒ θ1 = −αS cos τ . (12.78)

At order ϵ2:
∂2τθ2 + 2 ∂t∂τθ1︸ ︷︷ ︸

αSt sin τ

+∂2t S − S − α cos τ θ1︸ ︷︷ ︸
−α2S cos2 τ

= 0 . (12.79)

Averaging the equation above we find that

Stt −
(
1 − 1

2α
2
)
S = 0 . (12.80)

The inverted pendulum is stable if α >
√

2.
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The averaging theorem

There is theorema that can be used to justify the method of averaging. Consider the differential
equation

dx

dt
= ϵf(x, t, ϵ) , (1)

where f is periodic in time with period p:

f(x, t+ p, ϵ) = f(x, t, ϵ) . (2)

With enough assumptions regarding the smoothness of f , there exists an ϵ0 > 0 and a function
u(x, t, ϵ) such that if |ϵ| < ϵ0 then the change of variables

x = y + ϵu(x, t, ϵ) , (3)

transforms (1) into
dy

dt
= ϵf̄(y) + ϵ2f1(y, t, ϵ) . (4)

In (4)

f̄(y)
def
=

1

p

∫ p

0

f(y, t, 0) dt (5)

is the average of f . The change of variables from x to y in (3) is a near-identity transformation
that takes (1) into (4) exactly. Neglecting the ϵ2 term in (4) we obtain an approximate autonomous
differential equation

dz

dt
= ϵf̄(z) . (6)

We hope that the solution z(t) of (6) approximates the solution y(t) of (4) over some long time
interval. This hope is justified if the solutions of (4) are stable when subject to the small, order ϵ2,
persistent f1(y, t, ϵ) perturbations.

aSee Sanders & Verhulst Averaging Methods in Nonlinear Dynamical Systems
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Figure 12.3: The solid curve
is the numerical solution of
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12.4 Problems

Problem 12.1. Consider the nonlinear inverted pendulum

d2θ

dt2
−
[
1 +

α

ϵ
cos

(
t

ϵ

)]
sin θ = 0 . (12.81)

Apply the two-time method to this nonlinear equation and find the effective potential resulting from
averaging the rapid oscillations. Use matlab to show the phase-plane orbits in the effective potential.

Problem 12.2. A solution of

dx

dt
= sinωt cos y ,

dy

dt
= cosωt cosx , (12.82)

with ω = 8 and initial condition [x(0), y(0)] = [1.1, 0] is shown in figure 12.3. Find an expression for the
trajectory of the guiding center (the black dashed curve).

Problem 12.3. As a generalization of problem 12.2, investigate Stokes drift in the two-dimensional
incompressible velocity field with streamfunction

ψ = a(x, y) cos(t/ϵ) + b(x, y) sin(t/ϵ) , (12.83)

and velocity
dx

dt
= −ψy ,

dy

dt
= ψx . (12.84)

Obtain an expression for the streamfunction of the Stokes flow in terms of a and b. Check your answer
by showing that if a = b there is no Stokes drift.
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Problem 12.4. Consider an oscillator with a slowly changing frequency ω(ϵt):

ẍ+ ω2x = 0 . (12.85)

Use the method of averaging to show that the action A
def
= E/ω is approximately constant. Test this

result with ode45 using the frequency

ω(t) = 3 + 2 tanh (ϵt) , (12.86)

and the initial condition x(−40) = 0 and ẋ(−40) = 1 e.g. see Figure 12.4. Use several values of ϵ to test
action conservation e.g. try to break the constant-action approximation with large ϵ.

Problem 12.5. A multiple scale (0 < ϵ≪ 1) reduction of Hinch’s crazy oscillator system

d2x

dt2
+ 2ϵy

dx

dt
+ x = 0 ,

dy

dt
= 1

2ϵx
2 , (12.87)

begins with

x =
[
A(s)eit +A∗(s)e−it

]
+ ϵx1(t, s) + · · · , y = B(s) + ϵy1(t, s) + · · · (12.88)

where s = ϵt is the slow time. (i) Find coupled evolution equations for A(s) and B(s). (ii) Figure 12.5
shows a numercial solution of (12.87) with the initial conditions

x(0) = 2 ,
dx

dt
(0) = 0 , y(0) = 0 . (12.89)

Explain why limt→∞ y = 1.

Problem 12.6. Consider particle motion in the incompressible velocity field (u, v) = (−ψy, ψx) obtained
from

ψ(x, y, t) = α sin y cos(x− t) (12.90)

with α≪ 1. Some Lagrangian trajectories, computed with matlab, are shown in the figure 12.6. Find
the mean Lagrangian velocity and discuss the agreement with the numerical solution.
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Lecture 13

WKB

Suppose we need to solve
ϵ2y′′ + q(x)y = 0 , as ϵ→ 0. (13.1)

The approximate WKB solution to this singular perturbation problem is

y ≈ A

q1/4
exp

[
i

ϵ

∫ x√
q(t) dt

]
+

B

q1/4
exp

[
− i

ϵ

∫ x√
q(t) dt

]
, (13.2)

or equivalently

y ≈ E

q1/4
cos

[
1

ϵ

∫ x√
q(t) dt

]
+

F

q1/4
sin

[
1

ϵ

∫ x√
q(t) dt

]
. (13.3)

The constructions above are most convenient if q(x) > 0 so that the solution of (13.1) is oscillatory. But
WKB also works if q(x) < 0 and in that case the approximation is

y ≈ A

|q|1/4
exp

[
1

ϵ

∫ x√
|q(t)|dt

]
+

B

|q|1/4
exp

[
−1

ϵ

∫ x√
|q(t)|dt

]
. (13.4)

We have not specified the lower limits of the integrals in (13.1) through (13.4). Different choices amount
to altering the constants A, B et cetera.

The approximations in (13.2) through (13.4) fail in the neighbourhood of x∗ where q(x∗) = 0. The
point x∗ is called a turning point. We’ll need a different approximation in the vicinity of a turning point.
But everywhere else WKB provides a spectacular ϵ→ 0 approximation.

Exercise: Check the special cases q = 1 and q = −1 and commit the WKB approximation to memory.

13.1 The WKB series

Following BO, an expeditious route to the approximations in (13.2) through (13.4) is to make the
exponential substitution

y = exp

(
is

ϵ

)
(13.5)

in (13.1). One finds that the phase function s(x) satisfies the Ricatti equation

iϵs′′ − s′2 + q = 0 . (13.6)

We’ve “nonlinearized” the linear equation (13.1). The advantage is that (13.6) has an obvious ϵ → 0
two-term dominant balance. This motivates the RPS

s = s0(x) + ϵs1(x) + ϵ2s2(x) + · · · (13.7)
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The first four terms in this “WKB hierarchy” are

s′20 = q , (13.8)

is′′0 − 2s′0s
′
1 = 0 , (13.9)

is′′1 − 2s′0s
′
2 − s′21 = 0 , (13.10)

is′′2 − 2s′0s
′
3 − 2s′1s

′
2 = 0 . (13.11)

The solution of the first two equations is

s0 = ±
∫ x√

q(t) dt , (13.12)

s1 = i
4 ln q . (13.13)

Using the two terms above, we have

y = exp

[
± i

ϵ

∫ x√
q(t) dt− 1

4
ln q + O (ϵ)

]
, (13.14)

= q−1/4 exp

[
± i

ϵ

∫ x√
q(t) dt

]
[1 + O (ϵ)] . (13.15)

Linearly combining the two solutions above we obtain (13.2) and (13.3). BO refer to the two term
approximation above as physical optics (PO).

A necessary condition for the validity of the WKB approximation

We launched our peturbation expansion by neglecting the term ϵs′′ relative to s′2. Thus a necessary
condition for the validity of the PO approximation is that

ϵs′′0

s′0
2 → 0 as ϵ→ 0. (13.16)

Suppose that q(x) has a simple zero at x∗ i.e. q ∝ x−x∗. Then s′0 ∝ (x−x∗)1/2 and s′′0 ∝ (x−x∗)−1/2.
The condition in (13.16) is therefore

ϵ

(x− x∗)3/2
→ 0 as ϵ→ 0. (13.17)

So, in order to apply the PO approximation, we must ensure that x is at distance greater than ϵ2/3 from
the turning point at x∗.

Exercise: Suppose that q ∝ (x− x∗)
m. Show that validity of PO requires that x− x∗ ≫ ϵ2/(m+2).

In physical problems involving wave propagation through a spatially inhomogeneous medium x has
the dimensions of length and

k
def
=

√
q

ϵ
(13.18)

is a spatially varying wavenumber with dimensions (length)−1. The argument of the sinusoidal functions
in (13.3), namely

s0 =

∫ x

k(t) dt , (13.19)

is dimensionless. Suppose the wavenumber k(x) changes over a length ℓ. In the neighbourhood of x
waves have a typical “reduced” wavelength1 λ̄(x) = 1/k(x). With s′0 = k = 1/λ̄ the condition for the
validity of PO in (13.16) can

d

dx

1

k
=

dλ̄

dx
≪ 1 . (13.20)

1The reduced wavelength is λ̄ = λ/2π.
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It is easy remember (13.20) because the left hand side of (13.20) is dimensionless and the inequality says
that the rate of change of the local wavelength with distance x is much less than one i.e. locally the
solution looks like a sinusoid with constant wavelength. We return to this perspective on WKB in the
problems.

We’ll examine the validity of the WKB approximation in much more detail below. But first we
develop some confidence in the approximation by comparing WKB solutions with numerical solutions.

13.2 Some examples

The oscillatory case

Let’s apply the WKB approximation to

ϵ2y′′ +
(
1 + βe−x

)
︸ ︷︷ ︸

q(x)

y = 0 , (13.21)

with initial conditions
y(0) = 0 , and y′(0) = 1 . (13.22)

In (13.21), β is a parameter which is fixed as ϵ → 0; the wavenumber
√
q/ϵ varies from

√
1 + β/ϵ at

x = 0 to 1/ϵ as x→ ∞.
The leading-order phase function is

s0 =

∫ x

0

√
1 + βe−t dt , (13.23)

= x+ 2
√

1 + β − 2
√

1 + βe−x + 2 ln

(
1 +

√
1 + βe−x

1 +
√

1 + β

)
. (13.24)

Because the initial conditions are imposed at x = 0, it is convenient to use 0 as the lower limit in the
phase integral on the right of (13.23): s0(0) = 0. We construct the WKB approximation using the
sinusoidal form in (13.3), and secure the initial condition y(0) = 0 by setting E = 0:

yWKB =
F√
s′0

sin
(s0
ϵ

)
. (13.25)

We must determine F so that y′WKB(0) = 1. This calculation is easy: to leading order

y′WKB =
F
√
s′0
ϵ

cos
(s0
ϵ

)
. (13.26)

Mercifully, to obtain a consistent approximation to y′WKB we don’t differentiate the 1/
√
s′0 amplitude

in (13.25): those terms are much less than the 1/ϵ produced by differentiating the phase s0/ϵ.
At x = 0 we have s′0 =

√
1 + β and therefore (13.25) implies 1 =

√
1 + βF/ϵ. Thus the physical

optics approximation is

yWKB =
ϵ sin (s0/ϵ)√

(1 + β)s′0
, (13.27)

where the phase s0(x) is given in (13.24).

Example: Solve the differential (13.21) exactly and compare yWKB to a numerical solution of the initial value
problem.

We observe that the exact solution of

d2w

dz2
+
(
λ2e2z − ν2)w = 0 , is w = J±ν(λe

z) . (13.28)
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Figure 13.1: Comparison of the WKB approximation (green dashed) in (13.27) with a matlab
integration (solid blue) of the initial value problem (13.21) and (13.22). The upper panel shows
ϵ = 1 and the lower panel ϵ = 2. We use β = 399 so that the wavenumber varies by a factor of
20 between x = 0 and ∞.

If ν is not an integer then the ±ν in (13.28) provides a linearly independent pair. Changing variables to
x = −2z, the w equation becomes

d2w

dx2
+

1

4

(
λ2e−x − ν2)w = 0 . (13.29)

Comparing this with (13.22), we see that λ2/4 = 8/ϵ2 and −ν2/4 = 1/ϵ2. Thus

J±2i/ϵ

(
4
√
2

ϵ ex

)
(13.30)

is a linearly independent pair of solutions to (13.21). For matlab enthusiasts this is a pyrrhic victory:
matlab Bessel function routines do not include complex orders. Instead we make the comparison using
ode45: see Figure 13.1.

The exponential case

Next, consider
ϵ2y′′ −

(
1 + βe−x

)
y = 0 , (13.31)

with conditions
y(0) = 1 , and lim

x→∞
y(x) = 0 . (13.32)

The e-folding scale varies from
√

1 + β/ϵ near x = 0 to 1/ϵ as x→ ∞. The exact solution is

y =
I2/ϵ

(
2
√
β/ϵ exp(x/2)

)

I2/ϵ
(
2
√
β/ϵ
) , (13.33)

and Iν is the modified Bessel function.
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Figure 13.2: An ϵ = 1 and β = 3 comparison of the WKB approximation (green dashed) in
(13.34) with the analytic solution in (13.33). To reveal the solutions when x > 1 we “compen-
sate” by dividing y(x) by the BL solution yBL(x) in (13.35) (with β = 3).

The WKB approximation is

yWKB =

(
1 + β

1 + βe−x

)1/4

e−s0/ϵ , (13.34)

where s0(x) is given in (13.24). Figure 13.2 compares the exact and approximate solutions.
There is also a simple boundary-layer type approximation:

yBL = e−
√
1+β x/ϵ . (13.35)

Figure 13.2 shows that this approximation is not as accurate as WKB.

An example of WKB without an obvious ϵ

Next we use WKB to obtain an approximate solution of

y′′ +
√
xy = 0 , with initial conditions y(1) = 0 and y′(1) = 1. (13.36)

In this example ϵ = 1 and q =
√
x. The phase integral is therefore

∫ x

1

t1/4 dt =
4

5

(
x5/4 − 1

)
(13.37)

We’re going to apply the initial conditions at x = 1, so it is wise use t = 1 as the lower limit in the
integral above. Thus the solution satisfying y(1) = 0 is

yPO =
A

x1/8
sin

[
1

ϵ

4

5

(
x5/4 − 1

)]
+ O(ϵ) . (13.38)

The cosine is eliminated by the requirement that y(1) = 0. Even though we’re interested in ϵ = 1 we’ve
included the factor ϵ−1 because when we take the derivative of (13.38) we have

dyPO

dx
=
A

ϵ
x1/8 cos

[
1

ϵ

4

5

(
x5/4 − 1

)]
+ O(1) . (13.39)

When we take the derivative we only differentiate the cosine and not the amplitude x−1/8 – the derivative
of the amplitude factor is order ϵ smaller. Requiring that y′(1) = 1 we see that A = ϵ = 1. Thus the
WKB approximation is

yPO(x) = x−1/8 sin

[
4

5

(
x5/4 − 1

)]
. (13.40)
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Figure 13.3: Comparison of the WKB approximation (black dashed) in (13.40) with a matlab
integration (solid blue) of the initial value problem (13.36) (shooting both ways starting at
x = 1). The upper panel shows close agreement over a large interval and the lower panel shows
failure of the WKB approximation close to the turning point at x = 0.

Figure 13.3 shows that unless we get too close to the turning point at x = 0 this is an excellent
approximation to the solution to the initial value problem.

Why does the WKB approximation work when there is no ϵ? Suppose we’re interested in the
solutions of (13.36) with x large. If we introduce

X
def
= δ x (13.41)

then the rescaled equation is
δ5/2yXX +

√
Xy = 0 . (13.42)

As δ → 0 with X fixed we obtain the standard WKB problem with the small parameter

ϵ = δ5/4 . (13.43)

Thus we expect that the PO approximation (13.40) is asymptotic as x→ ∞.
Now consider the more general equation

y′′ + xay = 0 . (13.44)

Is the WKB approximation valid as x → ∞? The problems invite you to explore this issue in detail
e.g. by examining the higher order corrections to the physical optics approximation. But the re-scaling
argument shows very quickly that WKB is valid provided that a > −2 (you should do this).

Exercise: Show that as x → ∞ the WKB approximation applies to (13.44) provided that a > −2.

Failure of WKB

Consider
y′′ + x−3y = 0 , (13.45)
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Figure 13.4: Failure of the WKB approximation. Should plot an expanded view near x = 1 to
show that the perturbation solutions satisfy both initial conditions.

with initial conditions
y(1) = 1 , and y′(1) = 0 . (13.46)

The condition for the validity of PO in (13.16) is strongly violated:

∣∣∣∣∣
s′′0
s′20

∣∣∣∣∣ =
3x1/2

2
→ ∞ , as x→ ∞. (13.47)

Ignoring this red flag, we proceed to construct the PO approximation

yWKB = x3/4 cos
[
2
(

1 − x−1/2
)]

. (13.48)

Differentiating only the cos in (13.48).

y′WKB = x−3/4 sin
[
2
(

1 − x−1/2
)]

. (13.49)

The comparison with the numerical solution in Figure 13.4 is disastrous.

Exercise: In figure 13.4 why doesn’t y′
WKB satisfy the initial condition y′(1) = 0?

Remark: Instead of WKB there is a simple iterative solution starting with y0 = 1, and then proceeding with

y′′
n+1 = x−3yn . (13.50)

Iterating once and twice we have

y1 =
−1 + 4x− x2

2x
, and y2 =

1− 12x+ 27x2 − 4x3

12x2
− lnx

2
. (13.51)

And once more for good measure

y3 =
1− 24x+ 108x2 + 8x3 + 51x4

144x3
+

(4x− 3) lnx

12x
(13.52)

These iterative approximations compare well with the numerics in Figure 13.4.

The iterative solution is based on the idea that x−3 goes to zero rather rapidly as x→ ∞, and thus
the term x−3y has a small effect on the initial condition. But eventually as x → ∞ the approximation
y2 will deviate significantly from the exact solution. To see this failure of iteration we might extend
the plot in Figure 13.4 to x larger than 50. Alternatively we solve (13.45) exactly in terms of Bessel
functions.
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13.3 An example: radiation of waves on a string

Consider shaking a string stretched along the half-line x > 0. The problem is

ρζtt − Tζxx = 0 , (13.53)

The tension T (Newtons) is constant and the density ρ (kilograms per meter) is some positive function
of x. The wave speed c (meters per second) is

c(x)
def
=

√
T

ρ(x)
. (13.54)

The energy conservation equation follows from ζt (13.53):

Et + Jx = 0 , (13.55)

where the energy density E and the energy flux J are

E
def
= 1

2ρζ
2
t + 1

2Tζ
2
x , and J

def
= −Tζtζx (13.56)

Imagine forcing the string by shaking the end. A simple example of shaking is the boundary condition

x = 0 : ζ(0, t) = a cosωt . (13.57)

Suppose that this x = 0 shaking has gone on forever so that there is a permanent wave with frequency
ω propagating towards x = ∞.

If we first assume that ρ is constant then we can easily solve this problem with

ζ(x, t) = a cos(ωt− kx) , (13.58)

where the wwavenumber k is
k

def
=

ω

c
(13.59)

Remark: If we try to solve the problem above with separation of variables, ζ
?
= cosωtZ(x), then we quickly

find ζ = a cosωt cos kx. This separable solution satisfies wave equation (13.53) and the x = 0 boundary
condition (13.57). Nonetheless the separable solution a cosωt cos kx does not correspond to the physical
situation. Why?

The solution ζ = a cosωt cos kx corresponds to a standing wave which might be established by reflection
of a wave incident from x = +∞ being reflected from a free boundary at x = 0. The free boundary
condition is ζx(0, t) = 0 – this boundary condition is satisfied by ζ = a cosωt cos kx.

To more deeply understand the physical situation we should calculate E and J . The standing wave
solution has ⟨J⟩ = 0 i.e. there is no source of energy at x = 0. The radiating solution in (13.58) has
non-zero constant flux, ⟨J⟩. In the radiating case the hand shaking the end of the string is doing work.

INCOMPLETE – now consider non-constant ρ as an example of WKB

13.4 Eigenproblems

Consider the problem of determining the eigenfrequencies of a vibrating string with non-uniform mass
density ρ(x) and uniform tension T :

ϕxx + ω2 ρ

T︸︷︷︸
def
= σ2

ϕ = 0 . (13.60)

The wave speed is σ−1. The ends of the string at x = 0 and ℓ are “clamped” i.e. we have the Dirichlet
boundary conditions

ϕ(0) = ϕ(ℓ) = 0 . (13.61)
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The eigenfrequencies are ordered
0 < ω1 < ω2 < · · · (13.62)

and we know that ωn → ∞ as n→ ∞. To find an approximation to these large eigenvalues, we say that
ωn = ϵ−1 and rewrite the differential equation as

ϵ2ϕxx + σ2ϕ = 0 . (13.63)

The PO approximation is then:

ϕPO = aσ−1/2 sin

[
ω

∫ x

0

σ(x′) dx′
]
, (13.64)

where a is a normalization constant. The construction above secures the boundary condition at x = 0.
The other boundary condition at x = 1 provides the eigenfrequency

ωPO
n =

nπ
∫ ℓ

0
σ(x) dx

. (13.65)

A standard way of normalizing the eigenfunctions is to require

1 =

∫ ℓ

0

ϕ2nσ
2 dx . (13.66)

This normalization determines a in (13.64) as

1 = a2
∫ ℓ

0

sin2

[
ωPO

∫ x

0

σ(x′) dx′
]
σ(x) dx . (13.67)

We can evaluate the integral above using the “WKB coordinate”

ξ(x)
def
=

∫ x

0
σ(x′) dx′

∫ ℓ

0
σ(x′) dx′

=
ωPO
n

nπ

∫ x

0

σ(x′) dx′ ⇒ σdx =

(∫ ℓ

0

σ dx

)
dξ . (13.68)

In terms of ξ, the normalization condition (13.66) is

1 = a2

(∫ ℓ

0

σ dx

) ∫ 1

0

sin2 (nπξ) dξ

︸ ︷︷ ︸
=1/2

. (13.69)

Example: If σ = 1 + x2 and ℓ = 1 then (13.65) gives

ωPO
n =

3πn

4
. (13.70)

The upper panel of Figure 13.5 shows the percentage error

e
def
= 100

ω2 − (3πn/4)2

ω2
, (13.71)

with ω determined numerically using bvp4c. The error is less than 3% even for the first mode.

Example: Let’s use the WKB approximation to estimate the eigenvalues of the Sturm-Liouville eigenproblem

y′′ + λ
(
x+ x−1)︸ ︷︷ ︸

w(x)

y = 0 , with BCs y′(1) = 0 , y(L) = 0 . (13.72)

The eigenvalues are function of the parameter L. The physical optics approximation is

y = w−1/4 sin
(
λ1/2

∫ L

x

√
w(x′) dx′︸ ︷︷ ︸
phase

)
, (13.73)
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Figure 13.5: Upper panel shows the percentage error in (13.70). The lower panel compares the
fifth eiegnfunction determined by bvp4c (the blue solid curve) with the WKB eigenfunction
(the black dashed curve).
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and the leading-order derivative is

y′ = −λ1/2w+1/4 cos

(
λ1/2

∫ L

x

√
w(x′) dx′

)
. (13.74)

The phase in (13.73) has been constructed so that the boundary condition at x = L is already satisfied.
To apply the derivative boundary condition at x = 1 we have from (13.74)√

λWKB
n J(L) = π

(
n+

1

2

)
, n = 0, 1, · · · (13.75)

where

J(L)
def
=

∫ L

1

√
x+ x−1 dx . (13.76)

In Figure 13.6 we take L = 5 and compare the WKB eigenvalue with those obtained from the matlab
routine bvp4c. It is not easy to analytically evaluate J(L), so instead we calculate J(L) using quad. Figure
13.6 shows the relative percentage error,

e ≡ 100× λbvp4c − λWKB

λbvp4c

, (13.77)

as a function of n = 0, 2, · · · 5. The WKB approximation has about 18% error for λ0, but the higher
eigenvalues are accurate.

Example: Compute the next WKB correction to the n = 0 eigenvalue and compare both (13.75) and the
improved eigenvalue to the numerical solution for 1 ≤ L ≤ 10.

13.5 Airy’s equation and turning points

Airy’s equation,
y′′ − xy = 0 , (13.78)

is the simplest second-order differential equation with a turning point. There are two linearly independent
solutions Ai(x) and Bi(x), shown on the real axis in figure 13.7.

Although there is no obvious ϵ we still attack (13.78) with the WKB approximation. We find that
as x→ +∞

y ∼ Ax−1/4 exp

(
2

3
x3/2

)
+Bx−1/4 exp

(
−2

3
x3/2

)
. (13.79)

And as x→ −∞
y ∼ E|x|−1/4 cos

(
2

3
|x|3/2

)
+ F |x|−1/4 sin

(
2

3
|x|3/2

)
. (13.80)

The approximations above don’t work at the turning point x = 0. But they do tell us that if we
numerically integrate (13.78) from x = 0 then we might hope to find special values of y(0) and y′(0)
such that limx→∞ y(x) = 0. In other words, if we use the right initial conditions then we can arrange
things so that when we arrive at x = ∞, A = 0 in (13.79). These “right initial conditions” produce the
Airy function, Ai(x), shown in figure 13.7. The other solution, with A nonzero in (13.79), is the Bairy
function Bi(x). The Airy function, Ai(x), is defined as the solution that decays as x → ∞, with the
normalization ∫ ∞

−∞
Ai(x) dx = 1 . (13.81)

An integral representation

We obtain an integral representation of Ai(x) by attacking (13.78) with the Fourier transform. Denote
the Fourier transform of Ai(x) by

Ãi(k) =

∫ ∞

−∞
Ai(x)e−ikx dx . (13.82)
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Figure 13.7: The functions Ai(x) and Bi(x). The Airy function decays rapidly as x → ∞ and
rather slowly as x→ −∞.

Fourier transforming (13.78), we eventually find

Ãi(k) = eik
3/3 . (13.83)

Using the Fourier integral theorem

Ai(x) =

∫ ∞

−∞
eikx+ik3/3 dk

2π
, (13.84)

=
1

π

∫ ∞

0

cos

(
kx+

k3

3

)
dk . (13.85)

The integral converges at k = ∞ because of destructive interference or catastrophic cancellation.
From the integral representation (13.85) we find the magic initial conditions that produce rapid

decay of Ai(x) as x→ ∞:

Ai(0) =
1

π

∫ ∞

0

cos

(
k3

3

)
dk =

1

32/3Γ(2/3)
, (13.86)

Ai′(0) = − 1

π

∫ ∞

0

k sin

(
k3

3

)
dk = − 1

31/3Γ(1/3)
. (13.87)

Exercise: Fill in the details between (13.82) and (13.83). Why does the Fourier transform provide only one
solution of the second order equation (13.82)?

Applying asymptotic techniques to the integral representations in (13.85) one obtains as x→ −∞

Ai(x) ∼ 1√
π|x|1/4

sin

(
2|x|3/2

3
+
π

4

)
. (13.88)

And as x→ +∞:

Ai(x) ∼ e−
2x3/2

3

2
√
πx1/4

. (13.89)

In figure 13.8 we compare the asymptotic approximations in (13.88) and (13.89) with the Ai(x). The
approximations (13.88) and (13.89) are splendid, except close to the turning point.

The Bairy function Bi(x) is defined so that as x→ −∞:

Bi(x) ∼ 1√
π|x|1/4

cos

(
2|x|3/2

3
+
π

4

)
. (13.90)
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And as x→ +∞:

Bi(x) ∼ e+
2x3/2

3

√
πx1/4

. (13.91)

Further Bairy factoids are

Bi(0) =
√

3Ai(0) , and Bi′(0) = −
√

3Ai′(0) . (13.92)

The Wronskian is

Ai(x)Bi′(x) − Bi(x)Ai′(x) =
1

π
. (13.93)

We can use Airy and Bairy to extend the utility of the WKB approximation.

Example: An eigenproblem with a turning point

Let’s apply the WKB approximation to estimate the large eigenvalues of the Sturm-Liouville eigenprob-
lem

ϕ′′ + λ sinxϕ = 0 , ϕ(0) = ϕ
(π

2

)
= 0 . (13.94)

There is a turning point at x = 0 so the WKB approximation does not apply close to the boundary.
Hope is eternal and we begin by ignoring the turning point and constructing a physical optics

approximation:

ϕhope = (sinx)−1/4 sin

(√
λ

∫ x

0

√
sin v dv

)
. (13.95)

The construction above satisfies the boundary condition at x = 0 and then the other boundary condition
at π/2 determines our hopeful approximation to the eigenvalue. To ensure that ϕhope(π/2) = 0, the
argument of the sin must be nπ and thus the approximate eigenvalue is

λhopen =
(nπ
J

)2
, n = 1 , 2 , · · · (13.96)

In the expression above the integral of the phase function is

J
def
=

∫ π/2

0

√
sin v dv =

√
2

π
Γ2

(
3

4

)
= 1.19814 · · · (13.97)

We’ll see later that the approximation in (13.96) is not very accurate – we can’t ignore the turning point
and hope for the best. Instead we use a combination of WKB and asymptotic matching to account for
the turning point and obtain a better approximation to the eigenvalues.
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The outer solution – use WKB: we apply the WKB approximation where it is guaranteed to work.
This is in the outer region defined by λ1/3x≫ 1. The construction that satisfies the boundary condition
at x = π/2 is

ϕWKB = (sinx)−1/4 sin

(
√
λ

∫ π/2

x

√
sin tdt

)
. (13.98)

To perform the match we will need the “inner limit” of the approximation above. In the region where

λ−1/3 ≪ x≪ 1 (13.99)

the WKB approximation is valid and we can simplify the phase function in (13.98):

ϕWKB = (sinx)−1/4 sin

(√
λJ −

∫ x

0

√
sin v dv

)
, (13.100)

∼ x−1/4 sin
(√

λJ − 2
3

√
λx3/2 + O

(
x7/2

))
. (13.101)

The inner solution: close to x = 0 – specifically in the region where xλ1/3 is order unity – we can
approximate the differential equation by

ϕxx + λ
(
x+ O(x3)

)
ϕ = 0 . (13.102)

As an inner variable we use
X = λ1/3x , (13.103)

so that the leading-order inner approximation is a variant of Airy’s equation

ΦXX +XΦ = 0 . (13.104)

The solution that satisfies the boundary condition at X = 0 is

Φ = Q

[
Ai(−X)

Ai(0)
− Bi(−X)

Bi(0)

]
. (13.105)

Matching: To take the outer limit of the inner solution in (13.105) we look up the relevant asymptotic
expansions of the Airy functions. Then we write the outer limit of (13.105) as

Φ ∼ 2Q√
3πAi(0)

1

X1/4

[ √
3
2︸︷︷︸

cos π
6

sin

(
2

3
X3/2 +

π

4

)
− 1

2︸︷︷︸
sin π

6

cos

(
2

3
X3/2 +

π

4

)]
, (13.106)

=
2Q√

3πAi(0)

1

X1/4
sin

(
2

3
X3/2 +

π

12

)
, (13.107)

= − 2Q√
3πAi(0)

1

X1/4
sin

(
− π

12
− 2

3
X3/2

)
(13.108)

We now match the phase in (13.101) with that in (13.108). This requires

√
λJ − nπ = − π

12
, (13.109)

or

λWKB =
(

(n− 1
12 )

π

J

)2
, n = 1 , 2 , 3 · · · (13.110)

With n = 1 the hopeful approximation in (13.96) is about 18% larger than the correct WKB-Airy
approximation in (13.110). The numerical comparison below shows that (13.110) is good even for n = 1:

λbvp4c 5.7414 25.2094 58.4349 105.4114 166.1422 240.6232
λWKB 5.7771 25.2568 58.4341 105.4673 166.1456 240.6793

The bvp4c results fluctuate in the final decimal place as I play with the resolution and the initial guess.
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Some ODEs that can be solved using Bessel functions

We are going to encounter some second-order differential equations that can solved exactly in terms
of Bessel functions. Here are results extracted from Abramowitz & Stegun 9.1.49 to 9.1.54.

Denote any solution of Bessel’s equation

z2
d2y

dz2
+ x

dy

dz
+ (z2 − ν2)y = 0

by Cν(z). For example, Cν = Jν or Yν , or a linear combination of Jν and Yν . Then

w′′ +

(
λ2 − ν2− 1

4
z2

)
w = 0 , ⇒ w = z1/2Cν(λz)

w′′ +
(

λ2

4z − ν2−1
4z2

)
= 0 , ⇒ w = z1/2Cν(λz1/2)

w′′ + λ2zp−2w = 0 , ⇒ w = z1/2C1/p(2λzp/2/p) ,

w′′ − 2ν−1
z w′ + λ2w = 0 , ⇒ w = zνCν(2λz) ,

z2w′′ + (1 − 2p)zw′ + (λ2q2z2q + p2 − ν2q2)w = 0 , ⇒ w = zpC1/p(λzq) .

w′′ + (λ2e2z − ν2)w = 0 , ⇒ w = Cν(λez) ,

Denote any solution of the modified Bessel equation

z2
d2y

dz2
+ x

dy

dz
− (z2 + ν2)y = 0

by Zν(z). For example, Zν = Kν or Iν , or a linear combination of Kν and Iν . Then λ2 in the
differential equations above can be replaced by −λ2 if Cν is replaced by Zν . For example

w′′ − λ2zp−2w = 0 , ⇒ w = z1/2Z1/p(2λzp/2/p) .
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13.6 Higher order terms in the WKB approximation

In (13.16) we obtained a necessary condition for the validity of the PO approximation. In this section
we provide further elaboration of the conditions required for the PO approximation to work.

The solutions of the WKB hierarchy at the next two orders are

s2 = ∓
∫ x q′′

8q3/2
− 5

32

q′2

q5/2
dt , (13.111)

is3 =
1

16

q′′

q2
− 5

64

q′2

q3
. (13.112)

These formulas are equivalent to

s2 = ±1

2

∫ x

q−1/4
(
q−1/4

)′′
dt (13.113)

and

is3 = −1

4
q−1/2

(
q−1/4

)′′
. (13.114)

Let’s apply these formulas to Airy’s equation

y′′ = xy (13.115)

with x→ ∞.

Example: Consider
ϵ2y′′ − x−1y = 0 . (13.116)

How small must ϵ be in order for the physical optics approximation to within 5% when x ≥ 1?

Example: Consider
y′′ + kx−αy = 0 , y(1) = 0 , y′(1) = 1 . (13.117)

Is WKB valid as x → ∞?

With k = 1, I found

s0 = ± 2

2− α

(
x1−α

2 − 1
)
, and s1 =

α

4
lnx , and s2 =

α(α− 4)

16(α− 2)

(
x

α
2
−1 − 1

)
.

(13.118)
The calculation of s2 should be checked (and should do general k). But the tentative conclusion is that
WKB works if α < 2. (This includes α < 0 e.g. α = −1/2 is the example in figure 13.3.) Note α = 2 is a
special case with an elementary solution.

13.7 Using bvp4c

In this section I discuss the matlab solution of (13.72)

y′′ + λ
(
x+ x−1

)
︸ ︷︷ ︸

w(x)

y = 0 , with BCs y′(1) = 0 , y(L) = 0 .

To use bvp4c we let y1(x) = y(x) and write the eigenproblem as the first-order system

y′1 = y2 , (13.119)

y′2 = −λ
(
x+ x−1

)
y1 , (13.120)

y′3 =
(
x+ x−1

)
y21 . (13.121)

This Sturm-Liouville boundary value problem always has a trivial solution viz., y(x) = 0 and λ arbitrary.
We realize that this is trivial, but perhaps bvp4c isn’t that smart. So with (13.121) we force bvp4c to
look for a nontrivial solution by adding an extra equation with the boundary conditions

y3(0) = 0 , and y3(L) = 1 . (13.122)
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We also have y2(1) = 0 and y1(L) = 0, so there are four boundary conditions on a third-order problem.
This is OK because we also have the unknown parameter λ. The addition of y3(x) also ensures that
bvp4c returns a normalized solution:

∫ L

1

y2
(
x+ x−1

)
dx = 1 . (13.123)

An alternative that avoids the introduction of y3(x) is to use y1(1) = 1 as a normalization, and as an
additional boundary condition. However the normalization in (13.123) is standard.

In summary, the system for [y1, y2, y3] now only has nontrivial solutions at special values of the
eigenvalue λ.

The matlab function billzWKBeig, with neither input nor output arguments, solves the eigenprob-
lem with L = 5. The code is written as an argumentless function so that three nested functions can
be embedded. This is particularly convenient for passing the parameter L – avoid global variables. All
functions are concluded with end. In this relatively simple application of bvp4c there are only three
arguments:

1. a function odez that evaluates the right of (13.119) through (13.121);

2. a function bcz for evaluating the residual error in the boundary conditions;

3. a matlab structure solinit that provides a guess for the mesh and the solution on this mesh.

solinit is set-up with the utility function bvpinit, which calls the nested function initz. bvp4c

returns a matlab structure that I’ve imaginatively called sol. In this structure, sol.x contains the
mesh and sol.y contains the solution on that mesh. bvp4c uses the smallest number of mesh points
it can. So, if you want to make a smooth plot of the solution, as in the lower panel of Figure 13.6,
then you need the solution on a finer mesh, called xx in this example. Fortunately sol contains all the
information needed to compute the smooth solution on the fine mesh, which is done with the auxiliary
function deval.
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function billzWKBeig

L = 5; J = quad(@(x)sqrt(x+x.^(-1)),1,L);

%The first 6 eigenvalues; n = 0 is the ground state.

nEig = [0 1 2 3 4 5]; lamWKB = (nEig+0.5).^2*(pi/J)^2;

lamNum = zeros(1,length(lamWKB));

for N = 1:1:length(nEig)

lamGuess = lamWKB(N);

x = linspace(1,L,10);

solinit = bvpinit(x,@initz,lamGuess);

sol = bvp4c(@odez,@bcz,solinit);

lambda = sol.parameters;

lamNum(N) = lambda;

end

err = 100*(lamNum - lamWKB)./lamNum;

figure

subplot(2,1,1)

plot(nEig,err,’*-’)

xlabel(’Mode Number’,’interpreter’,’latex’)

ylabel(’$e$’,’interpreter’,’latex’,’fontsize’,16)

% Plot the last eigenfunction

xx = linspace(1,L); ssol = deval(sol,xx);

subplot(2,1,2)

plot(xx,ssol(1,:))

xlabel(’$x$’,’interpreter’,’latex’,’fontsize’,16)

ylabel(’$y_5(x)$’,’interpreter’,’latex’,’fontsize’,16)

%---------- Nested Functions -----------%

function dydx = odez(x,y,lambda)

%ODEZ evalates the derivatives

dydx = [ y(2); -lambda*(x+x^(-1))*y(1);

(x+x^(-1))*y(1)*y(1)];

end

%% BCs applied

function res = bcz(ya, yb, lambda)

res = [ ya(2) ; yb(1); ya(3) ; yb(3) - 1];

%Four BCs: solve three first-order

%equations and also determine lambda.

end

%% Use a simple guess for the Nth eigenmode

function yinit = initz(x)

alpha = (N + 1/2)*pi/(L-1);

yinit = [ sin(alpha*(L - x))

alpha*cos(alpha*(L - x))

(x - 1)/(L - 1) ];

end

end
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13.8 Problems

Problem 13.1. Consider the IVP

ẍ+ 256e4tx = 0 , x(0) = 0 , ẋ(0) = 1 . (13.124)

Estimate the position and magnitude of the first positive maximum of x(t). Compare the WKB approx-
imation with a numerical solution on the interval 0 < t ≤ 1.

Problem 13.2. Consider the differential equation

y′′ +
400

400 + x2︸ ︷︷ ︸
Q(x)

y = 0 . (13.125)

How can we apply the WKB approximation to this equation? Compare the physical optics approximation
to a numerical solution with the initial conditions y(0) = 1 and y′(0) = 0.

Problem 13.3. Use the exponential substitution y = exp(S/ϵ) to construct a WKB physical-optics
approximation to the differential equation

ϵ2 (py′)
′
+ qy = 0 . (13.126)

Above p(x) and q(x) are coefficient functions, independent of the small parameter ϵ.

Problem 13.4. Consider
y′′ +

a

x2
y = 0 . (13.127)

Take a > 0 and obtain the physical-optics approximation. Compare to the exact solution. Is the physical-
optics approximation asymptotically valid as x → ∞? As x → 0? Is the physical-optics approximation
ever valid?

Problem 13.5. Find an approximation to the large eigenvalues of the Sturm-Liouville problem

ϕ′′ + λe2xϕ = 0 , posed on 0 < x < 1, with BCs: ϕ(0) = 0 , ϕ′(1) = 0 . (13.128)

(Bonus for comparison with a numerical solution.)

Problem 13.6. Substitute the WKB ansatz y = eS/ϵ into the fourth- order differential equation

ϵ4
d4y

dx4
+Qy = 0 , (13.129)

and obtain a nonlinear equation for S. Using the expansion S = S0 + ϵS1 + ϵ2S2 + · · · find S0 and S1

in terms of Q. (Consider both signs of Q.)

Problem 13.7. Put Bessel’s differential equation

r2
d2y

dr2
+ r

dy

dr
+ (r2 − ν2)y = 0 (13.130)

into Schrödinger form
d2Y

dr2
+

(
1 −

ν2 − 1
4

r2

)
Y = 0 . (13.131)

Consider r = R/ϵ with ϵ→ 0 and R fixed. Obtain the physical optics approximation to (13.131) in this
limit. Compare your answer to Bessel-function asymptotics in some convenient reference.
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Figure 13.9: A figure for problem 13.9.

Problem 13.8. Consider the differential equation

y′′ + x2y = 0 , with ICs y(1) = 0 , y(1) = 1 , (13.132)

posed on the semi-infinite interval x > 1. Solve the differential equation using the PO approximation
and assess the accuracy of the large-x PO approximation by considering the third term in the WKB
expansion. Find the exact solution in terms of Bessel functions. Use matlab to compare the Bessel
function solution with the WKB approximation.

Problem 13.9. The top panel of figure 13.9 shows the solution to one of the four initial value problems:

ϵ2y′′1 − e−xy1 = 0 , y1(0) = 0 , y′1(0) = 1 ,

ϵ2y′′2 − exy2 = 0 , y2(0) = 0 , y′2(0) = 1 ,

ϵ2y′′3 + e−xy3 = 0 , y3(0) = 0 , y′3(0) = 1 ,

ϵ2y′′4 + exy4 = 0 , y4(0) = 0 , y′4(0) = 1 .

(a) Which yn(x) is shown in figure 13.9? (b) Use the WKB approximation to estimate the value of ϵ
used in figure 13.9.

Problem 13.10. Estimate the large eigenvalues of

ψ′′ + λ sin2 xψ = 0 , with BCs ψ(0) = ψ(π/2) = 0. (13.133)

Compute the first five eigenvalues with bvp5c and compare the numerical estimate with your approxi-
mation.

Problem 13.11. Consider the eigenproblem

ϕ′′ + λwϕ = 0 , ϕ(0) = 0 , ϕ′(1) + ϕ(1) = 0 . (13.134)

The weight function, w(x) above, is positive for 0 ≤ x ≤ 1. (i) Show that the eigenvalues λn are real
and positive. (ii) Show that eigenfunctions with distinct eigenvalues are orthogonal

(λn − λm)

∫ 1

0

ϕnϕmw dx = 0 . (13.135)

(iii) With w = 1, find the first five eigenvalues and plot the first five eigenfunctions. You should obtain
transcendental equation for λ, and then solve that equation with matlab. (iv) Next, with non-constant
w(x), use the WKB approximation to obtain a formula for λn. (v) Consider

w = (a+ x)2 . (13.136)

Take a = 1 and use bvp4c to calculate the first five eigenvalues and compare λWKB with λbvp4c. (vi) Is
the WKB approximation better or worse if a increases?
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Problem 13.12. Consider the Sturm-Liouville problem

(wy′)′ + λy = 0 , (13.137)

with boundary conditions
lim
x→0

wy′ = 0 , y(1) = 0 . (13.138)

Assume that w(x) increases monotonically with w(0) = 0 and w(1) = 1 e.g. w(x) = sinπx/2. Further,
suppose that if x≪ 1 then

w(x) = w1x+
w2

2
x2 +

w3

6
x3 + · · · . (13.139)

There is a regular singular point at x = 0, and thus we require only that y(0) is not infinite.
Show that the transformation y = w−1/2Y puts the equation into the Schrödinger form

Y ′′ +

[
λ

w
− w′′

2w
+
w′2

4w2

]
Y = 0 . (13.140)

Use the WKB method and matching to find an approximation for the large eigenvalues (λ = ϵ−2 ≫ 1)
in terms of the wn’s and the constant ∫ 1

0

dx√
w(x)

. (13.141)

Problem 13.13. Consider the epsilonless Schrödinger equation

y′′ + p2y = 0 , (13.142)

where p(x) > 0. (i) Try to solve the equation by substituting

Y ≡ exp

(
±i

∫ x

0

p(t) dt

)
. (13.143)

Unfortunately this doesn’t work: Y (x) is not an exact solution of (13.142) unless p is constant. Instead,
show that Y satisfies

Y ′′ +
(
p2 ∓ ip′

)
Y = 0 . (13.144)

(ii) Compare (13.144) with (13.142), and explain why Y (x) is an approximate solution of (13.142) if
∣∣∣∣

d

dx

1

p

∣∣∣∣≪ 1 . (13.145)

(iii) Prove that if y1 and y2 are two linearly independent solutions of (13.142) then the Wronskian

W ≡ y1y
′
2 − y′1y2 (13.146)

is constant. (iv) Show that the Wronskian of

Y1 ≡ exp

(
+i

∫ x

0

p(t) dt

)
and Y2 ≡ exp

(
−i

∫ x

0

p(t) dt

)
(13.147)

is equal to 2ip. This suggests that if we modify the amplitude of Y (x) like this:

Y3 ≡ 1
√
p

exp

(
+i

∫ x

0

p(t) dt

)
and Y4 ≡ 1

√
p

exp

(
−i

∫ x

0

p(t) dt

)
, (13.148)

then we might have a better approximation. (v) Show that the Wronskian of Y3 and Y4 is a constant.
(vi) Find a Schrödinger equation satisfied by Y3 and Y4 and discuss the circumstances in which this
equation is close to (13.142).

Problem 13.14. Consider
y′′ + xy = 0 , (13.149)

and suppose that
y(x) ∼ x−1/4 cos(2x3/2/3) as x→ +∞ . (13.150)

Solve this problem in terms of well known special functions. Find the asymptotic behaviour of y(x) as
x→ −∞. Check your answer with matlab (see Figure 13.14)
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Figure 13.10: Figure for the problem 13.14 showing a comparison of the exact solution (the
solid black curve) with the asymptotic expansions as x → −∞ (the dot-dash blue curve) and
(13.150) as x→ +∞ (the dashed red curve).

214



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.4

0.6

0.8

1

η

E
 

 

bvp4c

WKB

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

η

p
e
rc

e
n
ta

g
e
 e

rr
o
r

Figure 13.11: Figure for the problem with (13.151).

Problem 13.15. (i) Consider the eigenproblem

y′′ + E (1 + ηx) y = 0 , y(0) = 0 , y(π) = 0 , (13.151)

where η is a parameter and E is an eigenvalue. With η = 0 the gravest mode is

y = sinx , E = 1 . (13.152)

(i) Suppose |η| ≪ 1. Find the O(η) shift in the eigenvalue using perturbation theory. If you’re energetic,
calculate the O(η2) term for good measure (optional). (ii) In equation (10.1.31) of BO, there is a WKB
approximation to the eigenvalue E(η). Take n = 1, and expand this formula for E up to and including
terms of order η2; compare this with your answer to part (i). (iii) Use bvp4c in MATLAB to calculate
E(η), with 0 < η < 2, numerically. Compare the WKB approximation in (10.1.31) with your numerical
answer by plotting Ebvp4c(η) and EWKB(η) in the same figure.
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Problem 13.16. Consider the Sturm-Liouville eigenproblem

y′′ + λ (1 + a sinx)
2
y = 0 , y(0) = y(π) = 0 . (13.153)

(a) Using bvp4c, compute the first two eigenvalues, λ1 and λ2, as a functions of a in the range −3/4 <
a < 3. (b) Estimate λ1(a) and λ2(a) using the WKB approximation. (c) Assuming |a| ≪ 1 use
perturbation theory to compute the first two nonzero terms in the expansion of λ1(a) and λ2(a) about
a = 0. Compare these approximations with the WKB solution – do they agree? (d) Compare the
WKB approximation to those from bvp4c by plotting the various results for λn(a)/n2 on the interval
−3/4 < a < 3.

Remark: If a = −1 the differential equation has a turning point at x = π/2. This requires special
analysis – so we’re staying well away from this ticklish situation by taking a > −3/4.
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Lecture 14

Boundary layers in fourth-order
problems

14.1 A fourth-order differential equation

Let us consider a fourth-order boundary value problem which is similar to problems occurring in the
theory of elasticity:

−ϵ2uxxxx + uxx = 1 , (14.1)

with boundary conditions
u(−1) = u′(−1) = u(1) = u′(1) = 0 . (14.2)

The outer solution might be obtained with the RPS such as

u(x, ϵ) = u0(x) + ϵ?u1(x) + · · · (14.3)

At leading order

u0xx = 1 , ⇒ u0 =
x2 − 1

2
. (14.4)

We’ve applied only two of the four boundary conditions above.
Before worrying about higher order terms in (14.3), let’s turn to the boundary layer at x = −1. We

assume that the solution is an even function of x so the boundary layer at x = +1 can be constructed
by symmetry.

If we look for a dominant balance with X = (x + 1)/δ we find that δ = ϵ. Thus we consider a
boundary layer rescaling

u(x, ϵ) = U (X, ϵ) , where X
def
=

x+ 1

ϵ
. (14.5)

The boundary layer problem is then

−UXXXX + UXX = ϵ2 . (14.6)

Writing the leading-order outer solution in (14.4) in terms of X, we have

u0(x, ϵ) = −ϵX +
1

2
ϵ2X2 . (14.7)

Anticipating that we’ll ultimately need to match the term −ϵX in (14.7), we pose the boundary-layer
expansion

U(X, ϵ) = ϵU1(X) + ϵ2U2(X) + ϵ3U3(X) + · · · (14.8)

There is no term U0(X) because the outer solution is O(ϵ) in the matching region.
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Thus we have the hierarchy

−U1XXXX + U1XX = 0 , (14.9)

−U2XXXX + U2XX = 1 , (14.10)

−U3XXXX + U3XX = 0 , (14.11)

and so on.
The general solution of (14.9) is

U1 = A1 +B1X + C1e−X + D1︸︷︷︸
=0

eX . (14.12)

Above we’ve anticipated that D0 = 0 to remove the exponentially growing solution. Then applying the
boundary conditions at X = 0 we find

U1 = A1

(
1 −X − e−X

)
. (14.13)

To match (14.13) against the term −ϵX in the interior solution in (14.7) we take

A1 = 1 . (14.14)

Now we can construct a leading-order solution that is uniformly valid in the region near x = −1:

uuni(x) =
x2 − 1

2
+ ϵ
(

1 − e−(x+1)/ϵ
)
. (14.15)

The derivative is
uunix(x) = x+ e−(x+1)/ϵ , (14.16)

which is indeed zero at x = −1.

Higher order terms

The equation for U2, (14.10), has a solution

U2(X) =
X2

2
+A2

(
1 −X − e−X

)
. (14.17)

Above, we’ve satisfied both boundary conditions at X = 0. We’ve also matched the term ϵ2X2/2 in
(14.7). To summarize, our boundary layer solution is

U(X) = ϵ
(

1︸︷︷︸
orphan

−X − e−X
)

+ ϵ2
X2

2
+ ϵ2A2

(
1 −X − e−X

)
+ O(ϵ3) . (14.18)

But we have unfinished business: we have not matched the orphan above with any term in the leading-
order outer solution u0(x).

To take care of the orphan we must go to next order in the interior expansion:

u(x, ϵ) =
x2 − 1

2
+ ϵu1(x) + O

(
ϵ2
)
. (14.19)

Thus
u1xx = 0 , ⇒ u1(x) = P1︸︷︷︸

=1

+ Q1︸︷︷︸
=0

x (14.20)

We take Q1 = 0 because the solution is even, and P1 = 1 to take care of the orphan. The solution u1(x)
does not satisfy any of the four boundary conditions. To summarize, the outer solution is

u(x, ϵ) =
x2 − 1

2
+ ϵ+ O(ϵ2) . (14.21)
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The O(ϵ) term above was accidently included in the uniform solution (14.16): in the outer region the
expansion of (14.15) already agrees with all terms in (14.21).

Because u0xxxx = 0, there are now no more non-zero terms in the outer region i.e. u2 = 0, and
therefore A2 = 0 in (14.18). Moreover, all terms U3, U4 etcetera are also zero. Thus we have constructed
an infinite-order asymptotic expansion. Using symmetry we can construct a uniformly valid solution
throughout the whole domain

uuni(x) =
x2 − 1

2
+ ϵ
(

1 − e−(x+1)/ϵ − e(x−1)/ϵ
)
. (14.22)

14.2 Problems

Problem 14.1. Solve (14.1) exactly and use matlab to compare the exact solution with the asymptotic
solution in (14.22).

Problem 14.2. Find two terms in ϵ in the outer region and match to the inner solution at both
boundaries for

ϵ2u′′′′ − u′′ = eax . (14.23)

The domain is −1 ≤ x ≤ 1 with BCs

u(−1) = u′(−1) = 0 , and u(1) = u′(1) = 0 . (14.24)

Problem 14.3. Find two terms in ϵ in the outer region and match to the inner solution at both
boundaries for

ϵ2u′′′′ − u′′ = 0 . (14.25)

The domain is 0 ≤ x ≤ 1 with BCs

u(0) = 0 , u′(0) = 1 , and u(1) = u′(1) = 0 . (14.26)

Problem 14.4. Considering the eigenproblem

−ϵ2u′′′′ + u′′ = λu , (14.27)

on the domain is 0 ≤ x ≤ π with BCs

u(0) = u′(0) = 0 , and u(π) = u′(π) = 0 . (14.28)

(i) Prove that all eigenvalues are real and positive. (ii) Show that with a suitable definition of inner
product, that eigenfunctions with different eigenvalues are orthogonal. (iii) Use boundary layer theory
to find the shift in the unperturbed spectrum, λ = 1, 2, 3 · · · , induced by ϵ.
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