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Lecture 1

Making approximations

The long-term goal of this class (SI0203C/MAE294C) is to teach you how to obtain approxi-
mate solutions to applied-mathematical problems that can’t be solved “exactly”. These solu-
tions are obtained by considering limiting cases as some parameter becomes large or small. In
the most interesting cases this limit is degenerate i.e. the obvious answer is zero or infinity. As
example of infinity, say something “useful” about n! as n — co. As an example of zero,

A less ambitious goal of this introductory lecture is convince you that even problems with
“exact solutions” are often best understood by ignoring the exact solution and looking at ap-
proximations. In this lecture I'll talk in general terms about approximations and use some
historical examples as illustrations. This involves some revision (I hope it’s revision) of dimen-
sional analysis and scaling.

1.1 Distance to the horizon

Start with a typical example: suppose you're standing on the deck of a ship and looking out into
the distance. How far is the horizon? To estimate the distance to the horizon we approximate
the Earth as perfect sphere with radius R = 6 371km and suppose that the height of your eyes
above sea level is h = 10m. The unknown distance to the horizon is d. The answer to this
question has the form

d= fi(R,h), (1.1)

where f; is an unknown function with two arguments; f; has dimensions of length.

It is the third quarter of your graduate career and I’'m sure that by now you’ve seen several
discussion of dimensional analysis. So you will not be surprised by the claim that the answer
is simpler than — it must have the form

% = fa(e), (1.2)
where h
def

is a dimensionless parameter. In (1.3) f2 is an unknown dimensionless function with one
argument. It is also clear that f2(0) = 0. The function f5 is much simpler than f; and so we
have already made substantial progress.

Exercise: Dr. Kluge protests that



is perfectly acceptable on dimensional grounds. Explain why Kluge’s objection is captious.

With R and h above
ex157x107 % <« 1. (1.5)

In these lectures € will almost invariably denote a small dimensionless parameter and ~ means
approximate equality. (Sometimes € is negative, or even complex; it is |¢| that is small.)
Some Pythagorean geometry shows that

d=\2Rh+h? . (1.6)
——

fi(h,R)

This is an exact solution for d. But I prefer the approximation obtained by neglecting h?

relative to 2h R so that
d~V2Rh. (1.7)

Plugging the numbers into ([1.7)) one finds that d ~ 11.29km.
Let’s return to the step between ([1.6)) and (1.7). We can re-write (1.6)) in dimensionless

variables as p
—=\2+€. (1.8)

R —_———
fa(e)

To obtain (I.7)), neglect € relative to € so that

d
b V2e. (1.9)

We'll dwell further on the relative magnitudes of € and €2 later in this lecture. The main point
is that it is easier to see and understand the approximation in the non-dimensional formulation
(1.8) than in the equivalent dimensional formulation ([1.6)).

Discussion: Why might we prefer the approximation to the exact result (1.6)? Suppose you launch a
drone so that you see the horizon from a height of 100m. It is obvious from (1.7)) that the horizon is now
about /10 x 11.3km away. In other words, the approximation is easier to use than the exact result. The
Earth is not a perfect sphere: according to Wiki, distances from points on the surface of the Earth to
the center vary between the polar radius 6 357km and the maximum equatorial radius 6 378km — perhaps
this complication is more important than the difference between and ? And of course the ocean
is not flat: the actual horizon will be perturbed by surface gravity waves and geostrophic currents. And
because of atmospheric refraction, light does not travel in straight lines. The order-e?> term we have
neglected is probably far less important than these other complications. What is clear is that if want to
improve on our first estimate in we must consider a better model than a smooth sphere and contend
with additional physics such as atmospheric refraction. These complications introduce additional small
parameters of their own. This is a typical perturbation problem.

1.2 Regular perturbation series

Physical problems often devolve to analysis of limits (¢ — 0 in the horizon example). Simplifi-
cation occurs in the limit. Simplification can occur in three or four different ways. The example
above is an easy case in which we simply neglect €2 relative to e. Problems like this lead to a
regular perturbation series (RPS).



An improved approximation

To systematically improve on the leading-order approximation in (1.9) we write

d
= =V2e(1+4)" (1.10)
and recall the Taylor series
(14+2)" =1+nz+ sn(n—1)z°+ 0 (2°) . (1.11)

Putting n = 1/2 and = = €/2 in this result we improve (|1.9) to

d 2 3
Z=V2e(1+5-5+0() . (1.12)
Exercise: What is the radius of convergence of the series in (1.12))?

Notation O(): You should take O(z?*) in (T.11)) as meaning: “There are terms involving 2%, and also even
smaller stuff varying like z*, 2° and so on. We know these terms are there but we can’t be bothered
calculating them.” This is not the official definition of O() — we’ll get to that eventually.

As an introductory example of a regular perturbation series (RPS) let’s suppose we don’t
know the Taylor series (1.11). We proceed from scratch. Let

x = (1—1—%)1/2 so that 2t =1+ (1.13)

[\elfe}

With € = 0 we know that x = +1. We expect that if € < 1 then «x is close to either +1 or —1.
We’re inspired to look for a solution of the quasi-obvious form

T =g+ €x + xg + - (1.14)
where zg = £1. With some algebra
2% = 2k + 2xoxy + E(2xoxy + 27) + (2320 + 22122) + O(?). (1.15)
Exercise: Do you see the pattern? What is the order €* term in (I.15))?

Substituting (1.15]) into (1.13) and equating terms at the same order in € we have

e oxd=1, = Ty = %1, (1.16)
el s 2uoxy = %, = 1= ﬁ = :I:%, (1.17)
3 2 x3 1

€ 2xoro+2] =0, = Ty = —g— = Fz5- (1.18)

This essentially the method of undetermined coefficients. It works provided that we start with
the correct form for the answer in (|1.14)).

A more challenging example

You're probably not very impressed by the previous example. Let’s consider a more challenging
example: find the € < 1 solutions of
xe ¥ =e€. (1.19)

See figure for a graphical visualization of the problem. There is a small root that approaches
zero as € — (. there is also a large root that goes to infinity as € — 0. If we put e = 0 in ((1.19))
then we have the exact solution z = 0. The large root has disappeared.
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Figure 1.1: Graphical determination of the € < 1 solutions of ([1.19).

We can determine the small root by substituting an RPS,
T =exy + xy + O (63) , (1.20)

into (1.19). Let’s agree to discard terms of order 3. Then

exp(—exy — a9 + O (63)) =1- [ea:l + 294+ 0 (63) } + %[exl +0 (62) ]2 +0 (65) , (1.21)
=1—ex; +¢€ (%l’% —x2) + 0 (63) , (1.22)

and
ze " = [ex1 + €22 + O(*)] x [1 — ex1 + € (327 — 32) + O(e¥)] , (1.23)
=ex) + X(zg — 23) + O(3). (1.24)

It is irritating that we did unnecessary work back in (1.22)) — we could have discarded the
order-e? term and maintained e2-accuracy in (1.24)).

Substituting into and matching powers of € we find
x; =1, and To=xr=1. (1.25)
Hence the small root is determined by the RPS
r=c+e+0(). (1.26)

Turning to the large root in figure [I.1] we have a much more difficult problem. The depen-
dence of € of this root is not obvious. This is an example of a singular perturbation problem:
setting ¢ = 0 makes a structural change in — there is a single root = 0. But if we take
the limit € — 0 then there is always a big root. Perhaps this big root goes off to infinity like
e 1, or €’. We'll return to this question in the next lecture.

1.3 Small parameters and really small parameters: ¢ versus ¢

Figure [1.2] shows a three right-angled triangle with sides

1, € and V1+e2.



A right triangle. € = 0.2

Figure 1.2: Three right triangles: the short side has length ¢, the base has length 1 and the
hypotenuse length /1 + €2.

When € is small one has trouble visually distinguishing this right-triangle from an isosceles
triangle because the hypotenuse is very nearly equal to the long side. Using the binomial
theorem and assuming that € < 1, the length of the hypotenuse is

2

VIte=1+5+0() . (1.27)

So the difference between the long side and the hypotenuse is “order €2”. With € = 0.1 this
small difference is hard to see, and even more difficult if ¢ = 0.05. On the other hand, the small
angle in figure [1.2] is

0 = arctan(e) ~ €. (1.28)

You have no difficulty seeing the order e small angle and the small side of the triangle: to
mistake the triangle for a line segment we’d have to make € a lot less than 0.05.

As another example of the difference between € and € consider the ellipse in figure The
eccentricity of this ellipse is e = 0.2 which is close to the eccentricity of the orbit of Mercury. I
picked Mercury because it has the most eccentric orbit of the eight planets in the solar system.
As you can see in figure it is easy to mistake this ellipse for a circle. Kepler, analyzing data
collected by Tycho Brahe, made that mistake: he thought that the orbit of Mars (e = 0.09)
was a circle with the Sun off-center. Later Kepler realized that the orbit of Mars is actually
a small-eccentricity ellipse with the Sun at a focal point. This confusion arises because the
distance of the foci from the center of an ellipse is of order e, while the difference between the
major and minor axes of an ellipse is of order e2. Specifically, the curve in figure is
Y2

2
x +1762

=1, (1.29)

and the focus * is at (z,y) = (e,0), with e = 0.2.



Is this an ellipse
or a circle?

Figure 1.3: An ellipse with eccentricity e = 0.2. It looks like a circle doesn’t it? The off-center
point * is at a focus.

1.4 Example: Rectification of the ellipse

Let’s calculate the perimeter, £, of the ellipse in figure On dimensional grounds the perime-
ter is 2wa x f(e) where the eccentricity e is the only dimensionless number in this problem and
27a is the perimeter of a “comparison circle” (see the box “Anatomy of the Ellipse”).

If a curve is specified as the graph of a function via

y=f(z), (1.30)

then, using Pythagoras’s theorem, d¢ = /(dz)? + (df)2. Thus the length of the curve between

z1 and x9 is
To df 2
= 1 — | dx. 1.31
[y () @

Suppose an ellipse is specified as
ARV (1.32)

For the portion of the ellipse above the z-axis (i.e. y > 0) we have

x2 df b T
N——
f(@)

The semi-minor axis is b = v/1 — €2 a, where e is the eccentricity. Combining these results, the

perimeter integral in (1.31)) is

a 2 _ 5242
(=4 A (1.34)
0 0/2—372
1 20,2
1—esv
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Figure 1.4: The “reduction factor” f(e) in (1.38) is the solid black curve. The two-term
approximation in ([1.40]) is the blue dashed curve. The three- and four-term approximations
(the dash-dot and dotted curves) from ((1.42) lie even closer to the black curve.

In going from (|1.34) to (1.35)) we’ve used the change of variable x = av to tidy the integral so
that it becomes non-dimensional and contains only the eccentricity e. We can try to evaluate
the integral analytically by making a further substitution

v =sinf, and therefore

The integral becomes
w/2
£:4a/ V1 —e2sin?6d6. (1.37)
0

As a sanity check, notice that if e = 0 the perimeter in ([1.37) is 2ma.

Exercise: Make another sanity check by considering e = 1.

Let’s write ((1.37) as
) /2
{=2ma x / V1 —e2sin?6df, (1.38)
T Jo

f(e)

where f(e) is a dimensionless “reduction factor” relative to a circle with radius a.

Small eccentricity

Students of applied mathematics used to learn to recognize elliptic integrals and many other
special functions. These days students might use MATHEMATICA or something similar to discover

10



that the integral in (1.37) and (1.38)) is a “complete elliptic integral of the second kind” (see
the box). Using elliptic integrals, the reduction factor can be written as an “exact analytic
solution”. It is difficult to deny that this exact answer is useful because both MATHEMATICA
and MATLAB have elliptic integrals hardwired. If we are interested, however, in quickly and
accurately estimating the perimeter of the near-circle in figure then we can approximately

evaluate ([1.37)) like thisﬂ

w/2
l =~ 4a/ 1— 1e*sin®0do, (1.39)
0
=2ra (1— 1e?) . (1.40)
)
~f(e

Figure compares the approximation f ~ 1 — e?/4 to the elliptic-function answer. With
e = 0.2 the simple approximation is probably good enough for most purposes. Of course, to use
an approximation with some confidence we must have some estimate of the size of the error.
Applied mathematics is concerned with making precise approximations in which the error
is both understood and controllable. We should also strive to make the error smaller by some
systematic method. Here we can do this by using more terms in the binomial expansion of

V1 —e2sin?f. Let’s use four terms and indicate the form of the first neglected term:
V1—e2sin?0 =1— Le?sin? 0 — Le*sin 0 — Lefsin 0 + O () . (1.41)
Integrating over #, our new improved approximation to the reduction factor f(e) is
f=1—1e*— 6%64 - %66 + 0 (e®) . (1.42)
In figure there is a systematic improvement as we use more terms in the series. (I used
MATHEMATICA to compute the 6 integrals above.)

A very eccentric ellipse

How about the other limit e — 17 The ellipse degnerates into a line segment. It is obvious,
both analytically and geometrically, that the perimeter is ¢ = 4a. Suppose e is slightly less than
one. How do we find the difference between ¢ and 4a? This is a typical “asymptotic question”:
we have a simple result at the extreme parameter value e = 1. (e = 1 is extreme because the
ellipse degenerates to a line segment.) We want to understand what happens close to, but not
exactly at, this interesting value e = 1.

The equations look pretty if we define a small parameter ¢ by

e=+v1—e2. (1.43)

Then the perimeter of the very eccentric ellipse is

/2
le) = 4a/ Vcos2 0 + 2sin20df. (1.44)
0

'For the integrals

]

/2 /2 /2
= / cos” 0 + sin® 6d6, and by quarter-wavelength symmetry / cos® 6df = / sin® 6df = g .
0 0 0

11



We use the trusty approximation discussed previously:

. 2 9
Vcos? 0 + e2sin? 0 = cos 0 (1 + €* tan® 9)1/2 ~cosf+ o (1.45)
2 cos 6
Substituting this approximation into ([1.44]) the result is a disaster
/2 in26
l(e) ~ 4a/0 cos 6 + €2 2Slzlos9 dé, (1.46)
277 9
~da |1+ o0] . (1.47)
The second integrand in ([1.46)), namely
sin? @
1.48
2 cosf’ (148)

has a non-integrable singularity at = 7/2. We'll return to this example later in these lectures.

Discussion: Why has this reasonable approach to a simple geometric problem failed?

1.5 Example: Period of a pendulum

Following Galileo, suppose you observe a mass m swinging at the end of massless rigid rod,
length ¢, in a gravitational field with acceleration g. At the top of the swing the rod makes an
angle 0, (subscript m for “maximum”) with the vertical. What can one say about the period,
p, of this pendulum? From ¢ and g there is a time scale \/6/79 The angle 6,,, is non-dimensional.
Hence by dimensional analysis

g
where f is a dimensionless function. It is a profoundﬂ fact that the mass m is “irrelevant” to
p. The story is that Galileo realized that if 6,, < 1 (small swings) then the unknown function
above approaches a non-zero constant:

lim f(0m)=co. (1.50)
O0m—0
Consideration of symmetry indicate that f should be an even function of its argument 6, e.g.
the minimum (meaning most negative) angle to the vertical is —6,,. Thus we expect that f has
the expansion
f=co+ ca0? +cabh, + - (1.51)

In the discussion above have neglected damping e.g. air resistance as the bob swishes back and
forth. As a problem you can determine the additional non-dimensional parameters required by
this extra physics.

Discussion: Can we assume that |0,,| does not appear in (L.51))?

2Inertial and gravitational masses are the same. If the two masses were not equal there would be another
non-dimensional parameter mr/mg.

12



To say more about f, we start with the equation of motion
ml + mgsinf = 0. (1.52)

The first term is mass X acceleration in the #-direction and the second term is the component
of gravitational force along the 6-direction. We cancel m, divide by ¢, and write the pendulum
equation as

6 +w?sinh =0, (1.53)

w \/i (1.54)

I assume that you know and love the linearized version of , and that you also know that
the small-angle approximation to the period is p = 27/w. Our goal is to improve on the small-
angle formula by finding the “first correction”. In we have used symmetry to anticipate
that the first correction is proportional to 62,. It is also plausible that ¢ > 0 i.e. bigger swings
take longer.

Multiply by 6 and integrate to obtain energy conservation in the form

where

1602 + w? cos 0, — w? cosh = 0. (1.55)

We’ve determined the constant of integration in (1.55]) so that 6 = 0 when 0 = +6,,. Separate

variables in ((1.55))
wdt = + dé : (1.56)
V/2(cos 0 — cos 0,,)

We draw trajectories in the phase plane (figure [1.5)) and argue that the period is given by:

Om
p= 2\/§/ 49 (1.57)

VcosO — cosb,,

With ingenuity the integral above can be converted into a complete elliptic integral of the first
kind:

12 Om
p= K( n) . (1.58)
w T 2
Bah humbug.
Back up the truck to (1.57)) and proceed with a bruta]E| small-angle expansion of the cosines
cos — cos O, = 1(02, — 0%) — (07, — 0") + O (65,) , (1.59)
~ 5 (0 — %) [1— 5(07, +6%)] . (1.60)

Therefore

L

~ - B0+ 0] 1.61
Vcos0 — cos O, \/9%1_92[ 75 (0 +07)] (1.61)

V2 e )] (1.62)

3See the problem for elegance.

13



Figure 1.5: Phase plane of the pendulum (scale time so that w +— 1). You should draw arrows
on the curves above to show the direction of evolution. The expression for the period p in
is obtained by noting that it takes p/2 to go from A to B in the upper half plane. Because
we’re in the upper half plane take the + in .

Hence
A O+ (67, + 67)

P=o NP

With the change of variables © = 6/6,,

de. (1.63)

1 1 % 1 2
~ 4/ de (1.64)
0

Tw V1— 22
The integrals above can be evaluated with a further change of variables to x = sinwv. Instead,

using MATHEMATICA, I get
27 62
~—(1+-2). 1.65
P — < + 16) (1.65)

The familiar small-angle approximation to p is an underestimate of the true period. At 6,, = 7 /6
(a pretty big swing) the correction, 62,/16, is 1.7%. That seems like a small correction. But
see the grandfather clock problem at the end of this lecture.

1.6 Some references

Two books that have shaped my view of perturbation methods and asymptotics are:

BO C.M. Bender & S.A. Orszag (1978), Advanced Mathematical Methods for Scientists and
Engineers;

14



H E.J. Hinch (1991), Perturbation Methods.

For a more recent textbook see:

Ho Mark H. Holmes (2013), Introduction to Perturbation Methods (second edition).
More advanced, books are:

M P.D. Miller (2006), Applied Asymptotic Analysis;

N J.C. Neu (2015), Singular Perturbation in the Physical Sciences;

KC J. Kevorkian & J.D. Cole (1996) Multiple Scale and Singular Perturbation Methods.

While I don’t recommend it as a systematic reference, I enjoyed reading Mathematical Under-
standing of Nature by V.I. Arnold (some of the material in this lecture is based on Arnold).

15



Basic anatomy of the ellipse

An ellipse is a plane curve enclosing two focal points such that the sum of the distances
to the two foci is constant for every point on the ellipse. In figure (1.6)) the foci are on the
z-axis at © = +ea and ellipse is defined by

V@ —ea)? 2+ /(@ + eal? + ¢ = 2. (1)

def def

=Tr4 =r_

If e = 0 then the ellipse becomes a circle with radius a. With some algebra you can show
that (1) is equivalent to

Tilo, 2)

where
b=+v1-—e2a.

The lengths a and b are the semi-major and semi-minor axes respectively. If e < 1 then
the difference between a and b is order e2.

—b

Figure 1.6: An ellipse with e = 0.75.

Lines from a focus point to a point P on the ellipse make equal angles with the tangent at
P. Hence if the ellipse is a mirror and there is a light source at one of the foci then light
rays reflecting specularly from the mirror all pass through the other focal point. Focus is
latin for fireplace.
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Complete Elliptic Integrals

In traditional notation the complete elliptic integral of the first kind is

CL -
0 V1-kZsin?9

12 1232 123252
:”[1+k2+ K+ k:4+--l.

2 22 2242 224262

The complete elliptic integral of the second kind is
def [
E(k) = / V1 —k2sin?6d6,
0

2 292
_7T[1—212k2 LS 13 5k4+---].

2 C 22427 224262
The series above converge if k2 < 1.

Other series include

K (k) el ! (mlj - 1> K?+0 (K*Ink')

1/ 4 1\, .
E(k):1+2(1nk/—2) K?+ 0O (K*Ink') ,

where k¥ & V1 — k2

The two integrals are related by

dff FEF-K dK 1/ FE
&k K o k:k<W_K)'

Be aware there are slightly different notations out there e.g. MATLAB does not use the
notation above. Read the documentation.

There are many, many more identities involving elliptic integrals. Online resources include
Wikipedia, MathWorld and the Digital Library of Mathematical Functions (google DLMF).

17




1.7 Problems

Problem 1.1. Suppose you're on a ship and your eyes are h = 10m above sea level. You see

an island on the horizon. Following the lecture suppose that the Earth is a perfect sphere with

radius R = 6371km and introduce ¢ < h /R. Denote the great-circle distance by ¢ and recall

that d is the line-of-sight distance from the lecture. With simplification using € < 1, find a
concise expression for ¢/d — 1.

Problem 1.2. (i) A triangle in the plane can be specified uniquely by giving the length of
the longest side — call it ¢ — and the acute angles # and ¢ that the two shorter sides make
with the longest side. Use dimensional analysis to say what you can about the area of the
triangle in terms of ¢, # and ¢. (Pretend you don’t know trigonometry: leave an undetermined
dimensionless function in the answer.) (i7) Consider the special case of a right-angled triangle
with sides a, b and c¢. Divide the triangle into two sub-triangles by dropping a perpendicular
onto the long side with length c¢. The total area is the sum of the areas of two right-angled
subtriangles. Use this observation to prove Pythagoras’s theorem. (%ii) Spherical triangles
don’t satisfy Pythagoras’s theorem. How far can you proceed with the spherical version this
problem?

Problem 1.3. You can use the high school formula to exactly solve the quadratic equation
2 —mr+2=0. (1.66)

Notice that if we replace 7 by the approximation 3 then you can solve the equation by inspection.
Define € by m = 3 + ¢ and use an RPS to solve (1.66]) neglecting terms of order €* and smaller.
Assess the accuracy of this solution against a numerical calculation of the root.

Problem 1.4. Because 10 is close to 9 we suspect that /10 is close to v/9 = 3. (i) Define z(¢)
by

z(e)>=9+e. (1.67)
Assume that z(e) has an RPS as in (1.14]). Calculate the first four terms, z¢ through xs. (i)
Take e = 1 and compare your estimate of /10 with a six decimal place computation. (i) Solve

(1.67) with the binomial expansion and verify that the resulting series is the same as the RPS
from part (i) What is the radius of convergence of the series?

Problem 1.5. Assume the Earth is a perfect sphere with radius R = 6 371km and it wrapped
around the equator by a rope with length 2w R+ ¢ , where £ = 1 meter. (i) As an easy warm-up
calculate h if the rope is pulled to a uniform height A above the surface of the Earth. (i)
Suppose the rope is grabbed at a point and that point is hoisted vertically to a height H till
the rope is taut — see figure Estimate H by: (i) guessing an order of magnitude and (i)
perturbation theory based on ¢ < R.

Problem 1.6. Show that the expansion of f(xg + ex1 + €2x9 +---) is
flzo+ exy + €z + ) = f(xo) + exr f'(wo) + € (w2 f'(w0) + 321" (20)) + O(¢®) . (1.68)

If your OCD is strong, calculate some more terms and try to spot the pattern.
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Figure 1.7: The rope is red with length 27 R + ¢. Find H.

Problem 1.7. Consider an ellipse with semi-axes a and b (a > b) and perimeter £. If the ellipse
is a near-circle, a = b, then the perimeter ¢ might be estimated by

¢y =m(a+b),  orperhaps by  fy=2mVab. (1.69)

Both formulas above give the right answer if @ = b. (a) Which ¢, is best if a > b7 (b) Which
¢y, is best if a = b? (c) Determine « so that

I3 = ol + (1 — 04)62 (1.70)

is the best possible approximation to £ in the case a = b.

Problem 1.8. Figure[I.§ shows the path followed by a tipsy sailor from a bar at the origin of the
(x,y)-plane to home at (z,y) = (¢,0). The path is a sinusoid leaving the bar at an angle o and
in figure a = 7/4. How much longer is the sinusoidal path than the straight line? Answer
this question by: (i) eyeballing the curve in figure|1.8/and guessing; (ii) constructing the integral
that gives the arclength and evaluating it numerically; (74i) devising an approximation to the
arc-length integral based on a < 1, and then pressing your luck by using this approximation
with o = 7/4.

Problem 1.9. Because of surface waves a snapshot of the sea-surface is
z =a[pcos(kx + a) + qcos(ly + B)] , (1.71)

where a (meters) is the amplitude of the waves field. The waves are small amplitude so that
the sea-surface slope is small i.e. {ka,la} < 1. How much extra surface area (relative to the
flat undisturbed surface) do these waves produce?
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x> ‘

How much longer
is the sinusoidal path
than the straight line?

Figure 1.8: A tipsy walk.

Problem 1.10. Recall that the period of a pendulum is

Om
be 2\/5/ dg . (1.72)
w Jo cosO — cosb,,

Simplify the integral above by substituting sin(6/2) = sin(6,,/2) sint. Show that

14 . o0 .40
p:27r\/;[1—|—ism2;n+69451n4;n—}—--- . (1.73)

Problem 1.11. A grandfather clock swings at a maximum angle 8,, = 5° to the vertical. How
many seconds does the clock lose or gain each day if it is adjusted to keep perfect time when
the swing is 6, = 2°? (Use results from the lecture.)

Problem 1.12. Suppose that the pendulum in section [I.5is damped by air resistance. Assume
that the turbulent drag law
Drag = CppAu? (1.74)

applies. In p is the density of air, A is the cross-section area of the mass, and u is the
velocity of the mass through the air. (i) Check that the drag above has the dimensions of force
= mass X acceleration. (i) How is modified to account for this additional physics? (iii)
Write the enhanced version of accounting for drag.
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Lecture 2

Dominant balance and iteration

After this lecture you’ll be able to solve, or greatly simplify, almost any equation you encounter.

2.1 Consistent dominant balances

Rosencrantz: Consistency is all T ask!

Guildenstern: Give us this day our daily mask.

A typical equation is
A(x) + B(z) + C(x) + D(x) + E(z) + F(z) = 0. (2.1)

where A through F' are functions of the unknown z. We try to solve the equation above by
finding a balance between two of the terms — a two-term dominant balance — and dropping
the other terms in the equation. A key step in dominant balance is to verify consistency of
the approximation. For example, suppose we retain terms A and D and solve the simplified
equation

A(z) + D(x) = 0. (2.2)

We now possess an approximation to x — call it y. Consistency requires that

{A(y), D(y)} > {B(y),C(y), E(y), F(y)} - (2.3)

We do not require that the neglected terms be much less than one — consistency only requires
that the neglected terms are much less than the retained terms.

Example: A quadratic equation illustrating singular perturbation

Consider the quadratic equation
ex? +r—1=0, (2.4)

with € < 1. With small but non-zero € there is a consistent two-term dominant balance between
the second and third terms in ([2.4). This means that if  ~ 1 then the neglected term ex? is
much less than the retained terms {z,1}. Below we can grind out the answer with an RPS.
Before descending into those details we notice that quadratic equations have two roots: by
focussing on the root near x = 1 we are missing the second root.
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RPS around z = 1: How does the root near z = 1 changes with ¢? We use an RPS:

=1 2 2.5
T texry + €z + (2.5)

z0
Substituting into the quadratic equation (2.4)) we have
€ (1+ 2ex1 + 2z + 62.’17%) +exy + E€xa 4 a3+ O (64) =0. (2.6)

Now match up powers of e:

1

€ 14+x, =0, = 1, =-—1,
e 21 +x2 =0, = T2 =2,
e 23@2—&—3@?—4—3@3 =0, = T3 = —5. (2.9)
To summarize
r=1-¢€+26 —56 + 0 () . (2.10)

The procedure is never going to help us find the missing root of ([2.4]).

Two-term dominant balance

The quadratic equation ([2.4)) presents a singular perturbation problem because a solution dis-
appears if we set ¢ = 0. We find the missing root by looking for another two-term dominant
balance in (2.4):
ex? +x —1=0. (2.11)
—
dominant balance?

The balance above implies that @ ~ —e~!. The balance is consistent because the neglected

term in (2.11)) (the —1) is smaller than the two retained terms as ¢ — 0.
Once we know that x is varying as e ~! we can rescale by introducing

X er. (2.12)
The variable X remains finite as e — 0, and substituting (2.12)) into (2.4) we find that X

satisfies the rescaled equation
X?+X-e=0. (2.13)

Now we can find the big root via an RPS
X = Xo+ X1+ EXo + O(e%). (2.14)

Exercise: Verify that reproduces the expansion of z(e) that begins with —etin Find the second
term X;.

The introduction of X in is “only” a change in notation, and (2.13)) is completely
equivalent to . But notation matters: in terms of z the problem is singular while in terms
of X the problem is regular. The importance of rescaling, and notation, is a main message from
this simple example.

The quadratic equation in has three terms and so there are three different two-term
balances. In the discussion above we balanced the second and third terms (to get x ~ 1). We
also balanced the first and second terms to get  ~ —1/e. We have not tried balancing the first
and third terms. Let’s do it and see what happens.If we drop the term z in we have the
two-term balance ez?—1 ~ 0. This implies that z oc e~ /2 and suggests the rescaling X = ¢'/2z.
But this is wrong — we dropped z relative ez? and 1. But if z oc € /2 then z is bigger than
both ez? and 1. So this third dominant balance is inconsistent. This is a relief — we're solving
a quadratic equation and there can’t be a third solution.
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More than you need to know: Using the formula for the solution of a quadratic equation, we find
—1+v1+4
p= =Vt (2.15)
2e
But it is not entirely straightforward to get both leading-order solutions from ([2.15]).
Taking the plus sign in (2.15]), we have
v —14++1+44e ~1
- 2e -
Because of near cancellation in the numerator a slight calculation is required to get the result above. We
obtained x ~ 1 with a lot less fuss by just ditching the term ex® in (2.4). We obtain the missing root by

taking the minus sign in (2.15)):

as e — 0. (2.16)

—-1—-+v1+4+4 1
xziﬂw—f, as e = 0. (2.17)
2e €
Using MATHEMATICA I expanded the two answers (2.15) as
1—e4+22% -5+
T (2.18)
—€  —14+e—2" 45+

2.2 Some quartic examples of two-term dominant balance

A quartic equation

Now consider
et +2-1=0 (2.19)

Quartic polynomials can be solved exactly, but the formula is complicated. Instead we use the
method of dominant balance to find approximations to all four roots.

There is a consistent two-term balance between the second and third terms i.e. z =~ 1, and
ez is consistently less than the retained terms as € — 0. We can obtain more terms with the
RPS 2z =1+ ex; +--- Instead let’s find the other three roots.

Try the two-term dominant balance
?
ex? =10, = z~ e V4 (2.20)

But the neglected term is 2 ~ €'/4 and ¢~ /4 is much larger than the retained terms {ex? 1},
This dominant balance is inconsistent.
The final two-term dominant balance is

?
ext +o =0, = z~ e 3 (2.21)
Because e 1/3 > 1, the neglected term, 1, is much less than the retained terms. This dominant
balance is consistent and the leading-order solutions of the quartic are

=1, and oz =e V31,3, (2.22)

To systematically investigate the e ~1/3 solutions we rescale with 2 = ¢~ 1/3X. The re-scaled
equation is
X+ X -2 =0. (2.23)
Now we can develop an RPS using powers of €/3:
X =Xo+eBX +8Xy+ - (2.24)

where X = {—1,e7/3},
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Another quartic equation

Now consider
Ext + 723 +exr +11=0. (2.25)

The low hanging fruit is picked by setting ¢ = 0. This results in the cubic equation
723 +11~0. (2.26)

This is a consistent two-term dominant balance because the neglected terms are small relative
to retained terms. We find three solutions,

= (11/7)/3{—1,etim/3) (2.27)

Further terms are obtained by an RPS x = xg 4+ exq1 + - -.
The fourth solution is obtained by the dominant balance

?
'+ =0, =  ar-. (2.28)
€

Neglected term ez is then of order e ! > 1. Nonetheless this is a consistent dominant balance
because the retained terms are of order ¢~2 which is much larger than ¢! as ¢ — 0. To

determine the development of the large root we rescale with X 4 24 to obtain
Xt 7X3 41X +118 =0. (2.29)

This example emphasizes that neglecting big terms is OK provided that the neglected terms
are dwarfed by even bigger retained terms. We are always thinking of the limit ¢ — 0 and the
disparity between neglected and retained terms becomes ever larger as ¢ — 0.

Yet another quartic equation

We discuss solution of the quartic polynomial

4 23 2 _ _
ex” +¢e“x’ + ex x +_7 0 (2.30)
T1 T2 T3 T4 T5

as a final example of dominant balance in quartic polynomials.

In there are five terms labelled 77 through T5. We're going to solve this problem by
finding two-term dominant balances. There are ten pairs of terms. So a brutal approach is to
examine all ten pairs and find the balances which are consistent approximations as ¢ — 0.

o
Balance T, and T5: so that that x ~ 7. Neglected terms Tp, T and T3 are:

Ty = ex* = O(e), Ty = 223 = O(e?), T3 = ex® = O(e).
All terms above are smaller than the retained terms (Ty,7T5) o € as € — 0. This is a
consistent dominant balance and we can plug in the RPS x = 7+ ex; + -+ into (12.30))
with every expectation of success. You should do this.
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o
Balance T3 and Tj: this means that ex? — 2 =~ 0, implying that z = 0 or x = O(e"!). Only
x = O(e~!) might be helpful. In this case the neglected terms are

T =ex? = 0(e7?), Ty =3 =0(e ), Ts =7=0().
This dominant balance is inconsistent because the neglected term 77 = O(e~3) is much

larger than the retained terms (T3,7Ty) = O(¢~1) as € — 0. No joy here.

)
Balance T3 and T5: this means that ez? + 7 ~ 0, implying that z = O(e '/2). Neglected
terms are

Ti=ea'=0("), T=&=0("?), Ti=z=0("?.

1 0

As € — 0, neglected term 77 oc €+ is much greater than retained terms (73,75) o €°:
this dominant balance is inconsistent. Nothing to see here — move on.

?
Balance T; and T5: this means that ez* 4+ 7 ~ 0, implying that z = O(e~'/%). The neglected
terms are

Ty =2 =0, Ty=e?=0("?), Ty=z=0("Y.

The neglected term Ty = O(e~'/4) is much bigger than the retained terms (T},T5) =
O(€%): this is another inconsistent dominant balance.

’
Balance T; and Tj: this means that ez* — z ~ 0, implying that = O(e~'/3). The neglected
terms are

Ty=2>=0("), Ty=e?=0("?), Ty=7=0(").

Hallelujah — this works. The three neglected terms are all smaller than the retained terms
(T1,Ty) < e 1/3 as € — 0.

Exercise: It is sporting to examine the other five two-term balances and show that all of these are inconsistent.

The consistent dominant balance between 17 and Ty says that
ext —x~0 (2.31)

is a good € — 0 leading-order approximation to . Equation has three useful solutions
— the three cube roots of one. The fourth root, z = 0 can be thought of as reproducing the
other consistent dominant balance, z ~ 7 < ¢ /3. We now possess all four ¢ — 0 roots of
(12.30]).

To nail down the three singular roots, introduce

5% el/3 , and X 5z (2.32)

The rescaled polynomial is
X4 X34+ 02X2 - X +75=0. (2.33)
The good dominant balance is immediately revealed by setting § = 0 and the RPS is

X = Xo+6X1 + 0(6%). (2.34)
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Noting that X* = X + 45X X, + O(6%) we see that the first two orders are

69 Xo(Xg—-1)=0, (2.35)
5t (4X3 - 1)X1+7=0. (2.36)
The three leading order solutions are Xy = 1, and Xy = e*2™/3_ In all three cases X; = —3/7.

Summary: In our original notation the leading-order behaviour of the four roots of (2.30))
is

@~ {7,6*1/3 , e*l/3eﬂ’“/3} . ase— 0. (2.37)

Exercise: Find leading-order expressions for all six roots of
Exf —ext —2* +8=0, as € — 0. (2.38)

The answer is in section 7.2 of BO.

Exercise: Construct a quartic polynomial in x, with coefficients ¢*™¢ POVer

nant balance as ¢ — 0.

, which presents a three-term domi-

2.3 Iteration, also known as recursion

Now let’s consider the method of iteration. Iteration requires a bit of initial ingenuity. But
in cases where the form of the expansion is not obvious, iteration is essential. (One of the
strengths of H is that it emphasizes the utility of iteration.)

Introductory example of iteration

Consider the quadratic equation

(x—1)(x —2) =ex. (2.39)
If we interested in the effect of € on the root £ = 1 then we rearrange this further as
x
=1 . .
x +e po— (2.40)
A
i)

We iterate by first dropping the e-term on the right — this provides the initial guess z(©) = 1.
At the next iteration we keep the e-term with f evaluated at z(©):

e =1+ ef (x(o)) =1—e. (2.41)
We continue to improve the approximation with more and more iterates:
G (;z;(">) . (2.42)
A few more times through the loop with MATHEMATICA produces:
1+¢é2
(2 = 2.43
v 14+e¢’ (2.43)
l+e—e2—¢
3) = - 2.44
o 142 —¢2 (2:44)
5.2 3, 4
$(4):1+2€ 2¢ +2¢’ + ¢ ’ (2.45)
1+3¢—€2+e€d
x(5):1+36—262+263—364—65 (2.46)
1+4e— €t ’ '
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T T
e=(x—1)(z—2)/z
— — z=1-€e+2+0(&)
16+ @ =1+e)/(1+e€) —
— — z=1-¢€+2¢*—66 +O(e")
"""" ¥ =(1+e—e—€)/(1+2—¢)
1.5+
1.4
1.3 F
8 AN
1.2
11F
1L
0.9
0.8 I I I I I I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Figure 2.1: Comparison of the iterates z(2) and 2(® with power series having the same formal
accuracy. The iterates are a better approximation to the answer than truncated power series.

The exact answer is

r=[3+e—1+06e+€%/2, (2.47)

=1 —e+26% — 66 +22¢* —906° + O(9) . (2.48)

The expansion of the successive iterates is

s =1 (2.49)
2@ =1— 4222 + 26" — 28 + O(%), (2.50)
23 =1 - €4+ 2€% — 6634+ 146* — 346° + O(€%), (2.51)
2@ =1 — 4262 — 663+ 22¢4 746" + O(€9), (2.52)
20 =1 = e+ 2€2 — 663 + 22¢* — 9065 + O(e%) . (2.53)

Wrong terms are red. Every pass through the iteration loop provides another correct term in
the RPS.

But why do we insist on expanding the iterates in a power series in ¢? Perhaps the un-
expanded iterates in through are superior to the RPS? In fact they are: see the
comparison in figure Iteration is producing a Padé approzimation to the solution. Padé ap-
proximations have superior convergence properties because they are not limited by singularities
in the complex e—planeﬂ This example shows that an RPS is not always the best approximation.
Also it may be faster to bash out the first one or two iterates than an equivalent RPS.

1See BO for a discussion of Padé approximation.
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Exercise: Use iteration to locate the root near x = 2.

Example: Considering the equation

4—z =€, (2.54)

with 0 < € < 1, we see that there is a positive real solution close to x = 2. To improve on x ~ 2 we

rewrite the equation as
elnz

=2 . 2.55
x Gy (2.55)
If we drop the e-term we get a first approximation zM = 2, and the next iterate is
2 g 02 (2.56)
and again
In (2 — <2
2@ _o_ il i ) (2.57)
4 _ €n2
4
We can develop an RPS by simplifying z® as
In2 In2
e® =2 (1422 [ln?—i—ln(l—en—)]—f—O(eg), (2.58)
4 16 8
—_—— —
76%4»0(62)
In2 In2 2 3
=2—-— — (2—1n2 . 2.
4E+64( n2)e + O(€”) (2.59)
Another example of iteration
As another example of iteration, consider the equation
—a?
T =c . (2.60)

. . . _p2
There is a root near x = 0. But if x is close to zero, then e™*

These considerations motivate the iterative scheme

~ 1, and in this case = =~ €.

20 = ¢, and 2"t = eexp (—:v(")Q) . (2.61)
Going twice through the loop
2 = e and £? = 6676267262 . (2.62)
The expansion of the first iterate is (1) = ¢ — €3 + O(€®). Tteration is a more expeditious route
to this low-order approximation than RPS machinery.
Convergence of iteration

Usually we can’t prove that an RPS converges. The only way of proving convergence is to have
a simple expression for the form of the n’th term. In realistic problems this is not available.
One just has to be satisfied with consistency and hope for the best.

But with iteration there is a simple result. Suppose that z = x, is the solution of

x = f(x). (2.63)

Start with a guess © = xg and proceed to iterate with z,41 = f(z,). If an iterate z,, is close
to the solution z, then we have

T =Ty + N, with 7, < 1. (2.64)
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The next iterate is:

Ts + M1 = (e + 1) (2.65)
= s+ nnf/(x*) + 0(77721) ) (2.66)

and therefore
Tn+1 = f'(l‘*)nn . (2-67)

The sequence 7, will decrease exponentially if
If/ (z)] < 1. (2.68)

If the condition above is satisfied, and the first guess is good enough, then the iteration converges
onto x,. This is a loose version of the contraction mapping theorem

2.4 Double roots
Consider
a2 =2z +1—ef(x) =0, (2.69)
(z—1)2

2

where f(x) is some function of . Section 1.3 of H discusses the case f(z) = x* — with a surfeit

of testosterone we attack the general case.
We try the RPS:
T =20+ €r + xg+ - (2.70)

We must expand f(x) with a Taylor series:
fzo+exy+ o+ ) = flxo) + exr f(w0) + € [waf (x0) + 221 f"(x0)] + O () . (2.71)

This is not as bad as it looks — we’ll only need the first term, f(xo), though that may not be
obvious at the outset.

The leading term in (2.69)) is
22 —2rg+1=0, = zo =1, (twice). (2.72)
There is a double root. At next order there is a problem:

el 2x1 — 221 —f(1) =0. (2.73)
=0

Unless f(1) happens to vanish, we'’re stuck. The problem is that we assumed that the solution is
delivered by the RPS in ([2.70]), and it turns out that this assumption is wrong. The perturbation
method kindly tells us this by producing the contradiction in (2.73)).

Iteration to the rescue

To find the correct form of the expansion we use iteration: rewrite (2.69)) as

v =1+ /ef(z). (2.74)
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Starting with 2(©) = 1, iterate with
) =14 /ef (an-D). (2.75)

aM =14/ef (1). (2.76)
There is a /e which was not anticipated by the RPS back in (2.70)).

At the first iteration

Exercise: Go through another iteration cycle to find .

Iteration has shown us the way forward: we proceed assuming that the correct RPS is
probably
z=x0+ €% + exy + €25+ - - (2.77)

At leading order we find zp = 1, and at next order
/2 2x1 —2x1 = 0. (2.78)

This is surprising, but it is not a contradiction: x; is not determined at this order. We have to
endure some suspense — we go to next order and find

el 2z — V)ag +22 — flxg) =0, = x1 =+ f(1). (2.79)
—_————

=0

The RPS has now managed to reproduce the first iterate (). Going to order ¢/2, we find that
3 is undetermined and

zo =1 f(1). (2.80)

The solution we constructed is
2 =1+ /ef(1) + %f’(l) +0 (63/2) . (2.81)

This example teaches us that a perturbation “splits” double roots. The splitting is rather
large: adding the order e perturbation in (2.69) moves the roots apart by order /e > e.
This sensitivity to small perturbations is obvious geometrically — draw a parabola P touching
the z-axis at some point, and move P downwards by small distance. The small movement
produces two roots separated by a distance that is clearly much greater than the small vertical
displacement of P. If P moves upwards (corresponding to f(1) < 0 in the example above) then
the roots split off along the imaginary axis.

Non-uniformity

Consider the cubic equation

(x —a)(z —b)(z—c) =cf(x). (2.82)

Suppose that a, b, ¢ and f(x) are known and that e < 1. If € = 0 then we can easily solve the

equation: x = a, x = b and = = c are all solutions. How are these solutions perturbed if € is
non-zero but small?
We use an RPS

T = o+ exy + O(2). (2.83)
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Consider the case with zg = a. At order €' we find
z1(a—b)(a—c) = f(a), (2.84)

with solution
(2.85)

Thus the two-term RPS is
r=a+—~——+0(). (2.86)

Exercise: Obtain (2.86) in one line with iteration.

This is great unless the denominator (a — b)(a — ¢) in (2.86) is very small e.g. if a — b is
same size as € then the ostensible small correction,

ef(a)

(@a—b)(a—c)’ (257

is not small and the RPS likely fails. This happens if either b or ¢ is close to a. Of course if
b= a or if ¢ = a then it is a complete disaster — we’re dividing by zero in (2.87)). The message
is that double roots, and near double roots, obstruct an RPS.

Exercise: Assuming that there is not a problem with double roots, find z; if we start with o = b and xo = c.

Suppose that a and b are close. Introduce

fdgagb, and Vdéfa;b. (2.88)

Close means that v < &. With this change of notation the problem is now

(z—&—v)(x—E+v)(z—c) =ef(z), (2.89)

where v < 1 and ¢ < 1. We remain agnostic about the relative size of these two small
parameters. The problem is that there is a near double root at * = £ — the parameter v
controls proximity to the double root, while € controls the size of the perturbation.

(If ¢ is not close to £ then there is an isolated single root near x = ¢. We can proceed
as before and develop an RPS © = ¢+ ex; + ---. Nailing down this isolated root presents no
challenges. Press on to the more difficult case.)

For the near double root, we divide by x — ¢ and write the equation as

o)

(@ —E-v)(e—E+v)=e (2.90)

()

All the action is in the neighbourhood of x = ¢ and very plausibly (2.90) can be approximated
as

(—¢—-v)(z—E{+v)=eg(f). (2.91)
We multiply out the left hand side and rearrange to obtain

(=&~ v +eg(€). (2.92)
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Figure 2.2: Graphical determination of the € < 1 solutions of ([2.94)).

Let’s admit that taking a square root is not a big deal so nowﬂ

raEt\1r2+eg(f). (2.93)

The interesting case is if v and € are both small and € is the same size as v?. This is a

distinguished limit: take ¢ — 0 and v — 0 with €/v? fixed. The formula above works in this
limit, and also works if 1> 12 > €, or if 12 < e < 1.

2.5 An example with logarithms

I’ll discuss the example from H section 1.4:
xe ¥ =¢€. (2.94)

It is easy to see that if 0 < € < 1 there is a small solution and a big solution — see figure [2.2
It is straightforward to find the small solution in terms of €. Here we discuss the more difficult
problem of finding the big solution.

Exercise: Show that the small solution is (e) = € + € + 3€® + O(e*).

To get a handle on (2.94)), we take the logarithm and write the result as
xr = Ll + h’l.’lf, (295)

where
def

L (2.96)
Note if 0 < € < 1 then Ine < 0. To avoid confusion over signs it is best to work with the large
positive quantity L;.
Now observe that if z — oo then there is a consistent two-term dominant balance in :
x =~ L;. This is consistent because the neglected term, namely Inz, is much less than x as
x — oo. We can improve on this first approximation using the iterative scheme

2D — Ly + In (™ with 7200 — L. (2.97)

The first iteration gives
eM) =Ly + Lo, (2.98)

2I'm writing = in (2.93)) because I’ve been sloppy about estimating the size of the neglected terms.

32



10 N T T T T T T T T T
N —— exact
AN
<N - ="
SN
N o L1+L2
L1+L2+L1/L2 ,
L L+l /L + PL)LS
107 .
w
10 1
107

6 7 8 9 10

1
5
x

Figure 2.3: Comparison of ¢ = xe™* with increasingly accurate small-¢ approximations to the

inverse function €(x).

where Lo def In L; is the iterated logarithm.
The second iteration] is

2 =L +In(Ly + Ly) , (2.99)
L
_L1+L2+1n<1+L2>, (2.100)
1
Ly | (Ly\?
=L +Lo+-2-1(2 2.101
14 Lot 7 2<L1> + (2.101)

We don’t need Ls.

3We’re using the Taylor series

In(L+n) =n—57"+ 50"+ in" +--
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At the third iteration a pattern starts to emerge

L Lo\ ?
x<3):L1+1n<L1+L2+2§(2> +) ,

Ly Ly
:L1+L2+1n<1+§j+§§—;§§+m) ,
:L1+L2+<§j+§§_§§§+...>_é<§j+§§+...>2+§<§j+...>3...
=L1+L2+2+L2;§L3+%’Lg_%§%+m+--- (2.102)

The final - - - above indicates a fraction with L} in the denominator.

The philosophy is that as one grinds out more terms the earlier terms in the developing
expansion stop changing and a stable pattern emerges. In this example the expansion has the

form

P,(L2)

, (2.103)
Ly

oo
$=L1+L2+Z

n=1

where P, is a polynomial of degree n. This was not guessable from ([2.94)).
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The Lambert W function
The Lambert W-function is defined implicitly via
z=we". (1)

In the complex plane (1) defines a multivalued function Wy(z) where k is an integer
{0,£1,+2---}. The figure shows two branches Wy(x) and W_;(z). These are the real
branches which exist only if z > —1/e.

— Wo(z)
| )

5L L I I I I I 1
-2 0 2 4 6 8 10 12 14 16

Figure 2.4: The two real branches of the Lambert W functions. The nose * is at (—e™!, —1).

The Lambert W-function, also known as the omega function and the product logarithm;
try help ProductLog in MATHEMATICA and lambertw in MATLAB.
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The implicit function theorem

There are many versions of the implicit function theorem. T’ll state the analytic implicit
function theorem. Suppose that xg is a complex number and

f(20,0) =0, (1)

where f(z,€) is analytic at the point (z,€) = (z0,0). Analytic means that f(z,¢) has a
convergent power series expansion in non-negative powers of x — xg and e.

Provided that of

O (20,0) £0, (2
then there are constants p and ¢ such that for every e in the disc |e| < p, equation (1) has
a unique simple root z = z(e) in the disc |z — z¢| < ¢. In addition z(€) is an analytic
function of € and z(0) = zo.

The condition in equation (2) is the same as saying that x¢ is a simple root of f(z,0) = 0.
The fuss about multiple roots results from failure, and near failure, of (2).
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2.6 Problems

Problem 2.1. Show that ¢ — 0 expansion of the roots of ex® +x — 1 =0 is

- :
r=1—¢e+ O(?), and m:ii—ii\/é%Jro(el). (2.104)

Ve

Problem 2.2. z(t) is defined via the initial value problem

dx T .
Pl (1—0> -, with IC z(0)=0. (2.105)

Find limy_,o x(t) to three significant figures. (From a mid-term exam.)
Problem 2.3. z(t) is defined via the initial value problem

d
dilf =1.005—z—e®,  withIC  2(0)=0. (2.106)

Find lim¢_,o z(t) to two significant figures. (From a mid-term exam.)

Problem 2.4. Consider the quartic polynomial
Ext+ e’ +ex? —x+7=0. (2.107)
Find the leading order ¢ — 0 approximation to all roots.

Problem 2.5. Consider a quadratic equation, az? + bx 4+ ¢ = 0, and suppose that b*> > ac
(all coefficients are real). Use dominant balance (not the exact solution) to obtain a simple
approximation to both roots. Test drive your approximation on 22 + 3z + 1/2 = 0.

Problem 2.6. (i) Find a two-term approximation to all five roots of
2 —r+e=0. (2.108)

Take ¢ = 1/4 and compare your approximation to a numerical solution (e.g. use the MATLAB
command roots). (ii) Suppose that = e~!. Find a two-term approximation to the five roots
in the limit n — 0 (which is the same as the limit € — o).

Problem 2.7. Consider the transcendental equation
22 — 1 =ee” (2.109)

If € = 0 there is a root x = 1. Find the first three terms in the ¢ — 0 regular perturbation
expansion of this root.

Problem 2.8. Find two-term, ¢ — 0 approximations to all roots of

23+ 52% +dx4+€e=0, (2.110)

and
v -y +e=0, (2.111)

and
S e’ —2+1=0. (2.112)
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Figure 2.5: Figure for problem Numerical iteration of y,4+1 = ln% —Iny,. At e =0.45
the iteration diverges. In all three cases we start xg within 0.1% of the right answer.

Problem 2.9. Find rescalings for the roots of
2’ — (1 —e4+32) + (3-3e+22 —)x —2+3c— =0 (2.113)

and thence find two non-trivial terms in the approximation for each root using (i) iteration and
(i) series expansion.

Problem 2.10. Consider y(e, a) defined as the solution of
ey =e Y. (2.114)

Note that a = —1 is the example . Use the method of iteration to find a few terms in the
e — 0 asymptotic solution of — “few” means about as many as in (2.102)). Consider the
case a = +1; use MATLAB to compare the exact solution with increasingly accurate asymptotic
approximations (e.g. as in Figure .

Problem 2.11. Let us continue problem by considering numerical convergence of iteration
in the special case a = 1. Figure [2.5] shows numerical iteration of

1
Ynt1 =In— —1Iny, . (2.115)
€

With € = 0.25 everything is hunky-dory. At ¢ = 0.35 the iteration is converging, but it is
painfully slow. And at ¢ = 0.45 it all goes horribly wrong. Explain this failure of iteration. To
be convincing your explanation should include a calculation of the magic value of € at which
numerical iteration fails. That is, if € > €, then the iterates do not converge to the solution of
ey = e Y. Find e,.
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Problem 2.12. Find a three-term approximation to the real solutions of

e = ea? as e — 0. (2.116)
Problem 2.13. Find two- or three- term approximations to all real solutions of
- —1=¢e", as € — 0. (2.117)

Using figure[2.3]as an example, and considering the largest positive root, use MATLAB to compare
your approximation with the exact relation.

Problem 2.14. Find a two-term approximation to all positive real roots of 2 — 4 = eIlnx as
e — 0.

Problem 2.15. Consider z(¢) defined as the solution to

=

ze =¢e”. (2.118)
(i) Use MATLAB to make a graphical analysis of this equation with ¢ = 1/5 and ¢ = 1/10.
Convince yourself that as e — 0 there is one root near z = 1, and second, large root that
recedes to infinity as € — 0. (i7) Use an iterative method to develop an € — 0 approximation
to the large solution. Calculate a few terms so that you understand the form of the expansion.
(iii) Use MATLAB to compare the exact answer with approximations of various orders e.g. as
in Figure (iv) Find the dependance of the other root, near z = 1, on € as € — 0.

Problem 2.16. Find the x > 1 solution of
eeﬂc — 1010$10 exp (1010$10)

with one significant figure of accuracy. (I think you can do this without a calculator if you use
In2 =~ 0.69 and In 10 = 2.30.)
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zy = exp(z — y)
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Figure 2.6: The function defined implicitly by

Problem 2.17. The relation
xy =e*Y (2.119)

implicitly defines y as a function of x, or vice versa. See figure View y as a function z, and
determine the x — oo behavior of this function. Calculate enough terms to guess the form of
the expansion. Then consider x — 0 and do the same. Bonus: Find the closest points to the
origin on this curve.
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Lecture 3

Ordinary differential equations

3.1 Initial value problems: the projectile problem

If one projects a particle vertically upwards from the surface of the Earth at z = 0 with speed
u then the projectile reaches a maximum height h = u%/2gy and returns to the ground at
t = 2u/gp (ignoring air resistance). The particle spends as much time going up as coming
down. At least that’s what happens if the gravitational acceleration gg is constant and if there
is no air resistance. But a better model is that the gravitational acceleration is

9(z) = U‘FLQW7 (3.1)

where gy = 9.81m s72, R = 6 371kilometers and z is the altitude. The particle stays aloft longer
than 2u/gy because gravity is weaker up there.

Let’s use perturbation theory to calculate the correction to the time aloft due to the small
decrease in the force of gravity. But first, before the perturbation expansion, we begin with a
complete formulation of the problem. We must solve the second-order autonomous differential

equation
d?z g0
N 2
dt? (14 z/R)%’ (32)
with the initial condition
dz
t=0: =0 d — =u. 3.3
z an Pl (3.3)

We require the time 7 at which z(7) = 0. If R = 0o we recover the elementary problem with
uniform gravity.

An important part of this problem is non-dimensionalizing and identifying the small pa-
rameter used to organize a perturbation expansion. We use the elementary problem (R = o0)
to motivate the following definition of non-dimensional variables

_ t
;¢ % , and g oo SO0 (3.4)
U u
To recast the problem using non-dimensional variables
d god d?z go\2 d? u?_ d?z
a = ;E{’ and therefore @ = (;) @ %Z = go @ . (35)
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Putting these expressions into (3.2) we obtain the non-dimensional problem

d?z 1
— + ——>5 =0 3.6
de? + (1+4€2)? ’ (36)
where )
def U
€= —. 3.7
Rao (3.7)
We must also non-dimensionalize the initial conditions in (3.3)):
_ dz
t=0: z=10 d —=1. 3.8
z an 0 (3.8)

At this point we have done nothing more than change notation. The original problem was
specified by three parameters, gg, u and u. The non-dimensional problem is specified by a
single parameter €, which might be large, small, or in between. If we're interested in balls and
bullets fired from the surface of the Earth then e < 1.

OK, so assuming that ¢ < 1 we try a regular perturbation expansion on . We also
drop all the bars that decorate the non-dimensional variables: we can restore the dimensions
at the end of the calculation and it is just too onerous to keep writing all those little bars. The
regular perturbation expansion is

2(t) = 20(t) + ez1(t) + €222(t) + O (63) ) (3.9)

We use the binomial theorem

(I+2)" = 1+nx+n(n2_1)a:2+ O (%) , (3.10)
with n = —2 to expand the nonlinear term:
(14+e2)2=1—2e2+3e%22+ 0 (63) : (3.11)
Introducing into the expansion above gives
(1+e2)™2=1—2ez+€2(322 —221) + O (63) . (3.12)

So matching up equal powers of € in (3.6)) (and denoting time derivatives by dots) we obtain
the first three terms in perturbation hierarchy:

Zo=—1, with 20(0) =0, 25(0) =1,
Z1 =229, with 21(0) =0, 21(0)=0,
5y =22 — 322, with 29(0) =0, 29(0) =0.

Above we have the first three terms in a hierarchy of linear equations of the form

Lzpi1 = R(20,- - 2n) , (3.13)
where the linear operator is
det d?

To solve each term in the hirerarchy we must invert this linear operator, being careful to use
the correct initial equations that with n > 1, z,41(0) = Z,41(0) = 0.
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The solution of the first two equations is

t2 A
Zo(t) :t—g, and Zl(t) == g—ﬁ (315)
To obtain z3(t) we integrate
e 11t
fg = =32+ —— — —— 3.16
z2 + 3 12 ) ( )

to obtain . . 6
#1185 11t

no t _ , 3.17

22(t) 17760 360 (3.17)

Thus the expanded solution is

t2 3t ot 11 1148
He=t— o L —— )+ 0(&). 3.18
#(t) 2+6<3 m)*f ( 1760 360>+ (<)) (3.18)

We assume that the time aloft, 7(€), also has a perturbation expansion
T(€) =10+ er + €€ + O (€°) . (3.19)
The terms in this expansion are determined by solving:
20 (70 + €71 + €212) + €21 (1o + €m) + €222 (19) = O () . (3.20)

We have ruthlessly ditched all terms of order € into the garbage heap on the right of .
The left side is a polynomial of order 70 so there are six roots. One of these roots is 7 = 0 and
another root is close to 7 = 2. The other four roots are artificial creatures of the perturbation
expansion and should be ignored — if we want the time aloft then we focus on the root near
T = 2 by taking 79 =2 in . Expanding the z,’s in a Taylor series about 79 = 2, we have:

20(2) + (67’1 + 627'2)230(2) + %(67‘1)220(2) + €21 (2) + 627'12"1 (2) + 622’2(2) =0 (63) . (3.21)

Now we can match up powers of e:

20(2)
7'120(2) + Z1 (2)
T250(2) + 37120(2) + T141(2) + 22(2)

)

0
0,
0

Solvingﬂ these equations, one finds

4 4
T:2+§6+562+O(63).

The Taylor series above is another procedure for generating the expansion of a regularly per-
turbed root of a polynomial.

'Some intermediate results 20(2) = —1, 21(2) = 4/3, #1(2) = 4/3 and 22(2) = —4/45.
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Attempted solution of the projectile problem by iteration

We’re considering the differential equation

d?z 1
— + ———>5 =0 3.22
a2 T Trer (3.22)
again. Our first iterate is
2
A0y (3.23)

2

which is the same as the first term in the earlier RPS. To obtain the next iterate, z(1(t), we
try to solve

dzz(M 1
+ =0 (3.24)
2 2 )
dt (1 + € <t - %))
with the initial condition
:W=0, ::M0)=1. (3.25)

We could assault this problem with MATHEMATICA:

DSolve[{z’’[t] + 1/(1 + (t - t72/2))"2 == , z[0] == , z7[0] == 1}, z[t], t]

However the answer is not presentable in polite company. In this example, the RPS back in

(3.18)) is definitely superior to iteration.

3.2 Boundary value problems: belligerent drunks

A half-line problem x > 0

Suppose there is a bar at x = 0. The bar is a steady source of drunks who spill out onto the
street and then random walk along the positive x-axis. Violence ensues when drunks collide so
that there is some probability of mutual destruction. How does the density of drunks decrease
with distance form the bar? The mathematical description of this problem is based on the
density (drunks per meter) u(x,t), which is governed by the partial differential equation

U = Kllgy — pu?, (3.26)
with boundary condition at the bar
u(0,t) =U. (3.27)
We’re modeling the bar using a Dirichlet boundary condition that fixes a constant density U.
The parameter u models the lethality of the interaction between pairs of drunks.

Exercise: Show that with a suitable choice of non-dimensional time and space there are no dimensionless control
parameters in this problem i.e. there is a “canonical scaling”.

We look for a steady solution of (3.26)) and proceed using dimensional variables. We look

for a solution of the form u
u— G _; - (3.28)

The strategy is to substitute into the steady equation

Kllgy — pu? = 0 (3.29)
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and make it work.
A quick preliminary calculation shows that p = 2. We also need to satisfy the boundary
condition (3.27). So we can simplify our ansatz to

2
Uzs

u:m.

(3.30)

We hope to find an z, < 0 (so that the singularity is outside the domain) that makes it work.
Noting that

2Uz2 66U x?
(z—2.) T @)

6K [ 6K
2

We take the negative root so that singularity is outside the domain. The solution is

Uy =

(3.31)

we find

- 6kU (3.33)

(VaU 2+ V6r)*

A finite interval 0 < x < ¢

Suppose there are at x = 0 and z = ¢. The bars are a steady source of drunks who spill out
onto the street and then random walk along the z-axis. Violence ensues when drunks collide
so that there is some probability of mutual destruction. What is the density of drunks on the
stretch of sidewalk between z = 0 and x = ¢? The mathematical description of this problem
is based on the density (drunks per meter) u(z,t), which is governed by the partial differential
equation

U = Kllgy — pu?, (3.34)

with boundary conditions at the bars
u(0,t) =u(l,t) =U. (3.35)

We're modeling the bars using a Dirichlet boundary condition — outside each bar there is a
constant density U. The parameter p models the lethality of the interaction between pairs of
drunks.

Discussion: Why does lethality vary quadratically with density w in this model? How would the formulation

change if the drunks peacefully ignore each other but have a constant probability per unit time of dropping
dead.

If we integrate (3.34)) from x = 0 to ¢ we obtain

4 Zud;r = [ku V - /Kuu2 dx (3.36)
a J, )0 ; . .
You should be able to interpret each term in this budget.
First order of business is to non-dimensionalize the problem. How many control parameters
are there? With the definitions
def 4kt def 2T

=@ =7

o
n

Q=

€

-1, and u = (3.37)
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we quickly find that the scaled boundary value problem is

Up = Upgy — QU , with BCs u(£l) =1. (3.38)
There is a single control parameter
def CuU
a=—r. (3.39)

We made an aesthetic decision to put the boundaries at = +1. This means we are using ¢/2
as the unit of length and ¢2/4x as the unit of time.

Looking for a steady solution (u; = 0) to the partial differential equation, we consider the
nonlinear boundary value problem

Uy = ou? with BCs u(£1) = 1. (3.40)

The weakly interacting limit o < 1

If @ <« 1 — the weakly interacting limit — we can use an RPS

u=up(x)+ au () +--- (3.41)
and
u? = ud + a2upuy + o? (2uoug + u%) +--- (3.42)
The leading-order problem is
Uogr =0,  with BCs wp(£1) =1, (3.43)
and the solution is simply
up(x) =1. (3.44)

At subsequent orders, the BCs are homogeneous. For example, the first-order problem is

Ulze = v ,  with BCs  ug(£1)=0. (3.45)
~—
=1
The solution is
ur(z) = —3(1—2?%). (3.46)
At second order
Upgw = 2upur = — (1 —2%) ,  with  up(£1) =0. (3.47)
The solution is A )
x x 5
uz(x)zﬁ—?—l—ﬁzﬁ(l—ﬁ) (5-2%) . (3.48)

For those with obsessive-compulsive tendencies it is always tempting to calculate more terms:
the next term is
Usgy = 2uguy + u? with us(+1) =0, (3.49)

with solution

uz = —5 (1 —2?) (31 — 82* + %) . (3.50)
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Figure 3.1: Comparison of the perturbation solution for u(z,0.5) with numerical solution obtained by
the MATLAB routine bvp4c; the bvp4c solution is the black solid curve. The approximation 1 + au; is
green dashed, the three-term expansion is red solid, the four-term expansion is blue dash-dot and the
five term expansion in is cayan solid.

And another
Udpr = 2ugu3 + 2uius , with U4(i1> =0, (3.51)

with solution

ug(z) = 55 (1 —2°) (251 — 712 + 132" — %) . (3.52)

I solved the boundary value problems in (3.49) and (3.51]) with the MATHEMATICA routine
DSolve. Figure [3.1] compares the perturbation solution at @ = 0.5 with a numerical solution
obtained using the MATLAB routine bvp4c. Even with 5 terms the agreement is only so so — we
need more terms. Using the five-term perturbation series above at x = 0, the concentration at
the center of the domain is

a  ba? 3la® 251t
w0 =1-5+55 -+ 5

We extend this series below in
At every step of the perturbation hierarchy we are inverting the linear operator d?/daz?
with homogeneous Dirichlet boundary conditions. You should recognize that all the regular
perturbation problems we’ve seen have this structure. There is a general result — the implicit
function theorem — which assures us that if we know how to solve these reduced linear problems,
with invertible linear operators, then the original problem has a solution for some sufficiently

small value of the expansion parameter (« in the problem above).

+0(a”) . (3.53)

Example: Let’s consider a different approach to solving the boundary value problem
Upe = ot® with BCs u(£l) =1. (3.54)

Following our discussion of energy conservation for nonlinear oscillators, we multiplying the equation by
u, and integrate to obtain
1,2

Uz = %u3 + constant . (3.55)

Let c(a) def u(0, @) be the unknown concentration at the center of the domain, where u,(0,a) = 0.
Evaluating the equation above at 2 = 0 we see that the constant of integration is —ac®/3. Next, take the
square root, separate the variables and integrate from 2’ = 0 to > 0 to obtain

v da 200
/C =5 (3.56)
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Figure 3.2: In both panels the solid black curve is ¢(«) defined implicitly by (3.58)); the integral is
evaluated with the MATLAB routine integral. In the left panel the implicit solution is compared with
the « — oo approximation in (3.62). In the right panel the implicit solution is compared to the series

in (50).

(We take the positive square root because if x > 0 then u, > 0.) Evaluating (3.56]) at z = 1 we obtain

2c

/c /'3 — 3 = 3

Tidy up by changing variables to v = u’/c:

2ac U dy
— = _— 3.58
VaE- A= (3.58)

The expression in (3.58)) is convenient for numerical work: we can graph the relation between ¢ and « by
specifying ¢ in the range 0 < ¢ < 1 and evaluating « by numerical quadrature (see figure [3.2).

(3.57)

The form in (3.58) is useful in the limit & — oo and ¢ — 0: an asymptotic approximation to ¢ is obtained

by
\/ﬁ /\/7 w\/dL (3.59)
~ 2y/7 L 1/6) /iov% (3.60)

r2/3)
T (/6)
BRANCTE)
—_——

=2.42865

—2y/c. (3.61)

Solving (3.61]) for ¢, we obtain the approximation

2
2.42865
c (2 - m) , as a — o0o. (3.62)
The left panel of figure compares this approximation with the result from numerical evaluation of the
integral in .

Note I have written ~ in — this is unjustified because I haven’t displayed the asymptotic sequence
used to construct the approximation, nor indicated how one might obtain more terms. On the other hand,
the large-a comparison with the “exact” solution is splendid — careful justification of the approximation
(3.62) seems pointless. This is often the case when we compare asymptotic solutions with numerical
solutions.

One can also use to reproduce and extend the @ — 0 approximation in . Changing variables
tow=v—1:

;
V2ac = / %‘) (1+w+ tuw?) 7% (3.63)
0
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def _q

where f = ¢ — 1 < 1. Using MATHEMATICA

fdw w  Sw?
V2ac = — 1=+ —=—4+"-- 3.64
ac/ow( 2 T T ) (3.64)

3/2 f5/2

otz _ S 3.65
/ 3 + 12 + ( )
Squaring the expression above and using InverseSeries to express ¢ in terms of a one eventually arrives

at

a 5a2_31a3 251a*  5599a° 43615a° 106572857

2 ' 12 72 504 9072 54432 9906624
25157603 a® 4452284365 a° 241448268505 at? 1
16982781 2139830784 | 81313569792 +0 () - (3.66)

The coefficients are growing slowly — this series may have a non-zero radius of convergence. The right
panel of figure compares partial sums of to the exact solution. This example is frustrating: the
function c¢(a) is only slightly bent in the range 0 < o < 1. Yet the series is ineffective beyond about
a = 0.5. This may be a job for Padé summation.

3.3 Dominant balance and ODEs

Dominant balance is an important method for local analysis of ordinary differential equations.
Example: Dawson’s function
Consider the first-order linear differential equation

D' +2xD =1, (3.67)

with initial condition D(0) = 0. Using an integrating factor we obtain the solution

D(z)=e™ / e’ dt. (3.68)
0

The function D(z) occasionally occurs in the solution of diffusion problems. It is important
enough to have a name: Dawson’s function. Dawson’s function is hardwired in MATLAB and
other computational environments. See the graph in figure [3.3

Small z: How does D behave as z — 07 We seek a two-term dominant balance in (3.67]).
There is only one choice consistent with the initial condition D(0) = 0:

D'A1, = Dr~z, asz—0. (3.69)

This is consistent because the neglected term is 22D = 222 < z as x — 0.
If we need more terms in the series then we can use iteration. Rearrange (3.67)) to

D/ — 1 _ 2£BD, (3.70)
<~
small
and use the scheme
D" =1 — 22D (3.71)
With D© = 2 we find
DW=z — %353 , and D@ — g — %m?’ + %1‘5 . (3.72)
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Figure 3.3: Dawson’s function and some z > 1 approximations.

Each time through the loop we get an extra term in Taylor series expansion of D(x).

Once we know that the solution of this problem is a Taylor series it may be more efficient
to substitute a series into the equation and determine the coefficients by matching powers of x.
But dominant balance followed by a one or two passes through the iteration loop is the best
way to get started.

Large x: It seems more difficult to understand the z > 1 behaviour of D. The integral
representation in is particularly opaque. Dominant balance to the rescue. Balancing the
second and third terms in we have

,
2D ~ 1, = D~ — as r — 00. (3.73)

As x — oo the neglected term D’ is much less than the retained terms: this is a consistent
x — oo dominant balance and it compares well with the MATLAB result in figure
We can now use iteration to improve on (3.73). Rewrite (3.67)) as

1 D’
= — — —. 3.74
2 2x ( )
The iterative scheme is ny
1 D\
Dt = — _ 3.75
2z 2z ( )
where D) =1 /2x. Going twice through the loop I found
1 1 1 1 3
DW(z) = — + — d D)= —4+—— 4+ 2. 3.76
(@) 2z + 437 an () 2z + 423 8zt ( )

Figure compares D (z) and DM (x) with MATLAB’s Dawson function. At large x this is
splendid.

Exercise: Consider y’ + 2zy = 1 with y(0) = yo. Using the integrating factor solution show that all solutions
approach 1/2z as x — oo.

Example: A singularly forced oscillator

Consider
j+y=t17 (3.77)

with initial conditions y(0) = ¢(0) = 0.
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Small #: There is a good dominant balance §j ~ t~1/2 leading to

4 .
Y~ gtm, as t — 0. (3.78)
We can obtain more terms by writing
j=t"12— y (3.79)
~—~—
small

and iterating. The first iteration shows that y = %t3/2 - 11—(?5157/2 + O(t"/?) as t — 0. This
small-time approximation compares well with numerical solution: see figure [3.4

Large t: There is a consistent dominant balance y ~ ¢t~%/2. The neglected term is § =
%t*5/2 <t 2 ast — 0. Again use iteration

1 1 3
— = ~ - — 3.80
y=--4 YR T e (3.80)
There is a second consistent dominant balance
J+y=0, = y~acost+ bsint. (3.81)

Ast — oo the neglected term ¢~1/2 is much less than the O(1) oscillation. Because this equation
is linear the large ¢ solution is

1 3
7 157
We cannot determine a and b, except by solving the equation with reduction of order or the
Green’s function method.

y~ acost + bsint + +0(t™?). (3.82)

Exercise: Show that the dominant balance, & ~ ¢t~ /2, is inconsistent as t — co.
Discussion: Pitfalls in numerical solution of this IVP.

Details: The Green’s function solution is

Y- /t sin(t — t') ar'
0

Vit
t !/ t ’
cost , sint ,
=sint dt” — cost dt". 3.83
| I (3.83)
With the change of variables
def 2t dt/
v =4/ — and ﬁ =+2ndv, (3.84)

we express the integrals in (3.83) in terms of the Fresnel integrals:

\/2t/m 2
y =V sint/ cos(mj )

0

Vel (7”’2> dv (3.85)

dv —v2m cost / sin

0

C(+/2t/) S(y/2t/)
The Fresnel integrals C'(z) and S(z) are fresnels and fresnelc in MATLAB and their main properties are

summarized in books on special functions and on the DLMF. So the result in (3.85)) is not completely
useless. For instance, the DLMTF tells us that

1
lim C(z) = lim S(z) = =. (3.86)
z—00 z—00 2
Therefore at large times the solution in (3.85) becomes

yz,/%sint—,/gcost. (3.87)

The solution is summarized in figure At large times the numerical solution does not agree very well
with the approximation (3.87)). Can you quantitatively explain the difference between the solid and dashed
curves in the upper panel of figure [3.4]/
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Figure 3.4: The solid curve in the upper panel shows the solution in (3.85]); the dashed curve is the
large-time approximation in (3.87]). The solid curves in the lower panel are y and ¢ from (3.85)) and the
dashed curves show the small-time approximations in y ~ 4¢3/2/3.
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Another example

Consider the second-order linear ODE
y'+ (z+a )y =0. (3.88)
Let’s use iteration to construct a solution with initial condition

y(0) =0, and  3/(0)=1. (3.89)

y(0) =1, and y'(0)=1. (3.90)

3.4 Failure of RPS: singular perturbation problems

Let’s close by giving a few examples of differential equation that do not obligingly yield to RPS,
dominant balance and iteration.

Boundary layers

First, consider the boundary value problem (3.40) with & = ¢! > 1. In terms of ¢, the problem
is

€Uy =u®,  with BCs  wu(£l)=1. (3.91)
We try the RPS
u=ug(x) + eur(z) + - - - (3.92)
The leading order is
0=wd,  withBCs  wup(£l)=1. (3.93)

Immediately we see that there is no solution to the leading-order problem.
What’s gone wrong? Let’s consider a linear problem with the same issues:

EVgy = U, with BCs v(£l) =1. (3.94)
Again the RPS fails because the leading-order problem,

0=, with BCs vo(£l) =1, (3.95)
has no solution. The advantage of a linear example is that we can exhibit the exact solution:

Yy cosh(z/+/€) (3.96)

cosh(1/+/€)’
see figure (a). The exact solution has boundary layers near x = —1 and x = +1. In these
regions v varies rapidly so that the term ev,, in (3.94) is not small relative to v. Note that the
leading order interior solution, vg = 0 is a good approximation to the correct solution outside
the boundary layers. In this interior region the exact solution is exponentially small:

_ b e
v(0,€) = cosh(1/7) 2e , as € = 0. (3.97)
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Figure 3.5: Solutions of some linear ODEs. Exercise: match the panels above with the ODEs in

section 3.4]

Our attempted RPS is using € as gauge functions and as € — 0

2" VE= 0O ("), for all n > 0. (3.98)

As far as the € gauge is concerned, e~/V is indistinguishable from zero.

The problem in both examples above is that the small parameter ¢ multiplies the term
with the most derivatives. Thus the leading-order problem in the RPS is of lower order than
the exact problem. In fact, in the examples above, the leading-order problem is not even a
differential equation.

Rapid oscillations

Another linear problem that defeats a regular perturbation expansion is

EWpy = —W, with BCs w(xl)=1. (3.99)
The exact solution, shown in figure b), is
_ cos(z/v/e) (3.100)

~ cos(1y/e)

In this case the solution is rapidly varying throughout the domain. The term ew,, is never
smaller than w.
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Secular errors
Let’s consider a more subtle problem:
I+ (1+ez=0, with ICs z(0)=1, and #(0)=0. (3.101)
The exact solution of this oscillator problem is
z(t,€) = cos (V1+et) . (3.102)
In this case it looks like the RPS
x(t,€) = zo(t) + exy(t) + ao(t) + - - (3.103)
might work. The leading-order problem is
Zo+ 20 =0, with ICs  x0(0) =1, and 40(0)=0. (3.104)

The solution is
xo = cost. (3.105)

In fact, this RPS does work for some time — see figure [3.5(c). But eventually the exact solution
and the leading-order approximation in @ have different signs. That’s a bad error
if 2(t) is a clock.

Maybe we can improve the approximation by calculating the next term? The order €'
problem is

1+ 1x1 = —cost, (3.106)

with homogeneous initial conditions
x1(0) =0, and 1(0) =0. (3.107)
I hope you recognize a resonantly forced oscillator when you see it: the solution of is
x1 = —3t sint. (3.108)
Thus the perturbation solution is now
x = cost —est sint + O (€?) . (3.109)

This first-order “correction” makes matters worse — see figure [3.5(d). The RPS in is
“disordered” once et = O(1): we don’t expect an RPS to work if the higher order terms are
larger than the earlier terms. Clearly there is a problem with direct perturbative solution of an
elementary problem.

In this example the term ex is small relative to the other two terms in differential equation
at all time. Yet the small error slowly accumulates over long times ~ e¢~!. Astronomers call
this a secular errorﬂ We did not face secular errors in the projectile problem because we were
solving the differential equation only for the time aloft, which was always much less than 1/e.

2From Latin saecula, meaning a long period of time. Saecula saeculorum is translated literally as “in a century
of centuries”, or more poetically as “forever and ever”, or “world without end”.
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3.5 Problems
Problem 3.1. (i) Consider the projectile problem with linear drag:

d22 dz
= — 3.110

and the initial conditions z(0) = 0 and dz/dt = u. Find the solution with no drag, u = 0,
and calculate the time aloft, 7. (i) Suppose that the drag is small — make this precise by non-
dimensionalizing the equation of motion and exhibiting the relevant small parameter e. Hint:
non-dimensionalize so that (go,u) — (1,1). (iii) Use a RPS to determine the first correction
to 7 associated with non-zero drag. (iv) Find the time to reach maximum altitude. Does the
projectile take longer going up or coming down? (v) Integrate the non-dimensional differential
equation exactly and obtain a transcendental equation for 7(e). Solve this transcendental
equation approximately in the limit ¢ — 0. Make sure the ¢ — 0 solution agrees with the earlier
RPS.

Problem 3.2. Consider the projectile problem with quadratic drag:

v % % =—00, (3.111)
and the initial conditions z(0) = 0 and dz/d¢ = w. (i) Explain why the absolute value |Z| in
is necessary if this term is to model air resistance. (i7) What are the dimensions of
the coefficient v? Nondimensionalize the problem so there is only one control parameter. (i)
Suppose that v is small. Use a regular perturbation expansion to determine the first correction
to the time aloft. (iv) Solve the nonlinear problem exactly and obtain a transcendental equation
for the time aloft. (This is complicated.)

Problem 3.3. In this problem we use energy conservation to obtain a solution to the projectile
problem which is superior to (3.18). (i) From the non-dimensional equation of motion (3.6,

show that
1.2 1 1

32 =
2 el +ex

(7i) Find the maximum height reached by the projectile, zpyax, in terms of €. (i) Show that
the time aloft is given exactly by

/1 e
T = 2Zmax / 1+ % ge,  with ale) & 5 c< (3.113)
— —€

(iv) Evaluate the integral above exactly. (e) Use MATHEMATICA or some other tool to obtain
the € < 1 expansions

-1 (3.112)

N[

R YT (3.114)

4 a a® a’ a? a® ab
3 15 35 63 99 143

and
de  4é2 1663 16e* 3265 3260

B a€ e 7
T2ttt gy T T g T T O (3.115)

Which series is superior?
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Figure 3.6: Numerical solution of (3.118|) with various initial conditions. In this illustration
Ki/Ky=0.1and w/r = 2. At large time all initial conditions convergence to a periodic solution
that lags the carrying capacity.

Problem 3.4. (i) Consider a ball that is dropped from a height h, with gravity go. Show that
if the ball bounces elastically on an ideal hard surface then the period of the bounce is /8h/gp.
To model an upwards repulsive force that acts smoothly as the ball approaches z = 0 we use

. p
= —go+ = 11
E=-g0+ 5, (3.116)
with 8 > 0. The initial conditions are
2(0) =h, and 2(0) =0. (3.117)

If h is very large then the repulsive force is initially negligible and the ball falls freely for some
time. (7) Nondimensionalize the problem and identify the non-dimensional parameter that
quantifies “h is very large”. (iii) Is the time to return to z = h greater or less than \/8h/g?
(iv) Find the first correction to the bounce period resulting from this model of an elastic bounce.

(v) Repeat (iv), replacing z° by 2™ in (3.116]).
Problem 3.5. Consider the logistic equation with a periodically varying carrying capacity:

N =rN <1 — g) ,  with K = Ko+ Kjcoswt. (3.118)
The initial condition is N(0) = Ny. (i) Based on the K; = 0 solution, non-dimensionalize this
problem. Show that there are three control parameters. (i) Suppose that K is a perturbation
i.e. Kj/Ky < 1. The numerical solution in Figureshows that eventually the initial condition
is “forgotten” and all solutions converge to a periodic oscillation about the mean carrying
capacity Ky. Use perturbation theory to determine the amplitude and phase of the long-term
oscillation.

Problem 3.6. Consider a partial differential equation analog to the boundary value problem
in (3.40). The domain is the disc r = y/2? 4+ y? < a in the (z,y)-plane and the problem is

Ugy + Uy = with BC: u(a,d) =U. (3.119)

Following the discussion in section [3.2] compute three terms in the RPS.
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Problem 3.7. Let’s make a small change to the formulation of the belligerent-drunks example
in and . Suppose that we model the bars using a Neumann boundary condition.
This means that the flux of drunks, rather than the concentration, is prescribed at x = 0 and
£: the boundary condition in is changed to

kug(0,t) = —F, and Kuz(6,t) = F, (3.120)

where F, with dimensions drunks per second, is the flux entering the domain from the bars.
Try to repeat all calculations in section [3.2] including the analog of the < 1 perturbation
expansion. You'll find that it is not straightforward and that some ingenuity is required to
understand the weakly interacting limit with fixed-flux boundary conditions.

Problem 3.8. First read the section entitled Boundary layers. Inspired by the example in
that section, find an approximate solution of the boundary value problem:

10720, = v,  with BCs (1) =1. (3.121)
If you can do this, you’ll be on on your way to understanding boundary layer theory.
Problem 3.9. Consider the non-dimensional oscillator problem
T+ pr+x=0, (3.122)
with the initial conditions
z(0) =0, and z(0)=1. (3.123)

(i) Supposing that 5 > 2, solve the problem exactly. (ii) Show that if 5 > 1 then the long-time
behaviour of your exact solution is
zoce P (3.124)

i.e. the displacement very slowly decays to zero. (iii) Motivated by this exact solution, “rescale”
the problem (and the initial condition) by defining the slow time

def T
et 2 3.125
3 (3.125)
and X (7) =7z(t). Show that with a suitable choice of ?, the rescaled problem is
Xrr+ X, +X=0, withthe IC: X(0)=0, X,(0)=1. (3.126)

Make sure you give the definition of X (7) and € < 1 in terms of the parameter 5> 1 and the
original variable x(t). (iv) Try to solve the rescaled problem ([3.126)) using an RPS

X(T, 6) — X()(T) +eXy (7-) + - (3127)

Discuss the miserable failure of this approach by analyzing the dependence of the exact solution
from part (i) on 8. That is, simplify the exact solution to deduce a useful 5 — oo approximation,
and explain why the RPS (3.127)) cannot provide this useful approximation.

Problem 3.10. Consider a medium —¢ < x < ¢ in which the temperature 6(z,t) is determined
by
0, — KOy = ae®? (3.128)
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with boundary conditions §(+¢,¢) = 0. The right hand side is a heat source due to an exothermic
chemical reaction. The simple form in (3.128)) is obtained by linearizing the Arrhenius law. The
medium is cooled by the cold walls at x = £¢. (i) Put the problem into the non-dimensional
form

Or —Oxx =e®  withBCs  O(£l,e) =0. (3.129)

Your answer should include a definition of the dimensionless control parameter € in terms of
K, a, f and £. (i) Assuming that e < 1, calculate the steady solution O(X,€) using a regular
perturbation expansion. Obtain two or three non-zero terms and check your answer by showing
that the “central temperature” is

Cle) ¥ (0,6, (3.130)
€  be?  47é 4
—§+ﬁ+360+0(e). (3.131)

(iii) Develop an approximate solution with iteration. (iv) Integrate the steady version of ((3.129))

exactly and deduce that:
e 2 tanh ™t /1 —e=C = \/g (3.132)

def

=F(0)

(Use MATHEMATICA to do the integral.) Plot the function F(C) and show that there is no
steady solution if € > 0.878. (v) Based on the graph of F(C), if ¢ < 0.878 then there are
two solutions. There is the “cold solution”, calculated perturbatively in , and there is a
second “hot solution” with a large central temperature. Find an asymptotic expression for the
hot central temperature as ¢ — 0.

Problem 3.11. Consider the perturbed first-order autonomous differential equation
&= f(x) +ep(x,t), with IC z(0) = 0. (3.133)
If we use an RPS, zo(t) + ex1(t) + - - -, then the leading-order term is defined by
o = f(wo), with IC z((0) = 0. (3.134)

(i) Show that
.’L’O t/ t/)
f zo(t'))
(ii) Check the formula above by con51der1ng the special perturbations p(z,t) = f(x) and
p(x,t) = s(t) f(z) where s is some function of ¢ alone.

x(t) = xo(t) + efo (wo(t dt' + O (%) . (3.135)

Problem 3.12. As a model of combustion triggered by a small perturbation, consider
=21 —-1x), z(0) =€. (3.136)
(i) Start with the simpler problem
g=v*, y(0)=e. (3.137)

Explain why problem (3.137) is a small-time approximation to problem (3.136[). (i) Use sep-
aration of variables to find the exact solution of (3.137) and show that y(¢) reaches oo in a
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Figure 3.7: The exact solution of (3.136) (the solid curve) compared with large and small time

approximations.

finite time. Let’s call this the “blow-up” time, ¢, (€). Determine the function ¢, (€). (iii) Use a
phase-line analysis to show that the solution of (3.136] never reaches co — in fact:

tliglo x(t;e) =1. (3.138)
(iv) Use separation of variables to find the exact solution of ; make sure your solution
satisfies the initial condition. (I encourage you to do the integral with Mathematica or Maple.)
(v) At large times z(t,¢€), is somewhere close to 1. Simplify the exact solution from (iv) to
obtain an explicit (i.e. exhibit z as a function of t) large-time solution. Make sure sure you
explain how large ¢t must be to ensure that this approximate solution is valid. (vi) Summarize
your investigation with a figure such as
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Lecture 4

Why integrals?

Integrals occur frequently as the solution of partial and ordinary differential equations, and
as the definition of many “special functions”. The coefficients of a Fourier series are given as
integrals involving the target function etc. Green’s function technology expresses the solution
of a differential equation as a convolution integral etc. Integrals are also important because
they provide the simplest and most accessible examples of concepts such as asymptoticity and
techniques such as asymptotic matching.

4.1 First-order linear differential equations

Linear first order differential equations, such as
y —ay=-—1, with initial condition lim y(0) =0, (4.1)
Tr—r00

can be solved with the integrating-factor method. This delivers y(z) as an integral. In the case
above we find

x
y(z) = e”’/? /e_t2/2 dt. (4.2)
0
How does the solution behave as x becomes large? The easy answer is

y(z) ~ S / e 2, as v — 00. (4.3)
0

=77
Remark: This might be an opportune moment to define asymptotic equivalence “~7”.

Reminder: Evaluation of the Gaussian integral. Is this a reminder?

Suppose we consider a slightly different problem:

2 —xz=-1, with  lim z(xz) =0. (4.4)
T—r 00
In this case the solution, if there is a solution, must be
[e.e]
2(z) = /2 / e /2t (4.5)
x
x2/2

But you might feel nervous because the factor e is growing very fast as x — co. Our hope
is that the integral is decaying even faster so that the product on the right of satisfies the
requirement that as © — 0o, z(x) — 0. Later when we learn more about asymptotic evaluation
of integrals we’ll see that this is, in fact, the case.

Remark: Or consider applying L’Hopital’s rule to (4.5)).
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Figure 4.1: The functions Ai(z) and Bi(z). The Airy function decays rapidly as z — oo and
rather slowly as  — —o0 .

4.2 Second-order linear differential equations

Airy’s equation,

y' —xy=0, (4.6)
is an important second-order differential equation. The two linearly independent solutions,
Ai(z) and Bi(z), are shown in figure [13.7] The Airy function, Ai(x), is defined as the solution
that decays as x — oo, with the normalization

o
/ Ai(z)dz =1. (4.7)
—0o0
We obtain an integral representation of Ai(z) by attacking ((13.78)) with the Fourier transform.
Denote the Fourier transform of Ai by

Ai(k) = / Ai(z)e e dg . (4.8)
Fourier transforming ((13.78]), we eventually find
Ai(k) = *°/3 (4.9)
Using the Fourier integral theorem
a3 dk
Aj _ ikx+ik3 /3 U 4.1
o) = [ ettt (4.10)

I k3
=— [ cos|kex+— ) dk. (4.11)
™ Jo 3

Notice that the integral converges at k = oo because of destructive interference or catastrophic
cancellation.

We’ll develop several techniques for extracting information from integral representations
such as (4.11). We'll show that as x — —oc:

_ 1 22«
Ai(z) ~ NGELL cos < s a1 (4.12)

and as x — +o00:
 2,3/2

Ai(z) (4.13)

e 3
2y/mxt/t’
Exercise: Fill in the details between (4.8) and (4.9).
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4.3 Recursion relations: the example n!

The factorial function

an = n! (4.14)
satisfies the recursion relation
an+1 = (n+ 1)ay,, ap=1. (4.15)
The integral representation
an = /0 Cx;f”e_t dt (4.16)

is equivalent to both the initial condition and the recursion relation. The proof is integration
by parts:

oo o0 d
/ t"TleTtdt = —/ "t et dt, (4.17)

0 0 dt

o

=— [t”“e—t]go +(n+ 1)/ the~tdt. (4.18)

——

=0 0

Exercise: Memorize -

n!:/ t"e""dt. (4.19)
0

Later we will use the integral representation (4.19)) to obtain Stirlings approzimation:

n\”"
nl ~V2mn (—) , as n — oo. (4.20)
e

Exercise: Compare Stirling’s approximation to n! with n =1, 2 and 3.

4.4 Special functions defined by integrals

The Gamma function: I'(z) < Jo et dt, for Rz > 0.

There are many other examples of special functions defined by integrals. Probably the most
important is the I'-function, which is defined in the heading of this section — see Figure If
Rz > 0 we can use integration by parts to show that I'(z) satisfies the functional equation

2I(z) =T(2+1). (4.21)

Using analytic ContinuatiorE] this result is valid for all z #£ 0, —1, —2--. Thus the functional
equation (4.21)) is used to extend the definition of I'-function throughout the complex plane.
Notice that if z is an integer, n, then

I'n+1)=n! (4.22)

F<;):/Oooei/;dt:/_2e_“2du:\/7r (4.23)

'Tf f(2) and g(z) are analytic in a domain D, and if f = g in a smaller domain E C D, then f = g throughout
D.

The special value

is important.
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-3 -2 -1 0 1 2 3 4

Figure 4.2: The I'-function and its reciprocal.

Exercise: Use the functional equation (4.21) to obtain I'(3/2) and I'(—1/2).

Exercise: Use the functional equation (4.21)) to find the leading order behaviour of I'(z) near z = 0 and z = —1,
and other negative integers. Work backwards and show that

F(m)w(_) ! , asx — —n.
nl r+4+n

Thus I'(z) has poles at z =0, —1, --- with residues (—)"/nl.
Other special functions defined by integrals

A prominent example is the error function

2 z

erf(z) b 2 [t dt, and its complement erfc(z) Ly erf(z). (4.24)
VT Jo

Another important example is the exponential integral of order n:

oo ,—t
En(2) déf/ et—ndt. (4.25)

We refer to the case n = 1 simply as the “exponential integral”.

Example: Singularity subtraction — small z behavior of E, (z).

4.5 Elementary methods for evaluating integrals

Change of variables

How can we evaluate the integral

/ e " de? (4.26)
0



Try a change of variable

v="= and therefore dv = 3¢2dt = 3v¥/3dt . (4.27)

1/ e 23qy = ip (1) Zp(2) (4.28)
3 Jo 37 \3 3

Exercise: Evaluate in terms of the I'-function

def [ P
U(a,p,q) :e/ tle™ " dt.
0

The integral is then

Exercise: Show that

L[t"] :/ e dt = F(jljpp). (4.29)
0

Differentiation with respect to a parameter

Given that -
VT / e dz, (4.30)
2 0

we can make the change of variables = v/t2’ and find that

\[ / 1 g (4.31)

We now have an integral containing the parameter ¢.

To evaluate ~
/ 22e™ dg (4.32)
0

we differentiate (4.31]) with respect to ¢ to obtain

1 o >
- 13 = / 22e7 dg | and again 3 15 = / ale " dx | (4.33)
a\B =, s\~ J,

Differentiation with respect to a parameter is a very effective trick. For some reason it is not
taught to undergraduates.
How would you calculate L[t Int]? No problem — just notice that

OptP = 9PNt = tPInt, (4.34)
and then take the derivative of (4.29)) with respect to p

I'l+p) T(1+p)lns

L[tPInt] = e e ) (4.35)
= W [(Y(1+p)—Ins], (4.36)

where the digamma function /
v(z) & FF((ZZ)) (4.37)

is the derivative of InT.
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4.6 Complexification

Consider -

F(a,b) = / e " cosbtdt, (4.38)
0
where a > 0. Then
F=% / —(ati)t g4 | (4.39)
a—1ib
_ — R 4.40
a + 1b a?+ b2’ ( )
a

As a bonus, the imaginary part gives us
b o
m = / e_at sin bt dt . (442)
a 0

Derivatives with respect to the parameters a and b generate further integrals.

Contour integration

The theory of contour integration is an example of complexification. As revision we’ll consider
examples that illustrate important techniques.

Example: Consider the Fourier transform

0o —ikx
fk) = /m ﬁdm. (4.43)

We evaluate this Fourier transform using contour integration to obtain
flk) =me M (4.44)

Note particularly the |k|: if & > 0 we must close in the lower half of the z = « + iy plane, and if k < 0 we
close in the upper half plane.

Example Let’s evaluate

Ai(0) = * / s (B2 a (4.45)
Ty 3 '
via contour integration. We consider a slightly more general integral
J(a) = / ¢ dv, (4.46)
0
= || /3 / S8 gy (4.47)
0

Thus if we can evaluate J(1) we also have J(a), and in particular ®J(1/3), which is just what we need
for Ai(0). But at the moment it may not even be clear that these integrals converge — we’re relying on the
destructive cancellation of increasingly wild oscillations as * — oo, rather than decay of the integrand, to
ensure convergence.

To evaluate J(1) we consider the entire analytic function

i3 ir3e3if

f(z)=e* =" ° =exp [ys -3y +i («® - 3axy”) ] . (4.48)
—_—

=the phase of 23
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zZ=x

Figure 4.3: The pie contour ABC' in the complex plane (z = z + iy = rei(’) used to evaluate
J(1) in ([4.47). The ray AC is a contour of constant phase: z3 = ir? and exp(iz®) = exp(—r?).

Notice from Cauchy’s theorem that the integral of f(z) over any closed path in the z-plane is zero. In
particular, using the pie-shaped path ABC in the figure,

0= / ¢ dz. (4.49)
ABC

The pie-path ABC is cunningly chosen so that the segment C A (where z = rei”/ﬁ) is a contour of constant
phase, so called because

Ffz)=e " on AC. (4.50)
On CA phase of f(z) is a constant, namely zero.

Now write out (13.85) as

R /6 i . 0
0= / &’ do +/ 7™ iRedo +/ e dr. (4.51)
0 0 R

—J(1) =M(R)

Note that on the arc BC, z = Re'? and dz = iRe'?df — we’ve used this in M (R) above.

We consider the limit R — oo. If we can show that the term in the middle, M(r), vanishes as R — oo
then we will have

J(1) = /Oooe‘” dr. (4.52)

The right of (4.52) is a splendidly convergent integral and is readily evaluated in terms of our friend the
[-function.

So we now focus on the troublesome M (R):

)

W/G'R3 30 —R3sin30 i0
IM(R)‘ — R‘/ e1 Ccos 67 sin e1 da
0

/6
<r |
0

/6 i
S R/ 67R3 sin 36 d@,
0

eiR3 cos 3067R3 sin30,i0| 49 ’

/6 R3 (66
<R/ e 60/™ g9 | (4.53)
0

—0, asR— . (4.54)
At (4.53) we’'ve obtained a simple upper bouncﬂ using the inequality

sin 30 > (%9 for 0 < 6 < % (4.55)

2This trick is a variant of Jordan’s lemma.

67



An alternative is to change variables with v = sin 36 so that

/6 . 1 [l e R
/ o Wsingogg L [rer T Tdu (4.56)
0 3Jo V1I—02
and then use Watson’s lemma (from the next lecture). This gives a sharper bound on the arc integral.
The final answer is 13
. 3 3 I'(1/3)
Ai(0) = — dr = —+—. 4.57
i0) ="~ [ e ar = S5 (457)
In the example above we used a constant-phase contour to evaluate an integral exactly. A

constant-phase contour is also a contour of steepest descent. The function in the exponential is

123 = o® — 32%y +i (2® — 3z1?) . (4.58)
= =y

On CA the phase is constant: ¢ = 0. But from the Cauchy-Rieman equations
Vo¢-Vip=0, (4.59)

and therefore as one moves along C'A one is moving parallel to V¢. One is therefore always
ascending or descending along the steepest direction of the surface formed by ¢(z,y) above the
(z,y)-plane. Thus the main advantage to integrating along the constant-phase contour C'A is
that the integrand is decreasing as fast as possible without any oscillatory behavior.

Example: Let’s prove the important functional equation

D(z)D(1—z) = /Ooo A (4.60)

14w sinmwz

Example: Later, in our discussion of the method of averaging, we’ll need the integral

Alr) = 2 /WL (4.61)

~ o » 1+ rcost’

We introduce a complex variable

z=¢", so that dz =1izdf, and cost =3z + %z_l . (4.62)
Thus
i dz

AR)=—— | ———— 4.63
() w/cm22+2z+ﬁ’ (4.63)

i dz
_ i 4.64
wm/C(z—z+)(z—z_)’ (4.64)

where the path of integration, C, is a unit circle centered on the origin. The integrand has simple poles at

2o =r'EVE2-1. (4.65)

The pole at z; is inside C, and the other is outside. Therefore

A(r) = 2 x (—i) x i (4.66)
1
- (4.67)

Mathematica, Maple and Gradshteyn & Ryzhik

Tables of Integrals Series and Products by 1.S. Gradshteyn & I.M. Ryzhik is a good source for
look-up evaluation of integrals. Get the seventh edition — it has fewer typos.
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4.7 Problems

Problem 4.1. Use the elementary integral

to evaluate

1 1
S(n) dﬁf/ 2" In (1> dz and R(n) dﬁf/ 2" In? <1> dz.
0 x 0 x

Problem 4.2. Starting from
(o)
@ ___ / e * cos Axdz,
0

evaluate ~
I(a,\) = / re cosArdr.
0

For desert evaluate

J(a) = / emaw 20T g4,
0

x

J(a) is an interesting Laplace transform.
Problem 4.3. Consider ~
F(a,b) = / e @I qyy
0
(i) Using a change of variables show that F(a,b) = a='F(1,ab). (ii) Show that

dF (a,b)

—= = -2F(1 .
8b ( ?a/b)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(iii) Use the results above to show that f satisfies a simple first order differential equation;

solve the equation and show that

v 27T672ab )

F(a,b) = 5

Problem 4.4. The harmonic sum is defined by

In this problem you're asked to show that

lim (Hy —InN) =g,

N—oo

(4.75)

(4.76)

(4.77)

where the Euler constant v is defined in (4.84)). (i) Prove that Hy diverges by showing that

In(l+ N)<Hy <1+InN.
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Hint: compare Hy with the area beneath the curve f(x) = z=! — you'll need to carefully select
the limits of integration. Your answer should include a careful sketch. (ii) Prove that

l1—=z

19 _ N
Hy = / T dz. (4.79)
0

Hint: n~1 = fol 2" 1dx. (i) Use MATLAB to graph

12V

Fy(x) =

T for 0 <z <1, (4.80)
with N = 100. This indicates that Fy(z) achieves its maximum value at x = 1. Prove that
Fn(1) = N. These considerations should convince you that the integral in (4.79)) is dominated
by the peak at x = 1. (iv) With a change of variables, rewrite (4.79) as

Hy :/ON {1— (1—%>N] (zy. (4.81)

(v) Deduce (4.77)) by asymptotic evaluation, N — oo, of the integral in (4.81)).

Problem 4.5. Consider it

B(n) :/0 1+ £2)(1+ tn) (482)

Plot the integrand on the interval 0 < ¢t < 2 for n = 2, 4, 8 and 16. After studying this plot,
devise a simple n > 1 approximation to B(n) and test your approximation by comparison with
a numerical evaluation of B(n) with 0 < n < 40. You'll know that you've done this problem
correctly if comparison of the numerical answer with your approximation is so surprising that
you’ll see the need for exact analytic evaluation of B(n).

Problem 4.6. Evaluate the Fresnel integral

o0
2

Pla) = /0 oo gy (4.83)

Problem 4.7. Euler’s constant is defined by

v € -I'(1). (4.84)

(i) Show by direct differentiation of the definition of the I'-function that:

YE = —/ e 'Intdt. (4.85)
0
(ii) Judiciously applying IP to the RHS, deduce that
1 1— —t —t—1
Ve = /0 ¢ t ° _at. (4.86)

Problem 4.8. This problem uses manyﬂ of the elementary tricks you’ll need for real integrals.

(i) Show that
0 =T _ e—act
Int=[ —— dz. (4.87)
0 xr

3But not all — there is no integration by parts.
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(i) From the definition of the I'-function,

r(z) / e ldt, Rz>0, (4.88)
0
show that the digamma function is
def dInT  T(2) /°° _ 1 dz
lef — — v _ | == Rz>0. 4.89
V() dz I'(2) 0 ¢ (x+1)%] x’ i (4.89)

Hint: Differentiate the definition of I'(z) in (4.88)), and use the result from part (i). (iii) Noting
that (4.89) implies

w(z):lim[/;oe_mdx—/:o L dx], Rz >0, (4.90)

5—0 T (x + 1)2;

change variables with 4 1 = " in the second integral and deduce that:

b(z) = /OOO (eu _ e >du, Rz > 0. (4.91)

U 1—e@

Explain in ten or twenty words why it is necessary to introduce § in order to split the integral on
the RHS of (4.89) into the two integrals on the RHS of (4.90)). (iv) We define Euler’s constant
as

ve & (1) = —T/(1) = 0.57721 - - (4.92)
Show that
0 o=U _ o UL
= — d
1/1(2) YE +/O 1—e U u,
1 1 — z—1
= —")/E +/ v dv
0 1 — v

(v) From the last integral representation, show that

> 1 1
IS pp— ( - )
E 7;) n+1 n-+z

Notice we can now drop the restriction Rz > 0 — the beautiful formula above provides an
analytic extension of ¢(z) into the whole complex plane.

Problem 4.9. Use pie-shaped contours to evaluate the integrals

oo d o0
A= / 7963 , and B = / cosz? dz . (4.93)
0 1+ 0

Problem 4.10. Use the Fourier transform to solve the dispersive wave equation
U = Vlggy with IC u(z,0) = §(z). (4.94)
Express the answer in terms of Ai.
Problem 4.11. Solve the half-plane (y > 0) boundary value problem
Ylgg + Uyy = 0 (4.95)

with u(z,0) = cos gz and limy_,o u(x,y) = 0. Is there a y < 0 solution?
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Lecture 5

Some easy integrals

In this lecture I'll give you a superpower so that you’ll be able to approximately evaluate these
integrals

B - 2 " N
A:/e_ 1+trdt, B:/cosmfe dt, C:/ dt, 5.1
; Y% ; (mt) Ve (5.1)

by inspection. Other integrals, such as

D= / CEUE and E= / e 200+ /o 42 qp (5.2)
-1

-1

will offer only slightly more resistance. All of these are easy integrals.

5.1 Integrals dominated by a peak

The integrals in (5.1)) and (5.2)), including D, all have the form

I(z) = / (090 d (5.3)

where x is a large positive number. In this case the integrand is largest at the point ¢, defined
by
def .
t, = min ¢(t). (5.4)

There are two main cases depending on whether ¢, is at one of the end-points a or b, or
somewhere in the middle of the interval.

t, at an end-point

We bash out the large-x approximation to

def ye—xsinht
L = —dt. 5.9
@) [T (55)

In this case ¢ = sinht and t, = 0. When z > 1

& 1
L(z,y) ~ /0 e Thdt = —. (5.6)

T
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Provided that y > 1/z the result is independent y. With the same trick you should now be
able to approximately evaluate the integrals A and C' in (/5.1))
Now suppose that = in (5.7) is a large negative number. In this case

Y e|:t|sinht
L(z,y) :/0 Wdt, (5.7)
where |z| = —z > 1. We assume that y > 0 so that t, = y. It helps to change variables to
Td:eft—ysothat
0 le|sinh(y+)
L(z,y) = /_ycosh(wdf. (5.8)
When |z| > 1
0 olzlsinhy+|z|coshy T el@lsinhy
L(z,y) ~ /OO " dr = eleosiZy (5.9)

You should now be able to approximately evaluate the integral B in (5.1)).

Exercise: Show that 1 inh
Loy 4 1= Lo oRCsnhy). (5.10)

Check the results above by finding two-term dominant balances in the (5.10) as z — oo and © — —oo. (I
don’t see how to the x — —oo result from (5.10) — but it must be possible.)

t, in the interior of the interval

‘We consider y L
M(z,y) déf/ oo (3=30) ¢ (5.11)
0

In this case ¢ = it‘l — %t2 with minimum at ¢, = 1. We suppose that y > 1 so that ¢, is in the

interior of the interval.
Exercise: Consider and suppose that t, = b with ¢(t) = ¢(b) + ¢’ (b)(t — a) + O(t — a)?. Show that
sz@ﬁjﬂi. (5.12)
|¢"(0)]

Make sure you understand where the |¢’(b)| comes from. Now do the orther case in which ¢, = a and @(t)
has a Taylor series expansion around ¢ = a.

5.2 The Gaussian approximation

Consider P
1 ™
¥l / (cost)™ dt. (5.13)

T J—7/2

With a little integration by parts one can show that

I, = <1 _ :L) s, (5.14)

Then, since Iy = 1 and I} = 2/, it is easy to compute the exact integral at integer n recursively.
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Figure 5.1: The exact evaluation of
(5.13) is solid lines connecting the x’s
and the leading-order asymptotic esti-
mate is the dashed curve. The
improved result in is the dotted

curve.

Let’s use Laplace’s method to find an n — oo asymptotic approximation. We write the

integral as

1 w/2
I, = 77/ /zenlnCOStdt, (5.15)
—Tr
and then make the small t-approximation
t2 t2
Incost =1In <1—2> S (5.16)
Thus the leading order is obtained by evaluating a gaussian integral
[ Ry
I, ~ W/ T2 4, (5.17)
—0oQ
2

Figure [5.1] compares this approximation to the exact integral. Suppose we’re disappointed
with the performance of this approximation at n = 5, and want just one more term. The easiest

way to bash out an extra term is

2t
Incost =1In <1— §+ﬂ+ O(t6)> , (5.19)
2 6 1 /12 RE 6
_(E_t - 2
(2 24+O(t)>+2(2+0(t)> +0(t9), (5.20)
2 p
=— - t 21
and then
1 o0
I, ~ — / e /2 gt /12 gy (5.22)
== " 1—— | dt 2
. /Ooe ( ) ar, (5.23)
2 1
=/ —(1--—). 24
™ < 4n> (5:24)
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This works very well at n = 5. In the unlikely event that more terms are required, then it is
probably best to be systematic: change variables with v = —Incost and use Watson’s lemma.

Exercise: Show that
2 (e ™dv

I, = — — 5.25

w )y VE—1 (52)

and use Watson’s lemma.
5.3 The Gaussian approximation with a moving maximum
Large s asymptotic expansion of a Laplace transform
Let’s consider the Laplace transform
o0 1
L {e_l/t} = / e 1%t dt, as s — 00. (5.26)
0
In the exponential in ((5.26]) have x defy-1 4 st, and
dy 1

Thus the integrand is biggest at t, = s~ /2 — the peak is approaching ¢t = 0 as s increases.
Close to the peak

1
X = X(0) + 5X" (Bt = 1)" + Ot = 1.)%, (5.28)
— 2512 4 532 (1 — 5722 L Ot — 1) (5.29)

The width of the peak is s~3/4 < s~1/2, s0 it helps to introduce a change of variables
v & g3/ (t— 3_1/2) . (5.30)

In terms of the original variable ¢t the peak of the integrand is moving as s increases. We make
the change of variable in so that the peak is stationary at v = 0. The factor s>/% on the
right of ensures that the width of the v-peak is not changing as s — oc.

Notice that ¢ = 0 corresponds to v = —s'/4% — —oco. But the integrand has decayed to
practically to zero once v > 1. Thus the lower limit can be taken to v = —oo. The Laplace
transform is therefore

o0
r [efl/t} N 33/4e281/2/ e dt, as s — 00. (5.31)
—0

N———
=7

This Laplace transform is exponentially small as s — 0o, and of course the original function
was also exponentially small as ¢ — 0. I trust you're starting to appreciate that there is an
intimate connection between the small-t behaviour of f(¢) and the large-s behaviour of f(s).

Remark: the Laplace transform of any function must vanish as s — co. So, if you're asked
to find the inverse Laplace transform of s or esz, then the answer is that there are no function
with these transforms.
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Stirling’s approximation

A classic example of a moving maximum is provided by Stirling’s approzimation to n!. Starting

from ~
I'(z+1) :/ tYe tdt, (5.32)
0
let’s derive the fabulous result
T\® 1 9
[(x+1) ~V2rx (E) <1+12x+0(:z )) , as r — 00. (5.33)

At z = 1, we have from the leading order 1 ~ /27 /e = 0.9221, which is not bad! And with the
next term v/2m/e x (13/12) = 0.99898. It only gets better as z increases.
We begin by moving everything in (5.32)) upstairs into the exponential:

Fz+1)= /Oooe_x dt, (5.34)

where
Y ot —t. (5.35)

The maximum of y is at ¢, = x — the maximum is moving as = increases. We can expand y
around this moving maximum as

i )2
X:mlnm—x—i—(f)—&—O(t—:I:)?’, (5.36)
=zlnz—z—v?, (5.37)

where v % (t — x)/v/2x is the new variable of integration. With this Gaussian approximation

we have ~
I(z+1)= eﬂ“—wm/ e dv . (5.38)
—00

—_———
=7

This is the leading order term in ([5.32)).
Exercise: Obtain the next term, 1/12z, in ((5.32).

Example: Find the leading order approximation to

< tTe Tt dt
M) [ == :
@ [T (539)
It is necessary to move all functions upstairs into the exponential, and after some algebra I found
z—2\""?
A(z) ~ V2rx < S ) , as T — 0o. (5.40)

I'm about 80% sure that this is correct.
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5.4 An example of uniform approximation

Consider a function of two variables E| defined by:
J(z,0) < / o w(sinhi—at) gy (5.41)
0

Let’s study the asymptotic limit of J(z,a) as  — oo with « fixed. Introduce

d
0] L Ginht — ot , and note that d—(f =cosht — . (5.42)

The location of the minimum of ¢ crucially depends on whether « is greater or less than one.
If a < 1 then the minimum of ¢ is at ¢t = 0 and

J(z,a < 1) N/ emr=tgy (5.43)
0
1
= m s as r — 00, and « <1 fixed. (544)

If &« > 1, the minimum of ¢(¢) moves away from ¢ = 0 and enters the interior of the range
of integration. Let’s call the location of the minimum ¢, («a):

cosht.(a) = a, and therefore te(a) =1In (a +va?— 1) . (5.45)
If > 1 then t,(«) is real and positive. Notice that

o(tx) =sinht, — at, = Va2 — 1 — at.(«a), (5.46)

and
@"(ti) =sinht, = Va2 —1. (5.47)

Then we expand ¢(t) in a Taylor series round ¢,:

1
(1) = 6(t) + 5 (t = £)°¢" (t) + Ot — 1.)* (5.48)
To leading order
Tz, 0> 1) ~ o2 / Tt (t) gy (5.49)
Notice we’ve extended the range of integration to ¢ = —oo above. The error is small, and this

enables us to evaluate the integral exactly

2
zf(a)’

J(z, o> 1) ~ e (@) as ¢ — oo with a > 1 fixed. (5.50)

IThis function is related to the Anger function

A, (x) dof /0 exp (—vt — xsinht) dt.
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If we use the expressions for t,(«) and ¢ («) above then we obtain an impressive function of
the parameter a:

J(x,a > 1) ~

27r16Xp <—ﬂ:\/a2 —1) <a—|— va2z— 1>m ,

v a2 —

as v — oo with a > 1 fixed. (5.51)

Comparing with , we wonder what happens if « = 17 And how does the asymptotic
expansion change continuously from the simple form in to the complicated expression in
(5.51) as a passes continuously through 17

Regarding o = 1, notice that as x — oc:

J(z,1) = / e~oinhi=t) q¢ (5.52)
0

~/ et/ gt (5.53)
0

— 21/3372/3p (;) 713, (5.54)

Despite the impression given by both (5.44) and (5.51)), J(x, 1) is not singular.
We’re interested in the transition where « is close to 1, so we write

014 (5.55)
where € is small. Then
J(z,a) ~ /000 vl 4t = = 1/3 /OOO T3 dr (5.56)
where £ is a similarity variable:
¢ (a—1)2%3. (5.57)

The transition from (5.44) to (5.51) occurs when a — 1 = O(z~%/3), and & = O(1). The

transition is described uniformly by a special function
oo
NGRS / T3 dr (5.58)
0

Our earlier results in (5.44)), (5.51]) and (5.54]) are obtained as special cases by taking & — —oo,
& — +ooand £ =0 in J(§).
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5.5 The central limit theorem

5.6 Problems

Problem 5.1. Find the x — oo leading-order behaviour of the integrals

1 1
Az) = / et qr, B(z) = / ot gt (5.59)
1 4 1 .
Clz) = / e dt, D(z) = / et dt, (5.60)
E(z) = / e w4 gt F(z) = / ettt /4 qt (5.61)
0 —00
o0 e—t2 0o et2
/2 ) w/2 L
I(z) :/ e~vsectdt, J(z) :/ e TS g (5.63)
0 0
1 1
K(x)z/(1—t2) e Tcosht gt L(x):/(l—tZ) e@eosht gt (5.64)
-1 1

Problem 5.2. Consider
def kx—P
V(z, k,p) = / e Teosht gy as r — oo. (5.65)
0

Find a leading-order approximation to (i) V(x,k,1); (ii) V(x,k,1/2) and (iii) V(z, k,1/4).
Hint: In one of the three cases you’ll need to use the error function.

Problem 5.3. Show that

1 n
t T e
¢ /
/Oe <1+t2> dt ~ 5 o as n — 0o. (5.66)

Problem 5.4. Show that

m 7Tn+2
/t” sintdt ~ ——, as n — oo. (5.67)
0 n
Problem 5.5. Consider a harmonic oscillator that is kicked at ¢ = 0 by singular forcing
1
Ttz = T (5.68)
(i) Show that a particular solution of ((5.68)) is provided by the Stieltjes integral
o] e—st ds

t) = —_— . 5.69
o0 = [ 5 (5.69)

(i) Find the leading-order the behaviour of x(t) as t — oo from the integral representation
(5.69). (iii) Show that this asymptotic result corresponds to a two-term balance in (5.68)). (iv)
Evaluate x(0). (v) Can you find £(0)? (vi) If your answer to (v) was “no”, what can you say
about the form of z(¢) as ¢ — 07 Do you get more information from the differential equation,
or from the integral representation?
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Problem 5.6. The beta function is

1
B(z,y) % / 711 — )yl e (5.70)
0
With a change of variables show that
B(z,y) :/ e (1 —e ") du. (5.71)
0
Suppose that y is fixed and x — co. Obtain the leading order approximation
I'(y)

Go to the Digital Library of Special Functions, chapter 5 and find the relation between the beta
function and the gamma function. (You can probably also find this formula in RHB, or any
text on special functions.) Use this relation to show that
I'(x) 1
Lx+y) av
Remark: this result can also be deduced from Stirling’s approximation, but its a rather messy
calculation.

, as r — 00. (5.73)

Problem 5.7. Find an asymptotic approximation of

00 —n(x2+y
// (e dzdy as n — oo. (5.74)

Problem 5.8. Find the leading-order asymptotic expansion of
def [t
M(z) % / ot gt (5.75)
0

as x — oo and as T — —oo.

Problem 5.9. Find the first two terms in the asymptotic expansion of

def [ n —t2_2
N(z) L / fre=t% (5.76)
0
as r — oQ.

Problem 5.10. Show that

/Oooe—x< ! )ndxwx/%("_l)n as n — 0o. (5.77)

14+e N3

[N

(I am 80% sure this is correct.)

Problem 5.11. (i) Draw a careful graph of x(t) = (1—2t2)2 for —2 <t < 2. (ii) Use Laplace’s
method to show that as x — oo

1/2 1

and determine the constants p and ¢. Find asymptotic expansion as x — oo of

1 1
(i) / VItte™XDdae, (i) / VIFte™XWde, (5.79)
0 —1

Calculate the expansion up to and including terms of order z—3/2¢?.
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Figure 5.2: A comparison of F(x) com-
puted from ((13.84)) using MATLAB (solid
curve) with the asymptotic approxima-
x ' tion (dashed curve).

Problem 5.12. Consider the function
[e%s) t3
F(z) = / exp (—3 + azt> dt. (5.80)
0

(i) F(x) satisfies a second-order linear inhomogeneous differential equation. Find the ODE
and give the initial conditions F'(0) and F’(0) in terms of the I'-function. (i) Perform a local
analysis of this ODE round the irregular singular point at * = co and say what you can about
the large x behaviour of F(x). (iii) Use Laplace’s method on to obtain the complete
x — oo leading-order approximation to F(x). (iv) Numerically evaluate and make a
graphical comparison with Laplace’s approximation on the interval 0 < x < 3 (see figure .

%% MATLAB script for Laplace’s method.

%%You’1ll have to supply the 7??7’s and code {\tt myfun}.
clear

xx = [0:0.05:3];

nloop = length(xx);

FF = zeros(1,nloop); % Store function values in FF
uplim = 10; %10=\infty for the upper limit of quad?
lowlim = realmin; % avoid a divide-by-zero error

for n=1:nloop
F = quad(@(t)myfun(t,xx(n)),lowlim,uplim);
FF(n) = F;

end

plot (xx,FF)

hold on

approx = sqrt(??)*xx.”(-77).*exp(2*xx."(?77)/3);

plot (xx,approx,’--’)

hold off

xlabel(’x’)

ylabel (’F(x)’)

81



o
e

e}
b=
© 0.6
o0
g
E 0.4

Figure 5.3: Upper panel is the exact integrand in (the solid curve) and the Gaussian
approximation (dashed). Lower panel compares the F(z) obtained by numerical quadrature
(solid) with the asymptotic approximation. The comparison is not great — problem asks
you to calculate the next term in the asymptotic expansion and add that to the figure.

Problem 5.13. Find the first few terms in the £ — oo asymptotic expansion of

1 2

def xt
F = — dt. 5.81
(2) /Oexp< . +t> (5.81)

Improve figure by adding the higher-order approximations to the lower panel.

Problem 5.14. Find the first two terms in the x — oo expansion of

T

Y(z) & / et/ (4% g (5.82)
0

Problem 5.15. Show that as x — oo

/Ooe_tdt o i+i+0(*3) (5.83)
R ° |2z T 82 * ) '
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Lecture 6

What is asymptotic?

In this lecture I introduce the concept of asymptoticity and demonstrate the utility of divergent
series. A secondary theme is the utility of integration-by-parts — I bet you don’t know how
useful IP is.

6.1 An example: the error function

We consider the error function

erf(z f / (6.1)

The upper panel of Figure shows erf, and the complementary error function
def 2 [ e
erfe(z) = 1 —erf(z2) = / e dt, (6.2)
VT ).
on the real line.

The series on the right of
—t2 = (—tz)n
n=0
has infinite radius of convergence i.e. e~ is an entire function in the complex t-plane. Thus
we can simply integrate term-by-term in (6.1)) to obtain a series for erf(z) that converges in the
entire complex plane:

) > n 2n+1
f(z — 6.4
erf( ﬁ 2n 2n+1)n!’ (64)
n:0
2 1.3 1.5 1.7 1 .9 1 11
= 7\/E (Z — gZ + TOZ — EZ + mz — 713202 ) +R6, (65)

=erfs(2)

where erfg(z) is the sum of the first six terms and Rg(2) is the remainder after 6 terms.
The lower panel of Figure[6.1|shows that erf,, (the sum of the first n nonzero terms) provides
an excellent approximation to erf if |x| < 1. With matlab we find that

erf(1) —erfio(1) _8 erf(2) — erf1p(2)
o) —1.6217x 1078,  and o)

= 0.0233. (6.6)
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erf(z) and erfc(x)
o
(9]
T
|

05| 4

2 -1.5 1 0.5 0 0.5 1 1.5 2
x
1.5
8
= 1L »
b :
5 05| ,
> 8 Vs
< ,,
o 0f / |
= e |
5]
-1.5 ! I ! | !
-3 2 1 0 1 2 3
T

Figure 6.1: Upper panel: the blue curve is erf(z) and the red curve is erfc(z). Lower panel
shows erf(z) and truncated Taylor series erf, (z), with n =1,2---, 20.

The Taylor series is useful if |z| < 1, but as |z| increases past 1 convergence is slow. Moreover
some of the intermediate terms are very large and there is a lot of destructive cancellation
between terms of different signs. Figure [6.2] shows that this cancellation is bad at z = 3, and it
gets a lot worse as |z| increases. Because of round-off error, a computer with limited precision
cannot accurately sum the convergent Taylor series if |z| is too large. Convergence is not as
useful as one might think.

Now let’s consider an approximation to erf(z) that’s good for largeﬂ x. We work with the
complementary error functions in (6.2)) and use integration by parts

erfe(z f / < ) Setar, (6.7)

6.8
f A f (6.3)
If we discard the final term in we get a useful approximationﬂ
e’
erfc(x) ~ as T — 00. (6.9)

L

1We restrict attention to the real line: z = x + iy. The situation in the complex plane is tricky — we’ll return
to this later. We also defer the definition asymptotic approximation.
2Th . @ . . s . . . .
e ~ in denotes “asymptotic equivalence” and is defined in section In it means that

lim ﬁxelzerfc(x) =

T—r00
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Figure 6.2: The terms in the Taylor series with £ = 3. The sum of the series — that
is erf(3) — is very close to 1. But there are cancellations between terms of order £200 before
convergence takes hold. The problem quickly gets worse: at © = 4 the largest terms in the
series exceed 10°.

The upper panel of Figure|6.3|shows that this leading-order asymptotic approximation is reliable
once x is greater than about 2 e.g. at x = 2 the error is 10.5%, and at x = 4 the error is less
than 3%.

Remark: Equation (6.8) has three terms. Discarding the final term is equivalent to asserting that as z — oo

there is a two-term dominant balance in . The machinations following in (6.10) through (6.14) verify
consistency.

Exercise: If we try integration by parts on erf (as opposed to erfc) something bad happens: try it and see.

Why does the approximation in work? Notice that the final term in can be
bounded like this

2 [®e 2 [ 1 2
— ——dt = = — x 2te U dt 6.10
\/%/x 212 \/E/z a3 e 4 (6.10)
<21/m2t4%t (6.11)
- € ) .
v odxd
2 e
© (6.12)

= ﬁ P
The little trick we’ve used above in going from (6.10)) to is that
11

4¢3 ~ 43
Pulling the (4z)~3 outside, we're left with an elementary integral. Variants of this maneuverer
appear frequently in the asymptotics of integrals (try the exercise below).

Using the bound in (6.23]) in we have

2 e 2 e
erfe(z) = — something which is much less than —

VT 2x NZ2

Thus as * — oo there is a dominant balance in (6.14]) between the left hand side and the first

term on the right. The final term is smaller than the other two terms by a factor of at least
—2

xe.

t>z, = (6.13)

2

+ as r — 0o. (6.14)

Exercise: Prove that .
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Figure 6.3: Upper panel shows erfc(x) divided by the leading order asymptotic approximation

on the right of ; as © — oo the ratio approaches 1. The lower panel shows erfc(x) divided
by an n-term truncation of (6.28) with n =1, 2, 3 and 4.

One more term

We can develop an asymptotic series if we integrate by parts successively starting with :
2
e " 1 <1 1\ d
— / o Gy Ze dt, (6.16)

S 1 3 o0 o=t?
Ro

erfc(z) =

We use the same trick to bound the remainder:

3 [ _9tet 3 g 3 )
Ry = — dt< —2_ | ZePdt=—2 ¢, 6.18
2T T m /x 5 4 /ra’ L at’ 4 /ma5" (6.18)

As © — oo the remainder Rp(z) is much less than the second term in the series, so we can
suppress some information and write

erfe(z) = % [1 - % +0 (;)} . (6.19)

The big O notation used above is explained in section — it means that 2* times the term
O(z~%) is bounded by some constant as x — oo.
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Yet more terms: the asymptotic series

Exercise: show that -
2 2
/ t7% At =127 em T L(g 1) Jgun. (6.20)
4

| S —
Jq

Using the result in the exercise above we integrate by parts N times and obtain an exact
expression for erfc(z):

g2 N-1 n 0 e—t2
erfe(r) = “— 3" (2n — 1)1 <—21> +(_1)N(2N_1>”\2f/x et (621

- Vrr = x? T

~
N terms Ry

Above, Ry(x) is the remainder after N terms and the “double factorial” is 71! =7-5-3-1 etc.
To bound the remainder we use our trick again:

202N — DI [ (e 1),
Ry| = dt 6.22
Ryl = 2l [T e ar, (6:22)
(2]\7 — 1)” .2
= W e (6.23)
We have shown that Ryl oN 1
N _
< 6.24
Nth term of the series = (2z)2 ’ (6:24)
or equivalently
|Ry| < term N + 1 in the asymptotic series . (6.25)

Thus the first term we neglect in the expansion is an upper bound on the error as r — oo.
And if we fix N and increase z then the approximation to erfc(x) obtained by dropping the
remainder gets better and better. But the limits

T — 00 and N — o0 (6.26)

don’t “commute”. In other words, if we fix x at some large value, such as x = 3, and increase N
then the approximation gets better for a while, but then goes horribly wrong. This behaviour
is illustrated in figure [6.4] which shows how

_ def N-term approximation to erfc(x)
relative error =

erfe(x) -1 (6:27)

depends on both NV and x in our erf example.

Numerical use of asymptotic series — the optimal stopping rule

Suppose an unreasonable person insists on ignoring the simple limit z — oo and instead de-
mands the best answer at a fixed value of z, such as z = 2. How many terms in the series

erfc(z) ~

g2
1 1x3 1x3x5 1x3x5x7
° <— ey — o b e +O(:1:_10)> (6.28)

A\ 22 T e T P T )

should one use to appease this tyrant? The numerators above are growing very quickly so at
a fixed value of = this series for erfc(z) diverges as we add more terms. But Figure shows
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Figure 6.4: The absolute value of the relative error as a function of the number of terms used
in the asymptotic series (6.28]).

that at fixed x there is an optimal value of N at which the relative error is smallest. How do
we find this best asymptotic estimate?

We showed above in and that as x — oo the remainder Ry (z) is less than the
(N + 1)st term in the series. Thus a good place to stop summing is just before the smallest
term in the series: we know the remainder is less than this smallest term. In practice we get
good accuracy if we use the optimal stopping rule: locate the smallest term in the series and
add all the previous terms. Do not include the smallest term in this sum.

The optimal stopping rule is a rule of thumb not a precise result — the remainder Ry is less
than the (N + 1)st term only when « is sufficiently large i.e. in the limit x — co. We have no
assurance that this inequality applies at a particular value of x.

We illustrate the optimal stopping rule by estimating erfc(2). With z = 2 the sum is

—4

fo(2) e (1 1 + 3 15 n 105 945 n 10395 n )
erfc ~ - = — = — — )
~——— 2/ 8 64 512 4096 32768 262144
4.67773%1073 5 16675x 103 0.0125 0.046875 0.0292969 0.0256348  0.0288391  0.0396538

(6.29)
The smallest term is 105/4096. The optimal approximation is obtained by stopping before the

smallest terms: 1 3 15
0051 (1_7 7_7):. 461172 :
0.0051667 8+64 £1o 0.0046117 (6.30)

The relative error is 0.0141116, or about 1.4%.
We get a much better answer by including half of the smallest term in the asymptotic series:

1 3 15 1105
.0051 l——4+———+-—-)=0.004 . 31
0.005 667( st 61t 24096) 0.00467795 (6.31)
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With this mysterious improvement the relative error is now —0.000046. We should explain why
adding half of the smallest term works so well. (Bender & Orszag and Hinch don’t mention

Exercise: erfc(1) = 0.157299 and the leading-order approximation is e !/y/7 = 0.207554. The relative error
is therefore 0.31948 which seems unfortunately large. Show that according to the optimal stopping rule
the leading-order approximation is optimal. Does adding half of the smallest term significantly reduce the
error?

6.2 Landau symbols

Let’s explain the frequently used “Landau symbols”. In asymptotic calculations the Landau
notation is used to suppress information while still maintaining some precision.
Gauge functions

First we need to explain gauge functions. These are simple functions that we use to compare a
complicated f(e) with. The gauge functions we’ve used most frequently are

do(e) =€, o1(e) =€, ¢1(e) =¢*, and so on with ¢, (e) = €™ (6.32)
More generally, a sequence of gauge functions {¢g, @1, - } is asymptotically ordered if
M—m, as e — 0. (6.33)
dn(e)

In practice the ¢’s are combinations of powers and logarithms:

€, Ine, €"(lne)?, Inlne ete. (6.34)
Exercise Suppose ¢ — 0. Arrange the following gauge functions in order, from the largest to the smallest:

¢, ln(ln%), et QUVE O ln% (6.35)

_ 1 1
e Ve, /3 e eln® =, —, e, (6.36)
€

Big Oh

We frequently use “big Oh” — in fact I've done this without defining O! One says f(e) = O(¢(€))
as € — 0 if we can find an e¢g and a number A such that

|f(e)] < Alo(e)], whenever € < €.

Both ¢y and A have to be independent of €. Application of the big Oh notation much easier
than this definition suggests. Here are some ¢ — 0 examples

sin 32e = O(e) , sin 32¢ = O(e'/?) e =0(e?),

cose —1 = O(e/?), 6+628in120(6),
€
sin1 =0(1), e Ve = O(e") for all n.
€
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The expression

2 2
cose=1— % +0(e) means cose — 1+ % = 0(e%). (6.37)
In some of the cases above
lim £(6) (6.38)
e—0 (6)

is zero, and that’s good enough for O. Also, according to our definition of O, the limit in
may not exist — all that’s required is that ratio f(e)/¢(¢) is bounded by a constant independent
of € as ¢ — 0. One of the examples above illustrates this case.

The big Oh notation can be applied to other limits in obvious ways. For example, as x — oo

sinz = O(1), V1422 =0(z?), Incoshx = O(x). (6.39)
Asz —1
In(1+z+2%) —2=0(?%. (6.40)
Little Oh

Very occasionally — almost never — we need “little Oh”. We say f(e) = o(¢(¢)) if for every
positive § there is an ey such that

[f(e)] < élo(e)], whenever € < €.

Another way of saying this is that

f@=oot) = i€ (6.41)
Obviously f(e) = o(¢(e)) implies f(e) = O(¢(¢€)), but not the reverse. Here are some examples
In(1+¢€) =o(e’?),  cose—1+ 622 =o(e®), 9 =1+o0(). (6.42)

The trouble with little Oh is that it hides too much information: if something tends to zero we
usually want to know how it tends to zero. For example

In(1+2e % +3e %) =0 (e*’”/2> , as T — 00, (6.43)
is not as informative as

In(l1+2e*+3 ) =0 (e™), asz— o0, (6.44)

Asymptotic equivalence

Finally “asymptotic equivalence” ~ is useful. We say f(e) ~ ¢(€) as € — 0 if

f(e)

lim @ =1. (6.45)
Notice that
fleg~dle), & fle)=d(e)[1+o(e)] - (6.46)
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Some € — 0 examples are

sin € €
—_— ~ 1 —1~—. 4
€+ n(1/6) €, and V1i+e 5 (6.47)

Some x — oo examples are

T 3

. x
sinhx ~ R and

14 22

+sinz ~ x, and z+In(1+e*) ~3z.  (6.48)

fcas ~ i af o 4
Exercise: Show by counterexample that f(z) ~ g(x) as x — oo does not imply that §Z ~ $Z, and that

f(z) = g(z) as  — co does not imply that ef ~ e9.

6.3 The definition of asymptoticity

Asymptotic power series

Consider a sum based on the simplest gauge functions €":

o
Z an€’ . (6.49)
n=0

This sum is an € — 0 asymptotic approximation to a function f(e) if

lim fle) — 27]:[:0 an€”

e—0 EN

=0. (6.50)

The numerator in the fraction above is the remainder after summing N + 1 terms, also known
as Ry+1(€). So the series in is asymptotic to the function f(e) if the remainder Ry 1(€)
goes to zero faster than the last retained gauge function €. We use the notation ~ to denote
an asymptotic approximation:

fe) ~ Zane", as € — 0. (6.51)
n=0

The right hand side of is called an asymptotic power series or a Poincaré series, or an
asymptotic representation of f(e).

Our erf-example satisfies this definition with e = 2.
series then the remainder is

If we retain only one term in the

2 [t
Ry = ﬁ/m St (6.52)
In we showed that
i L (6.53)

2 S 7
e~ [\/nx x

Thus as z — oo the remainder is much less than the last retained term. According to the
definition above, this is the first step in justifying the asyptoticness of the series.

Exercise: Show from the definition of asymptoticity that

eV 0+0e+0+0+- asel0. (6.54)

91



A problem with applying the definition is that one has to be able to say something about the
remainder in order to determine if a series is asymptotic. This is not the case with convergence.
For example, one can establish the convergence of

i In(n+2)z", (6.55)
n=0

without knowing the function to which this mysterious series converges. Convergence is an
intrinsic property of the coefficients In(n + 2). The ratio test shows that the series in
converges if |x| < 1 and we don’t have to know what is converging to. On the other
hand, asympoticity depends on both the function and the terms in the asymptotic series.

Example The famous Stieltjes series
oo}

S(x) €N (=) nla” (6.56)
n=0
does not converge unless = 0. In fact, as it stands, S(z) does not define a function of . S(z) is a formal
power series. And we can’t say that S(z) is an asymptotic series because we have to ask asymptotic to
what? But now observe that

nl = / t"e" dt, (6.57)
0

and substitute this integral representation of n! into the sum (6.56)). There is a moment of pleasure when
we realize that if we exchange the order of integration and summation then we can evaluate the sum to

obtain t
det [ e~
F = . .
(@) /0 o (6.58)

Because of the dubious steps between (6.56) and (6.58), I’'ve simply defined F'(z) by the integral above.
But now that we have a well defined function F(z), we're entitled to ask is the sum S(z) asymptotic to
F(z) as £ — 07 The answer is yes.

The proof is integration by parts, which yields the identity

oo -t
Fz)=1—az+22" —3* + - (=) V(N —1)1zV " + (—1)NN!90N/0 (Hexw dt.  (6.59)
:RN
It is easy show that
|Rn(z)] < Nz, (6.60)
and therefore
lim (@ (6.61)

z=0 (N — 1)l gN-1
Above we’re comparing the remainder to the last retained term in the truncated series. Because the ratio
goes to zero in the limit the series is asymptotic.

Exercise: Find another function with the same x — 0 asymptotic expansion as F'(z) in (6.58).

Example: Dawson’s integral is .
D(z) % e‘zz/ e dt. (6.62)
0

The integrand is strongly peaked near t = x, where the integrand is equal to ™. The width of this peak
is order z=1. Thus we expect that the answer is something like
D) ~e ™ Le? = 2 (6.63)
x T
where 7 is an unidentified number.

To more precisely estimate D(z) for z > 1 we try IP:

x T 2
/ e’ dt:/ide dt, (6.64)
. . 2t dt
2% z t2
(&7 (§]
=|— —dt. 6.65
|:2t o +/0 2t2 ( )
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The expression above is meaningless — we’ve taken a perfectly sensible integral and written it as the
difference of two infinities.

A correct approach is to split the integral like this

x 1 x 2
2 2 1 de
dt = dt — ——dt 6.66
/0 ¢ /0 ¢ +/1 2 dt (6.66)
1 .2 2% z etz
= dt — —dt 6.67
/0 MR 57 ) +/1 212 (6.67)
1 22 z 2
+2 1 € e
= dt — 3 — —dt 6.68
/0 e se+ 7 -l—/1 oz 4t (6.68)
N—— N——
a number R
e
~ o as T — 00. (6.69)
Thus 1
D(z) ~ o as T — 0. (6.70)

Back in we split the range at ¢ = 1 — this was an arbitrary choice. We could split at another
arbitrary value such as t = 32.2345465. The point is that as © — oo all the terms on the right of (6.68|)

are much less than the single dominant term 612/21 If we want the next term in (6.70)), then that comes
from performing another IP on the next biggest term on the right of (6.68)), namely

R(z) = /lx Z? dt. (6.71)

To show that (6.69)) is a valid asymptotic approximation according to the definition of Poincaré — with
e=12""and N = 1 in definition (6.50) — we should show that R(z) in (6.71)) is very much less than the

leading term, or in other words that
2
. fle /2% de
lim -5 4 = 0
z—oo % [2x

(6.72)

Exercise: Use I’Hopital’s rule to verify the result above.

Uniqueness

If a function has an asymptotic expansion in terms of a particular set of gauge function then
that expansion is unique. For example, using the 6 — 0 gauge functions 6", the function sin 26

can be expanded as
, 4603 5
Sln29:2¢9—?+0(9 ) (6.73)

and that’s the only asymptotic expansion of sin # using ™. In this sense asymptotic expansions
are unique.

The converse is not true: two different functions might share an asymptotic expansion
because they differ by a quantity that is asymptotically smaller than every gauge function. For
example, as 6 | 0

o 29)2n+1
sin20 + e /0 ~ 2(71)"(7 . (6.74)
= (2n + 1)!

The right of (6.74]) is also the asymptotic expansion of sin 26 in terms of the gauge functions
0.

A given function can also have multiple asymptotic expansions in terms of different gauge
functions. For example, consider the 8§ — 0 gauge functions sin™ 6, for which

sin20 = 2sin” @ — sin® 6 + O (sin®0) . (6.75)
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Or gauge functions tan™ @, for which

sin20 = 2tan® — 2tan® 6 + O (tan”0) . (6.76)

Manipulation of asymptotic expansions

If we have two € — 0 asymptotic power series
[ee] o
f~ Z ane”, and g~ Z an€’" . (6.77)
n=0 n=0

then we can do what comes naturally as far as adding, multiplying and dividing these expan-
sions.

If f and g are represented by the generalized asymptotic series in then we have a
minor problem with multiplication: ¢,,®, may not be a member of our set of gauge functions.
In this case we can simply enlarge the set of gauge functions — provided that the expanded set
can be ordered as € — 0. (I can’t think of an example in which this is not possible.)

Exercise: Noting that

1 1
e(1+e)NE as € — 0, (6.78)
is .
~ 1/e
exp <€(1 T E)) e’°? (6.79)
Asymptotic series can be integrated: if
[ee]
f(z) ~ Z an(x — 20)", as r — o, (6.80)
n=0
then
T S an )
n+
xof(t) dt ~§n+1(x—x0) , as T — Tp. (6.81)

Asymptotic series cannot in general be differentiated. Thus
T +sinx ~ z, as r — 00, (6.82)

but the derivative 14 cos x is not asymptotic to 1. Note however that BO section 3.8 discusses
some useful special cases in which differentiation is permitted.

6.4 The Taylor series, with remainder

We can use integration by parts to prove that a function f(x) with n derivatives can be rep-
resented exactly by n terms of a Taylor series, plus a remainder. The fundamental theorem of
calculus is

f(2) = f(a) + / " e e (6.83)
- R
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If we drop the final term, R;(z), we have a one-term Taylor series for f(z) centered on x = a.

To generate one more terms we integrate by parts like this
v d
f@) = f@)+ [ f’<s>;£<s ~a)de,
— @)+ - a)f @~ [ 1O - o) de.

f(@) = f(a) + (& — a)f'(a) - / ’ f”(g)il(f )P de,
= f(a) + (2~ a)f(a) + 31" (a) / FE)E — x) de.

If f(z) has n-derivatives we can keep going till we get

a (n=1)(q
f2( )(l,_a)2+..._|_f7()($—a)n_l+Rn(x)7

f(@) = fla) + f'(a)(z —a) + = 1)

=n terms, let’s call this fy(z)

where the remainder after n-terms is

Ry () = "ld
o) = oy [ A =9 e
Using the first mean value theorem, the remainder can be represented as
(n) T
Rufw) = T oy,

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

(6.90)

where T is some unknown point in the interval [a,z]. This is the form given in section 4.6 of

RHB.
Some remarks about the result in (6.88]) through are:

(1) f(x) need not have derivatives of all order at the point x: the representation in (6.88])
and makes reference only to derivatives of order n, and that is all that is required.

(2) Using (6.90), we see that the ratio of Ry(z) to the last retained term in the series is
proportional to x — a and therefore vanishes as * — a. Thus, according to our definition

in (6.50), fn(x) is an asymptotic expansion of f(z).

(3) The convergence of the truncated series f,(x) as n — oo is not assumed: (6.88)) is exact.
The remainder R, (z) may decrease up to a certain point and then start increasing again.

(4) Even if f,(x) diverges with increasing n, we may obtain a close approximation to f(z) —

with a small remainder R,, — if we stop summing at a judicious value of n.

(5) The difference between the convergent case and the divergent case is that in the former
instance the remainder can be made arbitrarily small by increasing n, while in the latter

case the remainder cannot be reduced below a certain minimum.
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Above we are recapitulating many remarks we made previously regarding the asymptotic ex-
pansion of erf.

Taylor series, even when they diverge, are still asymptotic series. This follows immediately
from the results above and the definition of asymptoticity. Let’s illustrate the asymptotic nature
of divergent Taylor series with the elementary problem:

z(e)>=94e¢. (6.91)

Before taking this class you could have solved this problem by arguing that

2(e)=3(1+5)"%, (6.92)

and then recollecting the standard Taylor series

1+2)*=1+az+ a(O;!_ 1)22 + ala - 1?))!(@ ) 24 (6.93)

The perturbation method is laboriously reproducing the special case & = 1/2 and z = €/9.

You should recall from your undergraduate education that the radius of convergence of
is limited by the nearest singularity to the origin in the complex z-plane. With av = 1/2
the nearest singularity is the branch point at z = —1. So the series in problem 1.1 converges
provided that € < 9. Let us ignore this red flag and use the Taylor series with ¢ = 16 to estimate
r(16) = /25 = 5. We calculate a lot of terms with the mathematica command:

Series[Sqrt[9 + ul, {u, 0, 8}].
This produces the series

€ €2 €3 Het Ted 7¢6 11€” 1438

z(e) =3+ =+

(16) ~ 3 + 8 32 256 2560 n 28672 114688 n
T ~ 2 2= I, _ .
243 2187 19683 59049

3 27
~—~
1.18519 1.0535 1.17055 1.45669 1.94225

(6.94)

The fourth term is the smallest term. Stopping short of the smallest term, the sum of the first
three terms is

121
which is a relative error of about 10%. If we include half of the smallest term then
1217
16) ~ —— = 5.0082 )
x(16) 513 5.00823, (6.96)

with relative error 0.00165. This is a good result when working with the “small” parameter
16/9.
6.5 Large-s behaviour of Laplace transforms

The s — oo behaviour of the Laplace transform

Fs) / et f(t)dt (6.97)

0
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provides a typical and important example of IP. But before turning to IP, we argue that as
Rs — 0o, the maximum of the integrand in is determined by the rapidly decaying e™s¢
and is therefore at t = 0. In fact, e=! is appreciably different from zero only in a peak at t = 0,
and the width of this peak is s7! < 1. Within this peak t = O(s~1) the function f(¢) is almost
equal to f(0) (assuming that f(0) is non-zero) and thus

f(s) = £(0) /DOOeSt dt = & (6.98)

S

This argument suggests that the large s-behaviour of the Laplace transform of any function
f(t) with a Taylor series around ¢t = 0 is given by

o) 0 2
/Oe_Stf(t)dt:/O e [f(0)+tf’(0)+';!f”<0)+-~]e‘stdt, (6.99)
N f(SO) +J"’S(QO) +f’;go) L (6.100)

We obtain an improved version of (6.100)) using successive integration by parts starting with
(6.97):

fls) = f(0) 4 f'(0) i f"(0) NS M + si” /(X;stf(n)(t)dt ) (6.101)

s 2 52 s 0

Ry

The improvement over ((6.100) is that on the right of (6.101f), IP has provided an explicit
expression for the remainder R, (s). In section we use (6.101]) to prove Watson’s lemma.

erfc(z) is a Laplace transform in disguise

Let’s convert erfc(x) to a Laplace transform. With the substitution t = w+x into the definition

of erfc in (|6.2]) we have
26_352 o 2
erfc(x) = e W™ oy . 6.102
@ =" (6102

w

The integral above is the Laplace transform of e~ ? with transform variable s = 2z. We can now
reproduce the full asymptotic series for erfc in (6.21)) from (6.101)). Even better we immediately
obtain the leading-order term of the asymptotic expansion by inspection with

0o o0 1
/ 20w, J A / e 2 quy = — (6.103)
0 0

2z

Miscellaneous examples of s — oo Laplace transform asymptotics

Example: A Laplace transform. Find the large-s behaviour of the Laplace transform

1 [e5S] 67“
L|—| = —dt. 6.104
{\/1+t2] /0 V142 ( )

When s is large the function e™*! is non-zero only in a peak located at ¢ = 0. The width of this peak is

s7! <« 1. In this region the function (1 + ¢2)~'/2 is almost equal to one. Hence heuristically

o] 67“ o] et 1
/O ﬁdtfv/o e Mdt = . (6.105)
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This is the correct leading-order behaviour.

To make a more careful estimate we can use integration by parts:

L{;] L1 de (6.106)
Vi+ez] sty vi¥e At '

1 e St 1T 1 [ test
B T I AR 6.107
[ } L e (6.107)

1
=5 Ri(s). (6.108)
As s — oo the remainder R (s) is negligible with respect to s~ and the heuristic (6.107) is confirmed.
Why is Ri(s) much smaller than s~! in the limit? Notice that in the integrand of Ry

—st [e5s}
te —st

1 —st 1
W <te 7, and therefore R(s) < g/O te °'dt = = (6.109)

The estimates between (6.106) and (6.109)) are a recap of arguments we’ve been making in the previous
lectures. The proof of Watson’s lemma in section [6.6] is a slightly more general version of these same
estimates.

To get more terms in the asymptotic expansion we invoke Watson’s lemma, so as s — co:

1 < 2 3t 58 s
N 1- = 20 )] dt 11
z:{ 1+t2] /0 o { o+ =2 o) dr (6.110)
1 1 9 225 9
~E o222 . 111
s 53+s5 57 +O(5 ) (6 )

Because of the rapid growth of the numerators this is clearly an asymptotic series. The Taylor series of
(1 —|—1€2)_1/2 does not converge beyond ¢t = 1. The limited radius of convergence doesn’t matter: Watson’s
lemma assures us that we get the right asymptotic expansion even if we integrate into the region where
the Taylor series diverges. In fact, the expansion of the integral is asymptotic, rather than convergent,
because we’ve integrated a Taylor series beyond its radius of convergence.

We obtain the entire asymptotic series by noting that
1

———— =1+ 2z +62” +202° + 702" + - -- 6.112
Vv1—4dx ( )
where the coefficient of ™ above is the “central binomial coefficient” (2n)!/(n!)?. Thus, with z = —t*/4,

we have

1 > (271,)' n /1\2n > 2n _—st
L{ﬁ]wz(n!y(—l) () /0 2re dt, (6.113)

- 22(71)" ((273)!) (251)% . (6.114)

Example: Another Laplace transform. Consider

H(t) :| /1 675t
Ll—=|=]| —dt, 6.115
L/l—t? 0o V1I—12 (6.115)
1 1 9 22 o
e e e R C ) - (6.116)

This is the same as (6.111)), except that all the signs are positive. The integrable singularity at ¢ = 1
makes only an exponentially small contribution as s — oo.

Example: Yet another Laplace transform. Find the large-s behaviour of the Laplace transform
L [\/1 + et] = / e V1 +et dt. (6.117)
0 W—/
£(®)
In this case f(0) = v/2 and we expect that the leading order is

f~=—=. (6.118)

=[S
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Let’s confirm this using IP:

7 \/i 1/00 —st et
=— — - de. 6.119
T ="5-5) ° e (6.118)
—_——

f(¢)
Notice that in this example f'(t) ~ e’? as t — oo, and thus we cannot bound the remainder using
max;>o f (t). Instead, we bound the reminder like this

1 [ 1 1 11
Ri=- et o <o 6.120
! SA ¢ 2vV1 + e~ t/2 < s2s—1 ( )
~————
<3

at

This maneuver works in examples with f(t) ~e** as t — oo.

6.6 Watson’s Lemma

All the examples in the previous section are a special cases of Watson’s lemma. So let’s prove
the lemma by considering a Laplace transform

f(s) = /OC’Z—st tog(t) dt, (6.121)

where the factor ¢¢ includes whatever singularity exists at ¢ = 0; the singularity must be
integrable i.e. £ > —1. We assume that the function g(t) has a Taylor series with remainder

9(t) = go+ gt + - gnt" +Rppa(t). (6.122)

n + 1 terms

This is a t — 0 asymptotic expansion in the sense that there is some constant K such that
|Rpy1| < Kt (6.123)

Notice we are not assuming that the Taylor series converges.

Of course, we do assume convergence of the Laplace transform as t — oo, which
most simply requires that f(¢) = t¢g(t) eventually grows no faster than e for some +. Notice
that the possibility of a finite upper limit in is encompassed if f(t) is zero once t > T'.

With these modest constraints on t¢g(t):

f(8)=/ et (go + git + - - gnt") dt+/ e R, 1 (1) dt . (6.124)
0 0

I I2

The second integral in (6.124)) is

ee 1
—styn+1+€ 31
Using
S F'n+&+1)
&+ _
/0 € St ndt— W, (6126)
we integrate [; term-by-term and obtain Watson’s lemma:
- rE+1) r'¢+2) LE+n+1) 1
f(S) ~ go S£+1 g1 ) + o4 gnw + 0 W . (6127)

Watson’s lemma justifies doing what comes naturally.
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6.7 (zaussian approximation versus Laplace transform

Consider the function defined by
def v —x cosht
U(z,y) = e dt, (6.128)
0

and ask for an asymptotic approximations as * — 400 with y fixed. With  — oo, the main
contribution to U(x,y) in (6.128) is from ¢ ~ 0. According to the Gaussian approximation, the
leading-order behaviour is

o0
Ulz,y) ~ / e~(1+31%) gy (6.129)
0
=e 7 % , as r — +00. (6.130)

The peak of the integrand is centered on ¢ = 0 and has width 2~1/2 <« 1. All the approximations

we’ve made above are good in the peak region. They’re lousy approximations outside the peak
e.g. near t = 1/2. But both the integrand and our approximation to the integrand are tiny
near t = 1/2 and those errors do not seriously disturb our estimate of the integral.

Problem: Considering U(z,y) in (6.128)), show that
22Uy + 2Uy — 2°U = Uy, . (6.131)
Evaluate U(z,c0) in terms of modified Bessel functions.

Notice that in the range of integration is extended to t = oo — we can then do
the integral without getting tangled up in error functions. The point is that the leading-order
behaviour of U(z,y) as x — oo is independent of the fixed upper limit y. If you’ve understood
the argument above regarding the peak width, then you’ll appreciate that if y = 1/10 then =
will have to be roughly as big as 100 in order for to be accurate.

Let’s bash out the second term in the x — oo asymptotic expansion. According to MATHE-
MATICA, the integrand is

e—xcosht _ e—a:—a:tQ/Qe—mt4/4!—xt6/6!+“- ’ (6132)
t4 t6
~ e—a:—actQ/Q <1 _ ‘274 _ % +0 (x2t8)> . (6133)

Notice the 22 in the big Oh error estimate above — this 22 will bite us below. We now substitute
the expansion (|6.133]) into the integral (6.128)) and integrate term-by-term using

Ootp —ath _ 1, et p+1
/0 e dt = Ja=F T (241) (6.134)
Thus we have
o0 1 2
U(x,y)ze”/ e 2" {\1/—214 ot — g @t +0(2L)] . (6.135)
0 ~z—1/2 ~z—3/2 ~p—5/2 2—5/2

The underbraces indicate the order of magnitude of each term after using (6.134)) to evaluate
the integral. Notice that a term of order 228 is of order z~%/2 after integration. If we desire a
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Figure 6.5: Upper panel compares the two-term asymptotic expansion in ((6.138)) with evaluation
of the integral by numerical quadrature using the MATLAB routine quad. The lower panel
compares the three term expansion in (6.142) with quadrature.

101



systematic expansion, we should not keep the term zt® and drop 2?t8. After integration both

these terms are order z~%/2, and we should keep them both, or drop them both.
Proceeding with the integration

2 [ 2 vt 8P
el —— O (v¥27%) | d 6.136
\/;/Oe [ 6 w02 TOE )] v (6.136)
T 1 3 8 15 _2
S Y A RV S A 1
¢ 23;[ 60 <1 T X5 0L )]’ (6.137)

~ e_x\/g [1 - 8% +0 (x_Q)] : (6.138)

Discretion is the better part of valor, so I've dropped the inconsistent term and written O(x~2)
above.

Uz,y) ~e "

Another way to generate more terms in the expansion is to convert U(x,y) into a Laplace
transform via u = cosht¢ — 1:

Ulz,y) =e® /OOO \/% du, (6.139)
~ e /OOO e‘”\/;u [1 -+ ??22 = ?Z; +0 (u4)} du, (6.140)
= e—w\/g [I‘ <;) - ir <Z’) + 32—‘1; <;> +0 (::;-3)] : (6.141)
= /5 [1 - % + % +0 (x—3)} . (6.142)

The Laplace-transform approach is more systematic because the coefficients in the series ex-
pansion are not functions of x, and the expansion is justified using Watson’s lemma.
However the argument about the dominance of the peak provides insight and is all one needs
to quickly obtain the leading-order asymptotic expansion.

6.8 Problems

Problem 6.1. (i) Use integration by parts to find the leading-order term in the x — oo
asymptotic expansion of the exponential integral:

oo —v
Ei(z) & / ev dv. (6.143)

Show that this approximation is asymptotic i.e. prove that the remainder is asymptotically less
than the leading term as x — oo. (i) With further integration by parts, find an expression for
the n’th term, and the remainder after n terms. (i) Show that the remainder after n terms is
asymptotically less than the n’th terms as z — oo.

Problem 6.2. The exponential integral of order n is

oo —t
En(z) %< / et—ndt. (6.144)

Show that

(§]
Enti1(z) = ot

Find the leading-order asymptotic approximation to E,(x) as x — 0.

(6.145)
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Problem 6.3. (i) Find a leading-order  — oo asymptotic approximation to

Awip) 2 [Temq 14
(-’E,p,Q) - € t. (6 6)

Show that the remainder is asymptotically negligible as * — oco. Above, p and ¢ are both
positive real numbers.

Problem 6.4. Find two terms in the x — oo behaviour of

X e—’U
Fl/g(ﬂj) = A /U1/3 dU . (6147)
Generalize to R
Fo(z) = / ° du. (6.148)
o v*

where 0 < o < 1.

Problem 6.5. Consider the first-order differential equation:

y —y= ! , with the condition lim y(z) =0. (6.149)
x T—00

(i) Find a valid two-term dominant balance in the differential equation and thus deduce the
leading-order asymptotic approximation to y(z) for large positive x. (i) Use an iterative
procedure to deduce the full asymptotic expansion of y(x). (iii) Is the expansion convergent?
(iv) Use the integrating function method to solve the differential equation exactly in terms of
the exponential integral in . Use MATLAB (help expint) to compare the exact solution
of with asymptotic expansions of different order. Summarize your study as in Figure
0.0

Problem 6.6. (i) Solve the differential equation

y —2zy=—1, with lim y(z) =0, (6.150)
T—r00
in terms of erf and use the results from this lecture to find the full asymptotic expansion of the
solution as z — oo. (%) Find this expansion without explicit solution of the oDE in ([6.150):
identify a two-term z — oo balance in the ODE, and then proceed to higher order via iteration
or some other scheme.

Problem 6.7. Find an example of a infinitely differentiable function satisfying the inequalities

df

2l 1010, (6.151)
x

max |f(z)| < 10719, and max
O<z<1 O<z<1

This is why the differential operator d/dx is “unbounded”: d/dx can take a small function and
turn it into a big function.

Problem 6.8. Prove that

/OO i~ S (-1r@n)a, oz o0. (6.152)
0 n



Exact solution
- — - One term
——Two terms

- Three terms

7 8 9 10
0.25

g *

L 0.2f * E

=N

o * * * *

p=1 * * * *

< 0.15f * B

D

S o1} 1
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n

Figure 6.6: Solution of problem Upper panel compares the exact solution with truncated
asymptotic series. Lower panel shows the asymptotic approximation at x = 5 as a function of
the truncation order n i.e. n = 1 is the one-term approximation. The solid line is the exact
answer.

Problem 6.9. True or false as £ — oo

(i) =+ % L x, (it)  +Vx L x, (#ii) exp <x + i) L exp(z), (6.153)
(iv) exp (z + /) L exp(x), (v) cos (x + i) L cosx, (v) % 107 (6.154)

Problem 6.10. Let’s investigate the Stieltjes series S(x) in and the function F'(x) in
(i) Compute the integral F'(0.1) numerically. (i7) With x = 0.1, compute partial sums
of the divergent series with N =2, 3, 4,---20. Which N gives the best approximation
to F(0.1)? (i) I think the best answer is obtained by truncating the series S(0.1) just before
the smallest term. Is that correct?

Problem 6.11. (i) Obtain the leading-order asymptotic approximation for the integral
1 3
/ et dt as T — 00. (6.155)
-1

(#) Justify the asymptoticness of the expansion. (i) Find the leading-order asymptotic ap-
proximation for x — —oc.

Problem 6.12. In our evaluation of Ai(0) we encountered a special case, namely n = 3, of the
integral

w/(2n) )
Z(n,z) / e~@sinnd g (6.156)
0

Convert Z(n,z) to a Laplace transform and use Watson’s lemma to obtain the first few terms
of the x — oo asymptotic expansion.
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Problem 6.13. Consider .
S(z) & / ™" dt. (6.157)
0

(i) Argue heuristically that as © — oo, S(x) ~7e®/x as x — oo where 7 is an unknown constant.
(7i) Convert S(x) to the Laplace transform

e 1 e~ du
S(z) =+ —_—, 6.158
@=5 | a= (6.158)
and find the first two terms in the x — oo asymptotic expansion. (%i) Find the x — —oo
asymptotic expansion of S(x).

Problem 6.14. Use integration by parts to find x — oo asymptotic approximations of the
integrals

x xr oo
A(z) = / et de, B(x) :/ et dt, C(z) = / e " In(1 + ) dt,
0 0 0
(6.159)

o] —xt [ee]
D(x) 2/0 tath)dt, with a < 1; E(x):/l e dt, withp>0. (6.160)

In each case obtain a two-term asymptotic approximation and exhibit the remainder as an
integral. Explain why the remainder is smaller than the second term as z — oo.

Problem 6.15. Using repeated IP, find the full  — oo asymptotic expansion of Dawson’s
integral (6.62)). Is this series convergent?

Problem 6.16. Consider f(z) = (14z)%/2, and the corresponding Taylor series f,,(x) centered
on x =0. (i) Show that for n > 3 and = > 0:

i.e. the remainder is smaller than the first neglected term for all positive x. () The Taylor
series converges only up to x = 1. But suppose we desire f(2) = 35/2, How many terms of the
series should be summed for best accuracy? Sum this optimally truncated series and compare
with the exact answer. (7ii) Argue from the remainder in that the error can be reduced
by adding half the first neglected term. Compare this corrected series with the exact answer.

Problem 6.17. Show that

x cosh 7

s
A(x) def / ereosht gy o, - , as T — oo. (6.161)
0 rsinh
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Lecture 7

Geometric perturbation of PDEs

Let’s consider some perturbation problems presented by partial differential equations — a main
novelty is perturbation of geometry.

7.1 Thermal diffusion in solids

We'll use the diffusion equation as a main example. The conservation law for energy in a solid
with non-uniform temperature is

Qt+V'F207 (71)
where the heat content and energy flux are
Q = pcl’, and F=—»xVT. (7.2)

Above T is the temperature (Kelvin), ¢ is the heat capacity (Joules/Kelvin x kilogram), p is

the density (kilograms per cubic meter) and and s is the conductivity. The heat content @) has

dimensions Joules per kilogram and the heat flux, F', has dimensions Watts per square meter.
Assuming that ¢, p and s are all constant, is rewritten as the diffusion equation

T, = VT, (7.3)

where x % »/pe is the thermal diffusivity and V2 is the Laplacian operator.

Diffusion a through a slab

The simplest solution of (7.3)) is that 7" is constant. The second simplest solution is constant
flux. For example, consider a slab of thickness h with temperature T'=0 at z =0 and T = T
at z = h. We look for a steady solution that depends only on z, T'(z). So the problem is

kT.., =0, withBCs T(0)=0, T(h)=T,. (7.4)

The solution is

2T,

T = (7.5)

For insulating houses the slab is a made of glass and the cost of heating is determined by the
energy flux through through the window

T,
F=_ .y 7.6
Lok, 5 (7.6)

»
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B
4(2’)

T:mc + Tzz =0

z=0and T =0

Figure 7.1: Heat conduction through a slab with non-uniform thickness.

(£ is a unit vector pointing along the z-axis.) If T > 0 then the top of the slab is hot and the
bottom is cold. The heat flux F points downwards, from the top to the bottom. Is that sign
intuitive?

7.2 Diffusion through a slab with slowly changing thickness
Suppose the thickness of the slab is not constant e.g. the slab occupies the region
—00 < x < 00, and 0<z<h(x). (7.7)

For extra fun we also suppose that the top temperature is non-uniform, 7'(x,h) = 7(x). The
bottom temperature is still 7'(x,0) = 0. (We can have even more fun by making the bottom
temperature non-uniform in x and the bottom surface vary in x. These complications are only
algebraic.)

The slab thickness h(z) has order of magnitude H and h changes on a length scale L. For
example, we consider a model such as

3+ /L
h=H{ 7 (7.8)

In this example h(z) varies from 3H at x = —oo to H at © = 4o00: see figure A factor of
three is a big change in thickness. Suppose that 7(x) provides a temperature scale T,. Then
we non-dimensionalize with

2L P2 T (7.9)
The non-dimensional problem is
2Tz + Tsz = 0, (7.10)
where v % 7 /L. Boundary conditions are
T(%,0) =0, and T(%,h) =7(z). (7.11)

Geometry is challenging: we are confronted by Laplace’s equation within a complicated 2D
domain. (Complicated because there is no way to separate variables.) But if ¥ < 1 in
then there is a remarkable simplification: there is a one-term dominant balance in . The
subsequent expansion is

T= T—hz + 2Ty (2, 2) + v Ty (w, 2) + - - (7.12)
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x/L

Figure 7.2: Hlustration of thermal diffusion through a slab with slowly varying thickness and
uniform top temperature 7 = 1. The top panel shows the leading-order solution and the bottom
panel the solution in (7.15). In a futile attempt to see the effect of the order v correction I use

v =12

The T5 problem is

"
Too=—(7) 2, withBCs  Ty(w,0) = Ta(a,h) = 0. (7.13)
Above ' denotes an x-derivative. The solution of (7.13)) is straightforward. The reconstituted
temperature is

TZ T\"
7= (1) (- ) 00, (7.14)

Example: To illustrate this solution let’s take 7 = 1 and use the non-dimensional slab thickness
3+e” . 1\”  2e%(e® —3)
h = th - = . 7.15
14e*’ hs <h> (3+ev)? (7.15)

In figure I compare the leading-order term, Ty = z/h, with the corrected temperature in (7.14]). In
this illustration I’'m using an unreasonably large value v = /2. With smaller values, such as v = 1, there
was no perceptible difference between the two panels. This might be because

1
1(e—¢3) = =
JAX, (€-¢%) e 0.0642 < 1. (7.16)

This suggests that the approximation is excellent. It would be interesting to calculate the next term which
will involve a fifth-order polynomial in z/h.
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Heat flux

The heat flux through the bottom, F - 2, is proportional to

T hZ T\
Tz(x,O):E—FE(E) . (7.17)

Is this the same heat flux that comes out the top of the slab?
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%% contour plot of the corrugated-slab temperature
% tau=1, h = [nt+l+exp(x)]/[1+exp(x)], sig = 1/[n+1+exp(x)]
% T = (z/h) + (1/h)’’ (z h™2 - 2°3)/6

h (1/h)’’ = n exp(x) [exp(x)-1]1/[1+exp(x)]1~3

clc

clf

epsn = sqrt(2);

n=2;

x = linspace(-5.5,5.5,200);

h = (n+l+exp(x))./(1 + exp(x));

z = linspace(0,n+1);

[xx,zz] = meshgrid(x,z);

hh = (n+l+exp(xx))./(1 + exp(xx));

TTO = zz./hh;

figure(1)

movegui(’west’)

subplot(2,1,1)

area(x,h,n+1+0.1)

hold on

V=[0:0.1:1];

contour (xx,zz,TTO0,V)

axis([min(x), max(x), 0, n+1+0.1])

text(2,2.1,°8T = \frac{z}{h}$’,...
’Interpreter’,’latex’,’fontsize’,18,’Color’,[1 1 1])

xlabel(’$x/L$’,’ Interpreter’,’latex’,’fontsize’,14)

ylabel(’$z/H$’,’ Interpreter’,’latex’,’fontsize’,14)

%% the correction

secDeriv = ( n*exp(xx).*(l+n-exp(xx)) )./(l+ntexp(xx))."3;

TT1 = secDeriv.*(zz.*hh. 2- zz."3)/6;

TTT = TTO + epsn™2*TT1;

figure(1)

subplot(2,1,2)

area(x,h,n+1+0.1)

hold on

V=[0:0.1:1];

contour (xx,zz,TTT,V)

axis([min(x), max(x), 0, n+1+0.1])

text(0.7,2.2,°$T =\frac{z}{h}+\left (\frac{\nu"2}{h}\right) _{xx}\frac{z h~2-z"3}{6}$’,
’Interpreter’,’latex’,’fontsize’,18,’color’,[1 1 1])

xlabel(’$x/L$’, ’ Interpreter’,’latex’,’fontsize’,14)

ylabel(’$z/H$’,’ Interpreter’,’latex’,’fontsize’,14)

hold off

Matlab code slabTemp2023 that produced figure The command “area” is handy.
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7.3 Diffusion along a slab with slowly changing thickness

We consider diffusion of heat within a slab with boundaries at z = £h(z). We suppose that the thickness
h has the form

h = Hh(z/L). (7.18)
The outward unit normal vectors to the surface of the slab are therefore
5 _ by _5— hyd
Qz = h(z) : n=2>_"o and Qz = —h(z): n=_-_"a% (7.19)

VI+h2' V1+h2

The unsteady diffusion equation is

and we suppose that there is no flux of heat through the boundaries. This means that n - VT =0, or

T. — h,T. T. + h,T,
Lz fate g _Lethede (7.21)
Jiin N

(We could simplify by cancelling the factor v/1+ h’? from the boundary conditions above. But if you
needed to impose a flux of heat through the boundary then there’d be a non-zero right hand side and
this factor will not cancel.) The problem is completed by specifying an initial condition

Qz = h(z) : and Qz = —h(x):

T(x,2,0)=T.I(x/L,z/H). (7.22)

The initial condition provokes some discussion - - -
Let’s simplify this problem by considering the slowly varying limit in which

% 0. (7.23)

where H and L are supplied by specification of h(z) in . We continue to use the notation v % H /L.

If we non-dimensionalize using the anisotropic scaling z = /L and z = z/H then every z-derivative
in the system above appears with a v in front of it. We scale time as t = t/7 where 7 is a TBD time
scale. Thus the diffusion equation is

H2
T =Ty + T:x . (7.24)
RT

It is necessary to pick 7 = L?/k i.e. 7 is the time scale for the diffusion of heat along the slab. With
this definition of 7 the diffusion equation is

v (T; — Tsz) = Tz . (7.25)

We must also non-dimensionalize the boundary conditions in ([7.21)) - -
Drop the decoration on non-dimensional variables and expand in v

2,
T="Ty+ T+ (7.26)
At leading order Tp,, = 0 with general solution

To = A(z,t). (7.27)

At order v?
Ay — Ayy = Tos (7.28)
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7.4 A slab with small corrugations

Now consider a different type of geometric perturbation: suppose that the slab is slightly deformed so
that the thickness is no longer uniform. Let’s suppose that the solid slab is now the region

—o00 < x <00, acoskr < z < H, (7.29)

The lower boundary is corrugated. We assume that there is a gap between the crests and the flat lid i.e.
a < H. The problem is to solve Laplace’s equation

Tow + T,y =0 (7.30)

with boundary conditions
T(x,acoskx) =0, T(x,H) =T, . (7.31)

If @ = 0 then we recover the simple solution T' = T,.z/H.

The method of slow variations used in the previous section will work if kH < 1. But now we want
an answer with no restriction on the size kH. Instead we use a different method based on the assumption
that ka < 1 i.e. the corrugations are small.

Scale using the non-dimensional variables

—det T
szfT, and  (3,2) = k(z, 2). (7.32)

The non-dimensional parameters are

¢ ka, and B kH . (7.33)

In non-dimensional variables the bottom is Z = e cos z and the top is Z = 3. The corrugation amplitude
a is less than H and therefore € < 3. The heat flux through the bottom of the corrugated slab is

F = pckkT, Tx(%,0; B, €) , (7.34)

where T'(z, z; 3, €) is the solution to the non-dimensional problem.
Dropping the decoration, the non-dimensional problem is

Tww + Tzz = 07 (735)

with boundary conditions
T(xz,ecosx) =0, and T(x,8)=1. (7.36)

Small amplitude ripples, ¢ < 1

Let’s take a very small, holding all other parameters fixed. In non-dimensional variables this small-ripple
limit is € — 0 with 8 fixed and order unity. We assume that the solution T'(x, z) of Laplace’s equation

(7.35) with the BC in ([7.36) is an RPS
T =To(z,2) + €Ty (2, 2) + ETo(2, 2) + - - - (7.37)
The complication is that the lower boundary condition in (7.36]) becomes
To(w,ecos ) + €Ty (x, ecosx) + € Ta(z,ecosz) + -+ = 0. (7.38)
In (7.38) € is appearing in two different places. The standard trick (probably originating with Stokes in
1847) is to use a Taylor series about z = 0 to transfer the boundary condition in (7.38) to z = 0. Thus
each term in (7.38) is expanded like this

Tn(x,ecosx) = Ty (x,0) + ecosx Tp,. (2,0) + %62 cos? & Ty, (2,0) + - - - (7.39)
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Substituting (7.39) into ([7.38)) and matching up powers of ¢ we obtain the z = 0 boundary conditions

Ty =0, (7.40)
Ty +coszx Ty, =0, (7.41)
To +cosx Ty, + % cos?zTy,. =0, (7.42)
T3 +cosx Ty, + % cos? T, + % cos® 2 Ty,., =0, (7.43)
Ty +cosx T3, + % cos?x Ty, + % cos® & Thass + i cos* £ Tysssy =0 (7.44)
and so on. The boundary condition at the top is easy
To(z,B8) =1, and To>i(z,6) =0. (7.45)

To complete the formulation of the perturbation problem, each T, (z,y) satisfies Laplace’s equation

(92+02)T, =0. (7.46)
The leading-order solution is .
7. (7.47)
At next order we have Laplace’s equation, n =1 in with BCs
T1(z,0) = —Cogz . and  Ti(z,8)=0. (7.48)

We can solve this problem with the separable ansatz T} (x,z) = —3~ ! cosz Z1(z). We find

_ coszsinh(8 — 2) cosx cosh(f — z)

T = d Ty, = 7.49
1(@:2) Bsinhg O ! Bsinh 8 (7.49)
At this order there is no flux enhancement — the z-average of T3, is zero.
At order €2, with n = 2 in (7.46)), the BCs are
Ts(x,0) = —cosz Ty, (z,0), (7.50)
th
= —cos? g b , (7.51)
th
= —1(1+ cos2x) coﬂ b ) (7.52)
and at the top
Ty(z,8) =0. (7.53)
The solution is th A th B
co co
Ta(z,2) = Tﬁg(z -B)— 53 Sa(z, 2) (7.54)
where b — 2)
def sinhn(f — z
Sp(z,z) = “mhng COS NI . (7.55)
This solution is illustrated in figure [7.3]
Remark: I went to third order and found:
T:%fe%fg C;tﬁhzﬂ B —z+ BS2]
_ 63 [(cothﬂ;ﬁoth 28 i) S3 + (cothﬂQ(:Bochﬂ + c;tBhZB _ %) Sl] + 0(64) . (756)

I’m not sure if the e3-term is correct. For higher-order calculations it may be more efficient to truncate
the Fourier series

T==-Y Aue,B)Sn(x,2). (7.57)

n=1

™| w
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Figure 7.3: Contour plot of T in (?7?).

Fach term in the series satisfies Laplace’s equation and the BC at z = 8. We have to determine A,, such
that at the bottom T'(x,ecosz) = 0, or

ecosz = f8 i An (e, B8)Sn(z,ecosx) (7.58)

n=1

Enhanced heat flux through the corrugated slab

Let’s calculate the heat flux flowing through the corrugated slab. Heat is diffusing in through the hot flat
top at z = 8, and out through the cold corrugated bottom z = ecosx. From (??), the flux in through
the flat top at z = g is

1 cos X coth 20 cos 2z
Tz f)= 5+ s€’ B[ o

3
6ﬁsinhﬂ + e 52 ™ sinh 28 } +0(e) . (7.59)

From ([7.34)) the averaged flux through the slab is

h
=F, <1 + 62% + 0(5‘)) . (7.61)
Ex(B.0)

In x(B,€) is a flux enhancement factor resulting from the corrugations.

Is it physically intuitive that these corrugations increase the flux of heat through the slab? One
can argue that the places where the slab is thin (above the hills) are short circuits. This suspicion
is confirmed in figure which shows that the temperature gradient is increased over the hills and
decreased over the valleys. But this modulation is the order € term in , which is proportional to
cosz and therefore integrates to zero. The flux enhancement y in (??) is order €2 — the big gradients
over the hills more than compensate for the small gradients over the valleys. This effect is subtle and I
don’t have a totally satisfactory physical explanation.
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We should also calculate the heat content of the slab

Qz) = % /T; /:()SIT(:L',Z) dzdz.

(7.62)

%% contour plot of the corrugated-slab temperature
clc

epsn = 1/3; beta = 1;

xx= linspace(-pi,pi);zz = linspace(-epsn,beta);
[X,Z] = meshgrid(xx,zz);

S1 = sinh(beta - Z)/(beta*sinh(beta));

S2 = sinh(2*x(beta - Z))/(2*beta*sinh(2*beta));

T = Z/beta - epsn*cos(X).*S1 - 0.5*epsn~2*(coth(beta)/beta)...

*((beta-Z) /beta + 2xbeta*cos(2*X) .*S2);
figure(1)
contour(X,Z,T,20)
xlabel(’$x$’, ’interpreter’,’latex’,’fontsize’,16)
ylabel(’$z$’,’ interpreter’,’latex’,’fontsize’,16)
hold on
% use "area", rather than "fill"
height = epsn*cos(xx);
area(xx,height,-1.25%epsn)
text (-3,-0.37,’$\epsilon = 1/3$ and $\beta=13$’,...

’interpreter’,’latex’,’fontsize’,16)

Matlab code that produced figure is above. The command “area” is very handy.
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Remark: We can take the limit 8 — oo in (?7), to obtain
BT — z—ee “cosz — 3¢ [L+e * cos2z] . (7.63)

A less algebra-intensive problem, corresponding to removing the lid at z = H to oo, is to consider the
region z > ecosx and require that at great distances above the corrugated boundary the temperature is
T — z + c(e), where c(¢) is to be determined. The lower boundary condition is T'(x, e cos) = 0. Taking
B — oo in (??) we have c(¢) = —€*/2 4+ O(¢*). Although this special case is easier, and illustrates the
method of boundary perturbation, it is less physically interesting because there is no “flux enhancement”.

Remark: The other limit is small 3: if 8 = O(e) then the series in (??) through (??) becomes disordered. For
instance, simplifying (7.59)) with the assumption 8 < 1 we have

= l-|—icosav—|— 0(€*/8%). (7.64)
B B

If 8 is as small as € then the terms in this perturbation series are no longer decreasing — this non-uniformity

indicates failure of the method. The problem is that our approximate solution assumed that 0, ~ k and

this cannot be true if the vertical thickness of the slab, H, is significantly less than the exponential decay

scale k1. See the next section....

TZ($7 B)

7.5 Slow variations again

The previous section discussed a problem in which the variations in the boundary geometry are small
i.e. the height of the corrugations is much less the average thickness of the slab. But if we lower the
lid so there is only a small gap above the hill tops then the corrugations have the same magnitude as
the thickness of the slab. We can no longer assume small corrugations. Instead there is a different
approximation: the thickness of the slab is changing on the horizontal length scale k~!, which is much
greater than both the slab thickness H and the height of the corrugations a. In this sense the thickness
of the slab is slowly varying.
So lets consider the small 5 case. We proceed by writing

B =cea, (7.65)

where a > 1 and consider the limit € — 0 with « fixed. The thickness-in-z of the slab is now of order €
everywhere so it makes sense to “rescale” the vertical coordinate

2=, = 9, =€ 0. (7.66)
The re-scaled problem is
€2Tx$ + TCC =0, (7.67)
with boundary conditions
T(x,cosx) =0, and T(x,a)=1. (7.68)

Now look for a regular perturbation solution

T = To(z,¢) + €To(z,¢) + O(€*). (7.69)
The leading-order problem is
Toce =0, (7.70)
with boundary conditions
To(z,cosx) =0, and To(z,a) = 1. (7.71)

In (7.70) there is a “one-term dominant balance”. One-term should be simpler than the two-term
dominant balances that have figured so prominently in our earlier discussion. But the one-term dominant
balance is subtle: the main point is that (7.70) has a nontrivial general soluton

To(z,() = A(z) + B(z)( . (7.72)
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The boundary conditions ([7.71]) imply that

0=A+ Bcosz, and 1=A+B. (7.73)
Hence the leading-order solution is
—cosx
To(a,() = ST (7.74)
o — Ccos T

We can now calculate the heat flux through the slab

(Toe(, 1)) = = /O Tde (7.75)

7w Jg oo —cosz’

1
- 7.76
—— (7.76)

Example: Poiseuille flow through a tube with slowly changing radius.

7.6 A slowly rotating self-gravitating mass

A mass M of incompressible, self-gravitating and non-rotating fluid, with uniform density p, will be in
hydrostatic equilibrium as a sphere of radius

_ def 3M 1/3
= | — . 7.77
' <4ﬂp> 70)

The gravitational potential is determined by solving

V24 = 4nGpy, (7.78)
where
Y= 1, insid.e the mass; (7.79)
0, outside the mass.

Solving the Poisson equation ([7.78]), we obtain the well known spherically symmetric solution

b= GM 3F;:2T2 , inside the sphere; (7:80)
N T , outside the sphere. '

3

¢ and ¢, are continuous at r = a; the second derivative is discontinuous at the surface of the sphere

_ — 39
¢rr<7'+> - (brr(r ) = _?7 (781)
where the gravitational acceleration at the surface is
det GM
= —z (7.82)

The liquid mass is in equilibrium because V¢ is normal to the surface of the sphere. Equivalently, the
surface of the sphere is an equipotential surface.

Solid body rotation, the geopotential and the equilibrium condition

Now suppose that the mass is in slow solid-body rotation about the z-axis with angular velocity 2 = Q2.
The mass is no longer perfectly spherical — the equator is slightly bulged out and the poles are flattened.
If we knew the shape of the mass we could determined the potential ¢ by solving . Assuming
that the rotation is weak, and that the deformation from a perfect sphere is small, we proceed to
perturbatively solve in combination with the momentum equation.
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In solid body rotation
u=0QZxx (7.83)

where @ = x& + yy + 22 is position relative to the center of mass and u the fluid velocity. Thus the
acceleration is

D
D—;‘ — Q2 xu, (7.84)
=02 x (2xx), (7.85)
= 0% (2@ +y9) , (7.86)
= -ViQ*(2? + 7). (7.87)
The momentum equation,
Du P
——=-_v /(& , 7.88
. (p n ¢>) (7.88)
is therefore equivalent to
% + ¢ — Q%L1 (2% + y?) = constant. (7.89)

In (7.89) the gravitational potential ¢ is obtained from the solution of the Newtonian potential equation
(7.78)

. The effective potential
2

6 4 y) (7.90)

in (|7.89)) is known as the geopotential.
The equilibrium condition is that at the unknown surface of the mass the pressure is zero and ([7.89)

becomes
Qr = s(6) : ¢ — $0°r?sin® 6 = constant . (7.91)
Above, r = s(0) is the location of the surface and 6 is the usual polar angle in spherical coordinates.
Later we need a expression for the unit normal n to the surface. The vector n is proportional to
V[r — s(8)], or

P — 590
n =507 (7.92)

Thus the normal derivative of the potential, evaluated on the surface of the mass, is

S2¢7‘ - 59¢9

n-Vo|l,—, = . 7.93
Vo= e (7.98)
Eon
The normal derivative above is continuous at the surface.
Perturbative solution
Scale analysis identifies a single dimensionless parameter
02 4n Q%F
e=— =T (7.94)
pG 3 g

“Slow rotation” means that ¢ < 1. Instead of non-dimensionalizing the problem and expanding in €, we
live dangerously by expanding in terms of the dimensional parameter Q2:

s=7+0%s1(0)+ 0 ('), (7.95)
and oM
p=———+0¢ + 0 (Q) . (7.96)
¢7"
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The boundary condition ([7.91)) is first transferred to r = 7 via the expansion

¢(s(0),0) = ¢(7) + (s — 7) ¢ (7. 0) + O (Q*) . (7.97)
N——

29281
Thus at the convenient boundary
Qr=7:  ¢+Q°(s1 ¢, — 27%sin’0) + O (Q*) = constant . (7.98)

The normal derivative in (7.93)) is

Gr=rs = on(re) + 9 (510 - 250 ) L0 (@) (7.99)
The problem for ¢; is therefore
V¢, =0, (7.100)
with
Qa : ¢1 = —gs1 + %FQ sin?  + constant. (7.101)

In addition, continuity of the normal derivative of ¢ implies that

P10 (F) = d1r(F) = =51 (Gorr (FF) — dorr (7)) (7.102)

=—3g/7

This ¢1-problem is forced by

1.2
58in” 0 =

1_1py(p) (7.103)
where Py(u) = (3u% — 1)/2 is the second Legendre polynomial. Thus we try to solve the ¢;-problem
with

s1 = af Py(cos ), (7.104)

and

(r/7)?, inside the mass;

¢1 = B Py(cos0) { (7.105)

r/7)73, outside the mass.

The construction in ([7.105)) satisfies Laplace’s equation ([7.100)) and also continuity of ¢; at the surface.
Substituting (7.104) and (7.105)) into (7.101]) we obtain

B =—rga— 2. (7.106)

Noting that ¢1,(FT) — ¢1,.(F~) = =58Pz /7, the normal derivative condition in (7.102)) gives

58 = —3gfa. (7.107)
Solving for a and /3 one obtains
57 =2
o= _62 and (= % (7.108)

To summarize, the surface of the mass is r = s(0) where

s=T— 5 g Py(cos @) . (7.109)
The polar radius (0 = 0) is
57202
W=F— , 7.110
TP 1 r 6 g ( )



and the equatorial radius (6 = 7/2) is

. 7.111
Thus the “flattening” is

7 1 ( )
The external potential is

- (7.113)
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7.7 Problems

Problem 7.1. Consider the partial differential equation
K(Cpw+C.) — uC =0 (7.114)

in the region above z = h(x), with h(z) = acoskz. The boundary conditions are C(x,acoskz) = C,
and C(z,2z) — 0 as z — oo. (i) Describe a physical situation governed by this boundary value problem.
(#i) Solve the problem with a = 0. (74) Based on your exact solution, non-dimensionalize the problem
with non-zero a and determine the non-dimensional control parameters. (iv) Use perturbation theory
to find the first effects of small non-zero a on the “inventory”

def k 2n/k
/ C(z,z)dzdz. (7.115)
h(z)

(I think you’ll have to go to second order in a.)

Problem 7.2. Consider the diffusion problem

Yug + hyy = —€7Y (7.116)

in the “corrugated half-plane” defined by

—00 < x <00, and ecoskr <y. (7.117)
At the wavy boundary:
P(z,ecoskx) =0. (7.118)
The condition at infinity is
lim (e,y) = Ale, k), (7.119)
Yy—00

where A(e, k) is an unknown function. (i) Solve the problem with € = 0 and show that A(0,k) = 1. (i)
Use a perturbation expansion (e < 1) to determine the first non-zero correction to A = 1.

Problem 7.3. Cousider 2D potential flow (no vorticity) around an cylindrical object whose cross section
in the (z,y)-plane is a slightly distorted circle

r=a(l—esin®f) . (7.120)
Using a stream function ¢(z, y), with u = —, and v = 1),,, the mathematical problem is
V2 =0, (7.121)
where
=0, 4+ =0 +r "0 +17%0; (7.122)

is the Laplacian operator. Boundary conditions are ¢ = 0 on the surface of the body and v — —Uy
at great distances from the body. (i) Review the standard solution for potential flow around a circular
cylinder i.e. the case e = 0. This solution is in all fluid mechanics textbooks. Above I'm using cylindrical
coordinates r and 6 that feature prominently in those textbooks. (ii) Non-dimensionalize the problem
and identify all non-dimensional control parameters. (%ii) Use the boundary perturbation method to
find the first effects of small distortion, ¢ <« 1. Visualize the solution with MATLAB or some other
computational tool.

Problem 7.4. Consider Laplace’s equation,

Pzz + Gyy =0, (7.123)
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:=2and e =0.3

Figure 7.4: My solution to problem [7.5| with & = 2 and € = 0.3. The lower panel is an expanded
view of the lower boundary. Some errors in the boundary condition T = 0 are evident near
kx = 0 and 2m. At this largish value of € another term wouldn’t hurt.

in a domain which is a periodic-in-z channel with walls at y = (1 + e cos kz). The boundary condition

on the walls is
(Vo+1)-n=0, (7.124)

where 71 is the outward normal and % is the unit vector in the z-direction. Obtain two terms in the
expansion of

J(€) def / ¢ dzdy . (7.125)
Problem 7.5. Consider a uniformly heated 2D metal ribbon of width 2h(x). The ribbon is cooled by
fixing T'(z, h(x)) = 0 at the two boundaries. Thus the steady state temperature is determined by
Tow+Tyy=—-1, for — h(z) <y < +h(z), (7.126)
where h % 1 + ecos kx. The boundary conditions are
T(x,£h)=0. (7.127)

We particularly desire the heat content of the ribbon

qof k 27 /k ph
J(e, k) = o thxdy. (7.128)

Use the boundary perturbation method to show that

2
J=3 + €% (1 — ktanhk) + O (€*) . (7.129)
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Lecture 8

Boundary Layers

8.1 Stommel’s dirt pile

Consider a pile of dirt formed by a rain of sediment falling onto a conveyor belt. The belt stretches
between x = 0 and x = ¢ and moves to the left with speed —c: see the figure. If h(x,t) denotes the
height of a sandpile, then a very simple model is

hi — chy = s+ Khyy (8.1)

with boundary conditions
h(0,t) =0, and h(£,t)=0. (8.2)

The term s(z) on the right of (8.1]) is the rate (meters per second) at which sand is falling from the sky
onto the belt.
We can make a sanity check by integrating (8.1) from z =0 to x = ¢:

d 14 ¥4
T h(z,t)dx = s(z,t)dzx + khae(€,t) — khy (0,1) . (8.3)
0 0
—_— loss of dirt by falling over the edges
rate of accumulation sedimentation from above

The advective term, ch,, does not contribute to the budget above — advection is moving dirt but because
h = 0 at the boundaries advection is not directly contributing to the fall of dirt over the edges.

Exercise: Find the steady solution of (8.1)) and (8.2) if the conveyor belt is switched off i.e. ¢ = 0.

The steady solution with a uniform source

If the sedimentation rate, s(z,t), is a constant then we can easily obtain the steady state (t — o0)

solution:
sll—e-c®/v  gp

h,00) = T o= o (84)
If the diffusion is very weak, meaning that
def K
= — 1 8.5
cT <h (85)

then there is a region of rapid variation, the boundary layer, at * = 0. This is where all the sand
accumulated on the conveyor belt is pushed over the edge. Obviously if we reverse the direction of the
belt, then the boundary layer will move to x = ¢. We assume that ¢ > 0 so that ¢ > 0.

If we introduce non-dimensional variables
ch

, and h = vl (8.6)

[N
By

~08

_ ae
xr =
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Figure 8.1: Stommel’s boundary-layer problem.

r=-
s |7
=osl/ ]
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0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

x/l

Figure 8.2: The solution in . The solid curve is € = 0.1, the dashed curve
the dash-dot curve is € = 0.005.
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then the solution in ({8.4) is
1— efx/e

11— °

h(z,e) = (8.7)

This solution is shown in figure with various values of e. We can consider two different limiting

processes in (8.7)):

1. The outer limit: ¢ — 0, with = fixed. Under this limit, the exact solution in (8.7) is h — 1 — x.
The outer limit produces a good approximation to the exact h(x,¢€), except close to x = 0 where
the boundary condition is not satisfied.

2. The inner limit: € — 0 with X % x/e fixed. Under this limit the exact solution in is
h — 1—e~X. The inner limit produces a good approximation to the solution within the boundary
layer. This is a small region in which «x is order €. It is vital to understand that the term eh,, is
leading order within the boundary layer, and enables the solution to satisfy the boundary condition
at z =0.

Thus the function in (8.7) has two different asymptotic expansions. Each expansion is limited by non-
uniformity as € — 0.

8.2 Leading-order solution of the dirt-pile model

We want to take the inner and outer limits directly in the differential equation, before we have a solution.
To make the problem a little more interesting, suppose that the sedimentation rate is some function of

X
T

5 = Smax8 (Z) . (8.8)

We use spax to define the non-dimensional i back in . Dropping the bars, the non-dimensional
problem is
€hyy + hy = —s, (8.9)

with boundary conditions
h(0) =h(1) =0. (8.10)

We're going to use boundary layer theory to obtain a quick and dirty leading-order solution of this
problem. We'll return later to a more systematic discussion.

The outer expansion

Start the attack on with a regular perturbation expansion
h(z,€) = ho(z) 4 ehy(z) 4+ ha(z) + - - - (8.11)

We're assuming that as € — 0 with fixed x — the outer limit — that the solution has the structure in
(8.19). Note that in the outer limit the h,,’s in (8.11)) are independent of e.

Exercise: Consider the special case s = 1, with the exact solution in (8.7]). Does the outer limit of that exact
solution agree with the assumption in (8.11))7

The leading order is

how = —5 (8.12)
and we can solve this problem as
1 T
ho(z) = / s(x')da’, or perhaps as ho(z) = 7/ s(z')da’ . (8.13)
T 0
correct incorrect
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Looking at the exact solution in (8.7) we know that the correct choice satisfies the BC at x = 1. If you
think about conveyor belts and falling dirt then this choice of boundary condition is also “physically
obvious”. Whether it is obvious or not, we proceed satisfying the BC at x = 1:

1
ho(z) = / s(a’) da’ (the correct outer solution). (8.14)

We return later to show that the alternative ends in tears.

The inner expansion, and a quick-and-dirty matching argument
The inner region is the region near x = 0 in which (8.14]) doesn’t work. We define

def T d 1d
X == that — ==
g MM 4 T sdx
4 is the boundary layer thickness — we’re pretending that ¢ is unknown. Using the inner variable X, the

problem becomes is

(8.15)

0 *hxx + 0 thx = —s(6X). (8.16)

two term balance

We get a nice two-term balance if

d=¢€. (8.17)
With this definition of § we have the rescaled problem
hxx +hx = —es(eX). (8.18)

Now attack (8.18) with a a regular perturbation expansion
h(x,€) = Ho(X) 4+ eH (X) + Hay(X) + - - (8.19)

In (8.19) we're assuming that the H,,’s are independent of e.
At leading order

Hoxx +Hox =0, with solution Hy = Ag (1 — e_X) . (8.20)

We’ve satisfied the BC at X = 0. But we still have an unknown constant Ayg.
To determine Ay we insist that “the inner limit of the outer solution is equal to the outer limit of
the inner limit solution”. This means that there is a region of overlap in which

1

Ag (1—e™) %/ s(z")da’ . (8.21)
—_—

T
Inner solution V

Outer solution

For instance, if z = O(e'/?) < 1 then X = O(¢~/?) >> 1, and (8.21) tells us that
1
Ao = / s(@')da’ (8.22)
0

Construction of a uniformly valid solution

With Ay determined by (8.22) we have completed the leading-order solution. We can combine our two
asymptotic expansions into a single uniformly valid solutions using the recipe

uniformly valid = outer + inner — match, (8.23)
1 1 1
- / s(z')da’ + / s(a)da’ (1—e %) - / s(z')da’, (8.24)
T 0 0
1 1
= / s(x')da’ — / s(z') da’ e=?/¢. (8.25)
T 0

This is also known as the composite expansion.
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Why can’t we have a boundary layer at z =17

Now we return to (8.13)) and discuss what happens if we make the incorrect choice

ho(z) L_ /OI s(z)da’. (8.26)

This outer solution satisfies the BC at x = 0.

On physical grounds we are deeply suspicious of : the height of the dirt pile is negative. Unless
the dirt is adhering to the bottom of the belt this makes no sense at all. We proceed by abandoning
physical arguments and discussing the failure of as a mathematical issue.

We try to put a boundary layer at z = 1. Again we introduce a boundary-layer coordinate:

def T —1 d 1d

X = 5 s SOthatazgﬁ

(8.27)

The dominant balance argument convinces us that § = €, and using (8.19) we find exactly the same
leading-order solution as before:

rz—1

]

Hy=Ag(1—e %), except that now X = (8.28)

Hy(X) above satisfies the BC at X = 0, which is the same as = 1. But now when we attempt to match

the outer solution in (8.26) it all goes horribly wrong: we take the limit X — —oo and the exponential
explodes. It is impossible to match the outer solution (8.26)) with the inner solution in ({8.28]).

8.3 Stommel’s problem at infinite order

The special case s(z) =1

This special case is very simple: the infinite-order uniform solution is

H=1-e%—¢ X . (8.29)
—_— =~
Ho Hl

And the infinite-order outer solution is simply

h=1-z. (8.30)

All the higher-order terms are zero. With the recipe
uniform = outer + inner — match , (8.31)
we assemble an infinite-order uniform approximation:
Bni() =1 — 2 — e~ %/€. (8.32)
The exact solution is

1—e /e

h(z) = T o1/

T (8.33)

this differs from the infinite-order approximation by the exponentially small e~1/€.
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A general source s(z)

To expose the complete structure of higher-order boundary-layer problems let us discuss the form of the
high-order terms in Stommel’s problem with a general source function. Recall our model for the steady
state sandpile is

€hgy +hy = —5. (8.34)

We assume that the source s(x) has the Taylor series expansion around z = 0:
s(z) = 5(0) + 5'(0) + 325" (0) + - -, (8.35)
and around z = 1:

s(xz)=s(1)+ (z—1)s'(1) + L(z — 1)2s"(1) + - -- (8.36)

The outer solution

The leading-order outer problem is

1
hoy = —s, = ho = / S(x/) dx/, (8.37)
and the following orders are
hlw = _hO.L.L = +Sz, = hl =S .’13) - 8(1) ) (838)
h2w = _hlwz = —Szz, = h2 = S/ 1) - S/ ‘7)) y (839)
hSz - _h2zz - +Szxac; = h3 = SH(.’E) - SN(].) . (840)

At every order h, (1) = 0. It is clear how this series continues to higher order. We can assemble the first
three terms of the outer solution as

h:/o s(x’)dx’—/Oms(:v’)dx’—l—e[s(x)—s(l)]+€2 /(1) — /' (2)] + O(e%). (8.41)

The inner solution

In the boundary layer, we must expand the source in a Taylor series
s(eX) = so + eXs'(0) + 32 X3s"(0) + - - (8.42)

If we don’t expand the source then there is no way to collect powers of € and maintain our assumption
that the H,,’s in
h(x,€) = Ho(X) + eHy(X) + Hay(X) + - - (8.43)

are independent of e. The RPS above leads to

Hoxx + Hox =0, = Hy=Ag(1—e), (8.44)
HlXX+HlX:_S<O)7 = Hl :Al (1—e_X) —8(0))(7 (845)
Hoxx + Hox = —s'(0)X, = Hy=A4A(1—-e¥)—-5(0)(3X*-X). (8.46)

At every order we've satisfied the boundary condition H,(0) = 0. Matching determines the constants
A,

Remark: To solve the BL equation at order n we need particular solutions obtained from
Puxx +Pux =X""',  P.(0)=0. (8.47)
Integrating once

Pux + Py = XT (8.48)
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The definition of P,(X) is completed by setting the integration constant above to zero. Then with an
integrating factor

e—X X
Po(X)=— [ t"e'dt, (8.49)
n Jo
n X
X e*X/ t" et dt, (8.50)
n 0
XTL
=2 —(n=1)P._:. (8.51)
n
Thus
X2 X3 9
P1:X, P2:7_X7 sz?—X +2X7 (852)
x4 .
Pi(X) = - X3 43X%-6X, etc. (8.53)
Matching

In the matching region X > 1 and we simplify the boundary layer solution by neglecting all the
exponentially small terms involving e~*. This gives

1X2 - X)+0(e%). (8.54)

h~ Ay +eAr —es(0)X +e* Ay — €25'(0) (3

Hy eH, €2 Hy

We rewrite the outer solution in (8.38)) through (8.40) in terms of X = z/e and take the inner limit,
keeping terms of order €:

1
h ~ /0 s(z')dz’ — es(0)X — 225 (0)X? +€[s(0) + eX'(0) — s(1)] +€> [s'(1) — &'(0)] +O(e*) . (8.55)

ha ha

ho

The inner limit of ho(x) produces terms of all order in € — above we’ve explicitly written only terms up
to O(€?).

A marriage between the different expansions (8.54) and (8.55) of the same function h(x,e¢) implies
that

Ag = /Os(x’) da’, Ay = s(0) —s(1), Ay =§'(1) - §'(0). (8.56)

All the other terms in (8.54) and (8.55) match. Notice that terms from hg match terms from H; and
H,. If we continue to higher order then terms from Hs(z) will match some terms from ho(z). It is
interesting that the boundary layer constants A; and As involve properties s(1) and s'(1) of the source
at x = 1.

8.4 Variable speed

Suppose the conveyor belt is a stretchy membrane which moves with non-uniform speed —c(z). With
non-constant ¢, the dirt conservation equation in (8.1]) generalizes to

hy — (ch), = s+ Khay, (8.57)

with boundary conditions unchanged: h(0,¢) = 0 and h(¢,t) = 0.

Exercise: Make sure you understand why it is (ch)s, rather than chg, in (8.57). Nondimensionalize (8.57) so
that the steady state problem is

€hye — (ch), = —s, h(0) = h(1) =0, (8.58)

with max ¢(z) = 1 and max s(z)=1.
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Example: Slow-down and pile-up

Suppose that the belt slows near x = 0. Specifically, let’s assume that the belt speed is

c=Vz. (8.59)

The speed is zero at = 0, so we expect that dirt will start to pile up. If the source is uniform then the
steady-state problem is

€haw + (Vah) = —1,  with BCs h(0) = h(1) = 0. (8.60)

Exercise: Show that a particle starting at = 1 and moving with & = —z?, with 8 < 1, reaches = 0 in a
finite time. What happens if 8 > 17

The first two terms in the interior solution are

1 1
hz,e) = (I*I/Q - xl/z) +e <2x2 + 5:671 - x1/2> + 0(e?). (8.61)
We've satisfied the BC at = 1 and the pile-up at x = 0 is evident via the divergence of the outer
solution as x — 0. The divergence is stronger at higher orders, and the RPS above is disordered as
z — 0.

Turning to the boundary layer at = 0, we introduce

x e (8.62)
0
so that 1
€
gahox g (VAR) =1 (863)
A dominant balance between the first two terms is achieved with € = §3/2, or
6 =3, (8.64)
With this definition of §, and
h=H(X,e), (8.65)
the boundary layer equation is
Hyx + (\/XH)X — /3, (8.66)

We attack with an RPS: h = Ho(X) + €'/3Hy(z) + - - -
At leading order

Hoxx + (\/)?HO)X —0, (8.67)
with first integral
Hox +VXHy=Ag. (8.68)

Solving this first-order equation with an integrating factor we obtain

X -
Ho(X) = Age=2X""/3 / 273 4t (8.69)
0
We've satisfied the boundary condition at x = 0, and we must determine the remaining constant of
integration Ag by matching to the interior solution.
To match the interior, we need the asymptotic expansion of (8.69) as X — oo: this can be obtained
by following our earlier discussion of Dawson’s integral:

Ay
Hy(X) ~ —, as X — oo, 8.70
61/3AO
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An alternative, and more efficient, derivation of (8.71)) is to write (8.68) as

Ao Hox
0= X2 X1z (8.72)
and proceed iteratively starting with Hy ~ Ao X /2 as X — oo.
On the other hand the inner expansion of the outer solution in (8.61)) is
1 _
h=—7+0 (212 ex72) . (8.73)

We almost have a match — it seems we should take Ay = e~ /3 in (8.71)) so that both functions are equal
to ~/? in the matching region. But remember that we assumed that Hy(z) is independent of €, so Ag
cannot depend on e. Our expansion has failed.

Exercise: How would you gear so that the term ez ™2 in (8.71) is asymptotically negligible relative to z~ 2 in

the matching region?

It is easy to rescue our expansion: the correct definition of the boundary layer solution — which

replaces (8.65)) — is
h=eY3H(Xe). (8.74)

In retrospect perhaps the rescaling in (8.74]) is obvious — the interior RPS in (8.61]) is becoming disordered
as x — 0. The problem is acute once the second term in the expansion is comparable to the first term,

which happens once

712 ~ex™? or o~ e =4, (8.75)

This the boundary layer scale, and as we enter this region the interior solution is of order z=1/2 ~ ¢~1/3
— this is why the rescaling in (8.74) is required. If we’d been smart we would have made this argument

immediately after (8.61) and avoided the mis-steps in (8.65)) and (8.66]).
Using the rescaled variable in (8.71)), the boundary layer equation that replaces (8.66) is

Hax + (VEH) =/ (8.76)
X
Now we can try the RPS
H(X,€) = Ho(X) + PH (X)) + - (8.77)
We quickly find the leading-order solution

X
Ho = e 2X"7/3 / e2*7/3 4t (8.78)
0

This satisfies the = 0 boundary condition and also matches the z—'/2 from the interior.
We can now construct a leading-order uniformly valid solution as

X
huni (2, €) = 6—1/3e—2x3/2/3/ e2t3/2/3 dt — 2172 (8.79)
0

Figure [8.3] compares the uniformly valid approximation (8.79)) with an exact solution of ([8.60).

Exercise: evaluate the integral fol h(z, €) dz to leading order as € — 0.

Example: higher-order corrections

To illustrate how to bash out higher order corrections let’s calculate the first two terms in the BL solution
of the BVP
€hay + [€7h], = —2e*" (8.80)

with BCs
h(0) =h(1)=0. (8.81)
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Figure 8.3: Comparison of (8.79) with the exact solution of ({8.60]).

We suspect there is a BL at x = 0. So we first develop the interior solution
Wz, €) = ho(x) + ehq(x) + eha(z) + - - - (8.82)

by satisfying the boundary condition at = 1 at every order.
The leading-order term is

[€®hole = —2e27, = ho =e*™% —e”. (8.83)

The next two orders are
[emhl]x = —hozz , = hi=1-— 2el 7 + e2 27 R (884)
[€®hale = —Pizs = hy =2 (e —e!727) | (8.85)

Later, to perform the match, we will need the inner limit of this outer solution. So in preparation for
that, as x — 0,
ho + €hi + €hy = (2 — 1) — (2 + 1)z + 3(e* — 1)2?
+e(1—e)? —ex2(e? —e)
26(n2 3.2 2
+e°2(e* —e)+ O(x°, ez, e°x) . (8.86)
Turning to the boundary layer, we use the inner variable X = z/e so that the rescaled differential

equation is
hxx + [e¥h] , = =26 (8.87)

We substitute the inner expansion
h=Hy(X)+ eH (X) + 2 Ho(X) 4 - -- (8.88)

into the differential equation and collect powers of €. The first three orders of the boundary-layer problem
are

Hoxx + Hox =0, (8.89)
Hixx +[H1 + XHoly = =2, (8.90)
Hoxx + [Hy+ XHy + $X°Hy] = —4X . (8.91)

Note that it is necessary to expand the exponentials within the boundary layer, otherwise we cannot
ensure that the H,,’s do not depend on e.
The solution for Hy that satisfies the boundary condition at z = 0, and also matches the first term

on the right of (8.86)), is
Hy=(e-1)(1—-e ). (8.92)
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Figure 8.4: Comparison of the one and two term uniform approximations in (8.97) with the
numerical solution of (8.80)).

The solution for H; that satisfies the boundary condition at x = 0 is
Hi=Ai(l-eX)+(@+1)(1-X—e )+ 3 -1)X% . (8.93)

The constant A; is determined by matching to the interior solution. We can do this by taking the limit

as X — oo in the boundary layer solution Hy + eH;. Effectively this means that all terms involving

e~ are exponentially small and therefore negligible in the matching. To help with pattern recognition

we rewrite the outer limit of the boundary-layer solution in terms of the outer variable x. Thus, in the
matching region where X > 1 and = < 1, the boundary-layer solution in (8.92)) and (8.93) is:

Ho+eHy — (e — 1)+ €A +e(1+e?) — (1 +e)z. (8.94)
To match the first term on the second line of (8.86]) with (8.94) we require
€Ap +e(1+e?) =e(1—e)?, = Al = —2e. (8.95)

The final term in , namely —(1 + e?)x, matches against a term on the first line of . That’s
interesting, because —(1 + e?)x comes from H; and matches against hg.

There are many remaining ummatched terms in e..g, %(62 —1)22 on the first line. This term
will match against terms from Hs i.e. it will require an infinite number of terms in the boundary layer
expansion just to match terms arising from the expansion of the leading-order interior solution.

Now we construct a uniformly valid approximation using the recipe

uniform = outer + inner — match . (8.96)
This gives

huni _ e2—ac —e% — (62 _ 1)e—X
+e[l—2e""" 42 +e X (23X -1)—(e—1)?)] . (8.97)
This construction satisfies the x = 0 boundary condition exactly. But there is an exponentially small
embarrassment at z = 1. Figure compares the numerical solution of (8.80) with the approximation

in (8.97). At e = 0.2 the two-term approximation is significantly better than just the leading-order term.
We don’t get line-width agreement — the €2 term would help.
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function StommelBL

% Solution of epsilon h_{xx} +(exp(x) h)_x = - 2 \exp(2 x)
epsilon = 0.2;

solinit = bvpinit(linspace(0 , 1 , 10) , Qguess);

sol bvp4c(Qodez,@bcs,solinit) ;

% My fine mesh

xx = linspace(0,1,100); hh = deval(sol,xx);
figure; subplot(2,1,1)
plot(xx , hh(1,:),’k’)

hold on

xlabel(’$x$’, ’interpreter’,’latex’,’fontsize’,16)
ylabel(’$h$’,’interpreter’,’latex’,’fontsize’,16, ’rotation’,0)
axis([0 1 0 3.51)

% The BL solution

XX = xx/epsilon; EE =exp(-XX);

hZero = exp(2-xx) - exp(xx) - (exp(2) - 1) .*EE;

hOne = 1 - 2xexp(l-xx) + exp(2-2*xx)...

+ EE.*( 0.5%XX. 2*(exp(2) - 1) - (exp(1) - 1)°2);
plot(xx, hZero+epsilon*hOne,’-.r’ , xx,hZero,’--g’)
legend(’bvp4c’,’two terms’ , ’one term’)
text(0.02,3.2,’$\epsilon =0.2$’,’ interpreter’,’latex’,’fontsize’,16)

%% Inline functions
%The differential equations
function dhdx = odez(x,h)
dhdx = [h(2)/epsilon ;
- exp(x) .*h(2)/epsilon - exp(x).*h(1) - 2%exp(2*x)];
end

%residual in the boundary condition
function res = bcs(um,up)

res = [um(1) ; up(1l) 1;
end

% Inital guess at the solution
function hinit = guess(x)
hinit = [(1-x"2) ; 2*x];
end
end
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8.5 A nonlinear Stommel problem
Consider the Stommel model with nonlinear diffusivity:
€(3h?), +he.=—-1,  withBCs:  h(0)=h(1)=0. (8.98)

Diffusion is bigger where the pile is deeper because there is more height for diffusion to move dirt around.
If we assume that the boundary layer is at = 0 then an easy calculation shows that the leading-order
interior solution is

ho=1-—u. (8.99)

The interior series continues as

h=1+e+2+-)(1—z). (8.100)

This perturbation series indicates that there is a simple exact solution that satisfies the x = 1 boundary

condition:
h=A()(1—x), where €A?-A+1=0. (8.101)

This is pleasant, but it does not help with the boundary condition at x = 0.
Introducing the boundary layer variable

X /e, (8.102)
we have the re-scaled equation
(5h%) x5 T hx = —€. (8.103)
We try for a solution with h = H(X) + eH1(X) 4 - -+ The leading-order equation is
(3HG) x + Hox =0, (8.104)
which integrates to
HoHox + Hy=C. (8.105)

This leading-order solution must satisfy both the X = 0 boundary condition and the matching condition

Ho(0)=0, and lim Ho(X)=1. (8.106)

X —o0

If we apply the x = 0 boundary condition to (8.105)), and assume that
. ?
)1(1&0 HyHyx =0, (8.107)

then we conclude that C = 0. But C' = 0 in (8.105)) quickly leads to Hy = —X. This satisfies the
boundary condition at x = 0, but not the matching condition. We are forced to consider that the limit
above is non-zero. In that case we can determine the constant C' in (8.105) by matching to the interior.
Thus C =1 and

1
Hox = ——1. 8.108
ox = 5 (3.108)
We solve (8.108]) via separation of variables
HydH,
=dX 1
T = X (8.109)
integrating to
—Hy+1 =X+A. A1
o+ Ty + (8.110)

Applying the boundary condition at X = 0 shows that A = 0, and thus Hy(X) is determined implicitly
by
Hy=1—e X"Ho, (8.111)
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Figure 8.5: The boundary-layer solution in (8.111]) of the nonlinear Stommel problem in (8.98)).

This implicit solution is shown in figure[85] As X — oo we use iteration to obtain the large-X behaviour
of the boundary layer solution

Ho(X)~1—e X1 pe™2X2 4.0 as X 5 0. (8.112)

This demonstrates matching to the leading-order interior solution.
Might we find another solution of (8.98) with a boundary layer at x = 1?7 The answer is yes: (8.98)

has both the reflection symmetry

h— —h, and T — -, (8.113)

and the translation symmetry
r—=zr+a. (8.114)

Thus we can define 1 = = — 1/2 so that the boundary conditions are applied at 1 = £1/2. The
reflection symmetry then implies that if A(z1) is a solution then so is —h(—x1). With this trickery the
solution we’ve just described is transformed into a perfectly acceptable solution but with a boundary
layer at the other end of the domain.

Exercise: Assume that the boundary layer is at x = 1, so that the leading-order outer solution is now hg = —z.
Construct the boundary-layer solution using the inner variable X = (z — 1)/e — you’ll be able to satisfy
both the x = 1 boundary condition and match onto the inner limit of the outer solution. This solution
has h(z) < 0.

Reformulation of the nonlinear diffusion model

As a solution of the dirt-pile model the second solution above makes no sense: dirt piles can’t have
negative height. And the physical intuition that put the boundary layer at = 0 can’t be wrong simply
because we use a more complicated model of diffusion. The problem is that the nonlinear diffusion

equation in (8.98]) should be
e(3lhlh),, +he==1,  h(0)=h(1)=0. (8.115)

In other words, the diffusivity should vary with |A|, not h. Back in , our translation of the physical
problem into mathematics was faulty. Changing h to |h| in destroys the symmetry in .

Now let’s use the correct model in and show that the boundary layer cannot be at x = 1. If
we try to put the boundary layer at x = 1 then the leading-order interior solution is

ho = —x. (8.116)

Using the boundary layer coordinate

oz —1
x &Iz (8.117)
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the leading-order boundary layer equation is
— l1T{2) +Hox =0 8.118
(2 0)xx 0X ’ ( )

Above we have assumed that Ho(X) < 0 so that |Hy| = —Hp. The differential equation in (8.121)) must
be solved with boundary and matching conditions

H()(O) = 0, and lim H() =—-1. (8119)

X——0oc0

The second condition above is matching onto the inner limit of the outer solution. We can integrate
(8.121)) and apply the matching condition to obtain

dHy Hp+1
— = . 12
dX Hy (8.120)
Now if —1 < Hy < 0 then the equation above implies that
dH,
— < 0. 8.121

The sign in (8.121)) is not consistent with a solution that increases monotonically from Hy(—o0) = —1 to
Hy(0) = 1. Moreover if we integrate (8.120) with separation of variables we obtain an implicit solution

X = Hy—In(1+ Hy), or equivalently Hy= —1+e XFHo, (8.122)

But as X — —oco we do not get a match — the boundary layer cannot be at x = 1. Thus we cannot
construct a solution of the |h|-model in (8.115) with a boundary layer at @ =1

8.6 Problems

Problem 8.1. (i) Find a leading order uniformly valid solution of
—hy = €hys + ¢, h(0) = h(1) =0. (8.123)

(ii) Solve the BVP above exactly and compare the exact solution to the boundary layer approximation
with € = 0.1.

Problem 8.2. (i) Solve the boundary value problem

hy = €hgy +sinz, h(0) = h(m) =0, (8.124)
exactly. To assist communication, please use the notation
x®IT ad B¥ee (8.125)

€

This should enable you to write the exact solution in a compact form. (i) Now solve the problem with
boundary-layer theory. Begin with the interior. Applying the £ = 0 boundary condition, find the first
three terms in the regular perturbation expansion:

h(x) = h(](if) + Ehl(.’t) + 62h2(1') + O (63) . (8126)

(i4i) There is a boundary layer at © = m. “Rescale” the equation using X above as the independent
variable and denote the solution in the boundary layer by H(X). Find the first three terms in the regular
perturbation expansion of the boundary-layer equation:

H = Ho(X) + eH\(X) + €Hy(X) + O (€%) . (8.127)

(iv) The H,,’s above will each contain an unknown constant. Determine the three constants by matching
to the interior solution. (v) Construct a uniformly valid solution, up to an including terms of order €.
You can check your algebra by comparing your boundary layer solution with the expansion of the exact
solution from part (i). (vi) With ¢ = 0.2 and 0.5, use MATLAB to compare the exact solution from part
(i) with the approximation in part (v).
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Exact solution ate = 1, 1/10, 1/100
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Figure 8.6: Solution with a = —1.

Problem 8.3. Suppose € is a real number with |¢] < 1. (For the moment we relax our usual rule that
€ > 0.) Counsider the boundary value problem

ey +y =—e", (8.128)

posed on the interval 0 < z < 1 with boundary conditions y(0) = y(1) = 0. (i) Solve the problem
exactly. (You might need to consider the case e = 1 separately.) (ii) Plot the exact solution for e = 1,
1/4, 1/10. (i) Plot the exact solution for e = +1/100 and € = —1/100. The limiting function depends
on whether e approaches zero through positive or negative values. (iv) Now assume that ¢ — 0 through
positive values. Use boundary layer analysis to obtain a leading order, uniform approximation, yo(z).
Make a graphical comparison of yo(x) with the exact solution at e = 1/4. (v) Now obtain the first-order
in € uniform approximation. Add this new and improved approximation to your figure.

Problem 8.4. Consider
hpe +he = =@ with BCs  h(0) =h(1) =0. (8.129)

(i) Show that the interior solution, to infinite order, is

h=(1-ea+ 2a? — ad + - ) 2 [1 — ea(xfl)} . (8.130)

1
i+tea

(#i) Obtain the BL solution that matches the first three terms of the interior problem. (i) Make a
numerical comparison between the BL solution and the exact solution e.g. see figure [8.6] .

Problem 8.5. Find the leading-order uniformly valid boundary-layer solution to the Stommel problem
—(€"9), = €9z + 1, with BCs ¢(0) =g¢(1) =0 . (8.131)
Do the same for

(€f), = €efex+1,  withBCs f(0)= f(1)=0. (8.132)
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Figure 8.7: Figure for problem

Problem 8.6. Analyze the variable-speed Stommel problem
ehye + (z%h), = —1, with BCs h(0) = h(1) =0, (8.133)

using boundary layer theory. Limit attention to a > 0. (The cases a = 0 and a = 1/2 are discussed in
the lecture.) How thick is the boundary layer at x = 0, and how large is the solution in the boundary
layer? Check your reasoning by constructing the leading-order uniformly valid solution when a = 2.

Problem 8.7. Analyze the variable-speed Stommel problem
€hay + (x7°h) = -1,  with BCs h(0) = h(1) =0. (8.134)

Limit attention to b > 0. (i) Use boundary-layer theory to solve the special case b= 1. (it) With b =1
as a sanity check, discuss the general case i.e. construct the solution taking advantage of € < 1.

Problem 8.8. Find the leading-order, uniformly valid solution of
chag + (sinzh), = —1,  with BCs h(0) = h (f) ~0. (8.135)
Problem 8.9. Find a leading-order boundary layer solution to
€hgy + (sinax h), = —1, with BCs h(0) = h(r) =0. (8.136)
(I think there are boundary layers at both x = 0 and z = 1.)

Problem 8.10. Considering the pile-up example (8.60)), find the next term in the boundary-layer
solution of this problem. Make sure you explain how the term ez~2 in the outer expansion is matched
asx — 0.

Problem 8.11. Find a leading-order boundary layer solution to the forced Burgers equation
chas + (3h%), = -1, h(0) = h(1) = 0. (8.137)
Use bvp4c to solve this problem numerically, and compare your leading order solution to the numerical

solution: see figure [8.7}

Problem 8.12. The result of problem B.11]is disappointing: even though e = 0.05 seems rather small,
the approximation in Figure [8.7] is only so-so. Calculate the next correction and compare the new
improved solution with the bvp4c solution. (The numerical solution seems to have finite slope at = 1,
while the leading-order outer solution has infinite slope as x — 1: perhaps there a higher-order boundary
layer at « = 1 is required to heal this singularity?)

Problem 8.13. Use boundary layer theory to find leading order solution of
hy =€ (%hg)m +1, (8.138)

on the domain 0 < x < 1 with boundary conditions h(0) = k(1) = 0. You can check your answer by
showing that h=1/2 at t &1 — (In2 — 5/8)e.
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Lecture 9

Evaluating integrals by matching

9.1 Singularity subtraction

Considering
T

B ST _ 4
"o Ve
we cannot set e = 0 because the resulting integral is logarithmically divergent at x = 0. An easy way to
make sense of this limit is to write

F(e) as € — 0, (9.1

T1—cosx T dx
Flo)=—- | =224 4+ /7 , 9.2
(© 0o Va?+e 0o Va?+e 32)
—_———
an elementary integral
7'(1_
~—/ ﬂdx—kln(wnt 772+62)—1n6, (9.3)
0 €T
1 11—
Nlnf—/ ﬂdl’+ln2ﬂ, (9.4)
€ 0 x

with errors probably O(e). This worked nicely because we could exactly evaluate the elementary integral
above. This method is called singularity subtraction — to evaluate a complicated nearly-singular integral
one finds an elementary integral with the same nearly-singular structure and subtracts the elementary
integral from the complicated integral. To apply this method one needs a repertoire of elementary nearly
singular integrals.

Exercise: Generalize the example above to

PAC)
F(e) = ————dxz. 9.5
=] smra ©:5)
Example: Find the small x behaviour of the exponential integral
o] 67t
Notice that
dE e " T
= = 4+1-= 7
dz x x + 2 (0.7)
If we integrate this series we have
1’2 3
E(az):flnx+0+xfi+0(x‘). (9.8)

The problem has devolved to determining the constant of integration C. We do this by subtracting the
singularity. We use an elementary nearly-singular-as z — 0 integral:
L

7

Inx =—
xT

(9.9)
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We use this elementary integral to subtract the logarithmic singularity from :

1 1— e—t o] e—t
E(z)+Inz = —/ ; dt —|—/ Tdt. (9.10)
x 1
Now we take the limit z — 0 and encounter only convergent integrals:
C = lim [E(z) +Inz] , (9.11)
x—0
19—t oo —t
= f/ 17 g+ / £ at, (9.12)
ot Lt
= —YE . (913)
Above, we've used the result from problemto recognize Euler’s constant vg ~ 0.57721. To summarize,
asx — 0 )
E(at)w—ln:p—’yE—i—x—%—i—O(xB) . (9.14)

9.2 Local and global contributions

Consider

1 =z
def e dz
Ae) = / . 9.15
0% | 5= (9.15)
The integrand is shown in Figure How does the function A(e) behave as € — 07 The leading order
behaviour is perfectly pleasant:
1
e’ dx
A(0) = —_—. (9.16)
0o VT
This integral is well behaved and we can just evaluate it, for example as
23/2 45/2

1
1
A(0) = — V2T 47 4
(0) /Oﬁm tor g T x,

g 2,1, 2
- 35 21’
=2.91429. (9.17)

Alternatively, with the MATHEMATICA command NIntegrate, we find A(0) = 2.9253.
To get the first dependence of A on €, we try taking the derivative:

dA 1 [t etda
— - . 9.18
de 2 /0 (e +x)3/2 (9.18)

But now setting e = 0 we encounter a divergent integral. We’ve just learnt that the function A(e) is not
differentiable at € = 0. Why is this?
Referring to Figure we can argue that the peak contribution to the integral in (9.15) is

peak width, O(¢) x peak height, O(e"*/?) = O (61/2) . (9.19)

Therefore the total integral is

A(e) = an O(1) global contribution
+ an 0(61/2) contribution from the peak
+ higher-order terms — probably a series in v/e. (9.20)

The 0(61/2) is not differentiable at ¢ = 0 — this is why the integral on the right of (9.18]) is divergent.
Ths argument suggests that

A(e) = 2.9253 + ¢ /€ + higher-order terms. (9.21)

How can we obtain the constant ¢ above?
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Figure 9.1: The integrand in (9.15) with ¢ = 0.01. There is a peak with height ¢ /2 > 1 and
width € < 1 at # = 0. The peak area scales as €'/2, while the outer region makes an 0(1)
contribution to the integral.

Method 1: subtraction

We have
A(e) — A(0) /1z< ! 1)d (9.22)
€) — = el — — —= | dz, .
0 Vetz  Vzx
>~ 1 1
~ — —dz, 9.23
/0 e+ o o (9-23)
< 1 1

=€ — —=dt, 9.24

ve /0 VIitt Vit 924

= —2/e. (9.25)
Exercise: Explain the transition from to . If you don’t believe it, then plot the difference ¢ /\/e + z—

e’ /\/x.

Although this worked very nicely, it is difficult to get further terms in the series with singularity sub-
traction.

Method 2: range splitting and asymptotic matching
We split the range at = §, where

ek, (9.26)
and write the integral as
) T 1 T
def e’ dx e’ dx
Ale) = / +/ . 9.27
() T ) s (9.27)
Al(e,é) Az(e,&)

We can simplify A;(e,d) and As(e,d) and add the results together to recover A(e). Of course, the
artificial parameter § must disappear from the final answer. This cancellation provides a good check on
the consistency of our argument and the correctness of algebra.

For A;(e,0) I used MATHEMATICA

14 x4+ 0(2?)dx

Aq(e,0) = 9.28

1(€,9) ; Nezwr (9.28)
4 2 4

= 212 4 563/2 +2V0+ e+ gm +e— gex/& e+ O(6%2,e8%/% 2512 . (9.29)
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(The contents of the O-garbage are also provided by MATHEMATICA.) Because z is small everywhere in
the range of integration this is a splendid approximation Simplify further with ¢ > e:

Ay =262 4 253/2 + b2 el/2 2e2 4 353/2 +0(8°/2,e6%/%, 2612, €2/2) (9.30)

(At this stage 'm not keeping careful track of the O-garbage.)
To simplify As we use the approximation

! 1 €
_ zc( - & —5/2
Ay = /5 e (\/3? 57372 + O(®x )> dz. (9.31)

This approximation is good because x > § > € everywhere in the range of integration. Now we can
evaluate some elementary integrals:

legj 581 1 d 1/2 2
As = —dz — —=d o —2d .32
2 /0 \/Ex /0 \/gfx—’_e/gedm :10—1—0((53/2>7 (9.32)

5 1
= A(0) —/ eV 4 g2 dx + 6[37_1/2896](15 — e/ 2T dz + O (63/2’65/2> (9.33)
0 5

2
= A(0) — 26%/% — 553/2 +ec—ed 2 —cA(0)+ O <53/2,55/2 51/2> . (9.34)

The proof of the pudding is when we sum (9.30) and (9.34) and three large terms containing the
arbitrary parameter ¢, namely

2
261/2 553/2, and €6 Y2, (9.35)

all cancel. (Some smaller terms involving § don’t cancel — we need to go to higher oder to get rid of
these.) We are left with

4
A(e) = A(0) — 2¢'/2 + [e — A(0)] € + 563/2 +0(e?). (9.36)
The terms of order €® and €' come from the outer region, while the terms of order ¢!/ and €3/? came
from the inner region (the peak).
Remark: MATHEMATICA assures us that
A(e) = 2edaw (V1 + €) — 2daw(Ve) . (9.37)

9.3 A very eccentric ellipse

Recall from lecture 1 that the perimeter of an ellipse can be written as

¢ =2ma X —/ V1—e2sin?60de, (9.38)

f(e)

where f(e) is a dimensionless “reduction factor” relative to a circle with radius a. We easily obtained a
few terms in the e < 1 expansion of f(e). But when we considered the other case, in which e is close to
one, we encountered a divergent integral.

With our new understanding of matching, let’s try a direct assault on the integral in (9.38). We
write

i (9.39)
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and assume € < 1. The obvious approach is

w/2
fle) = %/ 1—(1—¢2)sin?0de, (9.40)
0
2 71'/2
== / Vcos?2 0 + e2sin?0.do, (9.41)
T Jo
2 71'/2
== / cosf\/ 1+ e2tan®0do, (9.42)
0

T

v 2 (T2 sin® 0

~ = 0+e3 O(e") df. 9.43
7T/0 cos +€2cost9+ (%) (9.43)

Unfortunately the coefficient of the e>-term is infinite — the integral diverges because of a singularity
near 6 = w/2. Another way to see this is that we made the dubious approximation

V1+e2tan?6 A1+ 12 tan 0. (9.44)

This is dubious because €2 tan? @ is not small relative to 1 if  is close to /2.
Let’s go back to (9.41) and make a cosmetic change of variable

p=5-10, = sinf = cos ¢, cosf =sing. (9.45)

This is cosmetic because we have moved the difficulty to ¢ = 0 — I find it easier to expand around ¢ = 0
than around 6 = 7 /2. Here is new form:

2 71'/2
fle)=2= / \/sin2 ¢ + €2 cos? ¢ de (9.46)
T Jo
Now the tricky part: split the range of integration at ¢ = ¢ and write the reduction factor as
2 § 2 7\'/2
fle) = p /O\/sin2¢ + €2 cos? pdop+ ?/5 \/sin2 ¢+ €2 cos2 pdo (9.47)
f1(€,9) f2(e,6)

The parameter 4 is our creation — we can do anything we want with d. So let’s choose § satisfying the
double inequality
eLikl. (9.48)

Now we can greatly simplify f; and fo using (9.48]).
First consider simplification of fi(e,d). As an organizing principle we drop terms smaller than or
equal to €262 and €. Thus

9 [0
f1 ~ ;/\/0;2 +e2do, (9.49)
0
9 é/€
- —62/ V1t a2de, (9.50)
™ 0
2 2 2 2
- 2< 5\/1-1—754—111 S 2 (9.51)
T2 |e €2 € €2
2 €2 |62 \/762 § 6 2
2 €2 [62 €2 20
2 LQ (1 " 252) i <€) ' } | (9.53)
52 &2 22



We simplified by dropping the
The second integral is

2
form

Q

Al 3|

: this term produces an €* contribution to fi.

/2 €2 cos? ¢
;/5 smqb—l—; sin ¢ ¢

/2 21 €2
2 . € € nod
77/5 sing+ 5 Shg 2 Snodds

2 €2 0 €2
{cosd— gln <tan2) — 2cos5} ,

2 2 2
55 ()3]
2 2 2 2

(9.55)
(9.56)
(9.57)

(9.58)

Now sum (9.54) and (9.58). With the gratifying cancellation of terms involving 62 and In § we emerge

triumphantly with

2 e € 4
f(e)z; {1—4+21n(6>} .
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Elementary integrals

In working the examples in this section I was troubled by the following results

sinh ™ () = cosh™! (\/ 1+ x2) = tanh (\/1172) =In (m +V1+ x2) ,
x

and, assuming 0 < a,

sinh™* (f
o a VrZ+a?—=x

a

") (H VT) 1 (m) ,

Related integrals are
/dix—ln(;c—l— sc2—|—a2)
Va2 + a? ’

and
/\/x2+a2dm:%x x2+a2+%a21n(3:+ x2+a2),

/ dz 11 a+ Va2 + 22 11 vaz+z2%24+a
R e—— ) B ] —_— _— .
zva? + r2 a

T 2a Vaz+a2—a

MATHEMATICA sometimes uses sinh ' (z) and other times switches to In(z ++/1 + 22). I don’t know
why.
Some useful trigonometric integrals are

dx T 1 1—coszx
- :lntan’f‘:fln — .
sinx 2 2 1+ cosx

dz Int (x+7r) 11 1+sinx
= In n|— — = —In _— .
cosT & 2 4 2 1 —sinx

and

146




9.4 An electrostatic problem — H section 3.5
Here is a crash course in the electrostatics of conductors:
V-.-e=p, and Vxe=0. (9.60)

Above e(x) is the electric field at point @ and p(x) is the density of charges (electrons per cubic meter).
Both equations can be satisfied at once by introducing the electrostatic potential ¢:

e=-V¢, and therefore ~ VZ¢p = —p. (9.61)

To obtain the electrostatic potential ¢ we must solve Poisson’s equation above.
This is accomplished using the Green’s function

1
Vig= -9 = = —
g (x), 9=

(9.62)

where r % || is the distance from the singularity (the point charge). Hence if there are no boundaries

o(x) = ;/mdw. (9.63)

So far, so good: in free space, given p(x), we must evaluate the three dimensional integral above. The
charged rod at the end of this section is a non-trivial example.

If there are boundaries then we need to worry about about boundary conditions e.g. on the surface
of a charged conductor (think of a silver spoon) the potential is constant, else charges would flow along
the surface. In terms of the electric field e, the boundary condition on the surface of a conducting body
B is that

e-tg=0, and e-ng=o, (9.64)

where tg is any tangent to the surface of B, np is the unit normal, pointing out of B, and o is the charge
density (electrons per square meter) sitting on the surface of B.

Example: The simplest example is sphere of radius a carrying a total charge ¢, with surface charge density

q
o= vk (9.65)
Outside the sphere p = 0 and the potential is
q qr
¢ = E s so that e — A2 (966)

where 7 is a unit vector pointing in the radial direction (i.e., our notation is @ = rr). The solution above
is the same as if all the charge is moved to the center of the sphere.

For a non-spherical conducting body B things aren’t so simple. We must solve V2¢ = 0 outside the
body with ¢ = ¢5 on the surface B of the body, where ¢p is an unknown constant. (We are considering
an isolated body sitting in free space so that ¢(x) — 0 as r — o00.) We don’t know the surface charge
density o(x), but only the total charge ¢, which is the surface integral of o(x):

qz/adSz/e-anS. (9.67)
B B

This is a linear problem, so the solution ¢(x) will be proportional to the total charge q. We define the
capacity Cp of the body as
q=0Cgposn. (9.68)

The capacity is an important electrical property of B.
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Example The electrostatic energy is defined via the volume integral
of 1
B 5/\e|2dv, (9.69)
where the integral is over the region outside of 3. Show that
1
FE = §CB¢B- (9.70)

If you have a sign error, consider that the outward normal to body, ng, is the inward normal to free space.

Example: Find the potential due to a line distribution of charge with density n (electrons per meter) along

—a < z<a.

In this example the charge density is

6(s)x(z
p:ni( (2) (9.71)

where s = y/x2 + y? is the cylindrical radius. The signature function x(z) is one if —a < z < +a, and
zero otherwise.
We now evaluate the integral in (9.63)) using cylindrical coordinates, (6, s, z) i.e., de = dfsdsdz. The s
and 6 integrals are trivial, and the potential is therefore

a d€

n
§,2) = — —_— 9.72
#(5:2) dr J_ o \/(z — €)% + 82 ( )
+(a—2)/s
- & (9.73)
4 —(a+2)/s V 1 + t2
+(a—2)/s
=1 [m(t +V1+ tQ)] , (9.74)
47 —(a+z)/s
n r+ —z+a
47rn[r,—z—a]’ (9.75)

where
re =+/s2+4 (aF2)2. (9.76)

r+ is the distance between @ and the end of the rod at z = +a.

Using
2 2
rT— —Ty4
S 9.77
==, (9.77)
the expression in ((9.75) can alternatively be written as
n ry+7r—+2a
/A mindl 9.78
¢ 47rn<r++r,—2a> ( )

If you dutifully perform this algebra you’ll be rewarded by some remarkable cancellations. The expression
in (9.78)) shows that the equipotential surfaces are confocal ellipsoids — the foci are at z = +a. The
solution is shown in Figure [0.2]

A slender body

In section 5.3, H considers an axisymmetric body B defined in cylindrical coordinates by

V2 +y? =eB(z). (9.79)
————

=S

(I’'m using different notation from H: above s is the cylindrical radius.) The integral equation in H is

then
1o f(&e)dg
1=— . 9.80
47 [1 \/(Z_§)2_|_€QB(Z)2 ( )
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z/a

Figure 9.2: Equipotential contours, ¢(z, z) in (9.78)), surrounding a charged rod that lies along
the z-axis between z = —a and z = a. The surfaces are confocal ellipsoids.

I think it is easiest to attack this integral equation by first asymptotically estimating the integral

o) = - O f(&e)dg
U Ar —11/(2—5)2—1—327

Notice that we can’t simply set s = 0 in (9.81]) because the “simplified” integral,

1t f(&e)dg
dm J_oy |z =€l

as s — 0. (9.81)

is divergent. Instead, using the example below, we can show that

N 1 —
(s, 2) = fQ(;) In (2 13 & >+417r/1f(2_£|(2)d§+0(5). (9.82)
Thus the integral equation is approximated by
e [2v1=22 1 (" f(&e) = f(ze)
1= o 1n< B(2) >+47r/_1|§—z|d§' (9.83)

As € — 0 there is a dominant balance between the left hand side and the first term on the right, leading
to

27
f(zv 6) ~ ) (984)
In <2g§(—z'§2)
2
= (9.85)
B(2)
L—In (2 ﬁ_22)
where L & Ini > 1. Thus expanding the denominator in (9.85) we have
2r 27 B(z) 3
o) — + —In| —— O (L . 9.86
fz9) L+L2“(2m>+ =) (950
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This is the solution given by H. For many purposes we might as well stop at ((9.84)), which provides the
sum to infinite order in L~". However if we need a nice explicit result for the capacity,

1
- [ s, (9.87)

then the series in ((9.86) is our best hope.

Example: obtain the approximation (9.83). This is a good example of singularity subtraction. We subtract the
nearly singular part from (9.81)):

L O SE) g, S

Ar [y /(2 — )2 + 82 4
In the first integral on the right of (9.88]) we can set s = 0 without creating a divergent integral: this move
produces the final term in (9.83), with the denominator |z — £|.

The final term in (9.88)) is the potential of a uniform line density of charges on the segment —1 < z < 1
i.e., the potential of a charged rod back in (9.75) (but now with a = 1). We don’t need (9.75)) in its full
glory — we’re taking s — 0 with —1 < z < 1. In this limit (9.78]) simplifies to

Ve (9.88)

/ <2V 1= 22> (9.89)
471' A / Z — -|— 52 S
Thus we have L © ) )
_ L IO g TG (V22

(s, z) = yy /71 ] o ln( S ) . (9.90)
9.5 Problems
Problem 9.1. Find the leading-order behavior of

H(e) = /0 % dr,  ase— 0. (9.91)

Problem 9.2. Consider the integral

) = /w@ dz, (9.92)

where W (z) is a smooth function that decays at x = co and has a Taylor series expansion about x = 0:
W(z) =Wy + aW{ + x Wy (9.93)

Some examples are: W(z) = exp(—z), W(z) = sech(z), W(z) = (1 + 22)~! etc. (i) Show that the
integral in (4) has an expansion about x = 0 of the form

1
I(x) =W, m( > +C — W — —W” 241 0(2%), (9.94)
where the constant C is
d
C = / 2) + W(1/z) — Wol : (9.95)

(ii) Evaluate C if W (z) = (14 2%)~!. (iii) Evaluate the integral exactly with W(z) = (1 + 22)71, and
show that the expansion of the exact solution agrees with the formula above.

Problem 9.3. Let us complete problem [5.5] by finding a few terms in the ¢t — 0 asymptotic expansion
of

o eVt
t(t) = ——dv. .
z(t) /0 T2 (9.96)
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If we simply set ¢ = 0 then the integral diverges logarithmically. We suspect @ ~ Int. Let’s calculate
#(t) at small ¢ precisely by splitting the range at v = a, where

1
l<ax 7 (9.97)
For instance, we could take a = O(t~/?). Then we have

) C -t 4 < (1 1
xzéggﬁjffm+L e (U‘w+“>d” (9.98)

Now we have a variety of integrals that can be evaluated by elementary means, and by recognizing the
exponential integral:

i~ 2In(l+a*) —at+ttan " a+ E(at) + - (9.99)
t t
~1Ina—at+ % —In(at) —vg +at+0 <a2t2, o az) , (9.100)
from E(at)
1 mt 9
Problem 9.4. Find useful approximations to
oo
e d
F(x) def / I S (9.102)
0 2 + u? +’LL4

as (1) ¢ — 0; (i) x — oo.
Problem 9.5. Consider L
A(e) e / (1—2)%+c222dx. (9.103)
0
Evaluate A(0). Determine the € < 1 correction to A(0)?

Problem 9.6. Find the first two terms in the ¢ — 0 asymptotic expansion of

def [ dy
F = . 9.104
@ | ety (8109
Problem 9.7. Consider
def [ rdx
H = . .1
(T) /0 (T'Q + 13)3/2(1 + I’) (9 05)

(i) First, with » — 0, find the first two non-zero terms in the expansion of H. (i) With r — oo, find
the first two non-zero terms, counting constants and Inr as the same order.

Problem 9.8. Find two terms in the expansion the elliptic integral
/2 do
K(m) % / B a— (9.106)
0 1 —m2sin6
asm T 1.
Problem 9.9. This is H exercise 3.8. Consider the integral equation
1
t;e)dt
2= / _Jkgdt (9.107)
L@ r(—ap

posed in the interval —1 < z < 1. Assuming that f(z;e€) is O(e) in the end regions where 1 — |t| = O(e),
obtain the first two terms in an asymptotic expansion of f(x;¢€) as € — 0.

Problem 9.10. Show that as ¢ — 0:

1 2 2 3

Inz 1. 45/1 s € € €
der=—=1 )= l— -+ == =4 . 9.108
/Oe+xm 2n(e> 6+€( 179 16" ) (5.108)




Lecture 10

More boundary layer theory

10.1 A second-order BVP with a boundary layer

At the risk of repetition, let’s discuss another elementary example of boundary layer theory, focussing
on intuitive concepts and on finding the leading-order uniformly valid solution. We use the BVP

ey’ +a(z)y’ +b(z)y =0, (10.1)

with BCs
y(0) = p, y(1) =q, (10.2)

as our model.

The case a(z) > 0

We start with a the special case in which a(z) is strictly positive throughout the interval 0 < z < 1. We
begin with some heuristic considerations. Suppose we drop ey’ and start by solving

a(x)y +blx)y ~0. (10.3)

There are at least two possible interior solutions

L(z) ¥ pexp ( /sz((gdt) ., or  R() Y gexp (+ /:Z((gdt) . (10.4)

L(z) satisfies the left hand BC at 2 = 0 and R(z) satisfies the right hand BC at 2 = 1.
Do we use R(z) or L(z) as an interior solution? If we use L(z) then we will need a BL at x = 1. We
anticipate that within this BL the ODE simplifies to

ey’ +a(l)y =~ 0. (10.5)

The general solution is

y=C+ Dexp <a(l)$ - 1> . (10.6)
But this is not a BL solution — the exponential term above explodes (z — 1)/e — —o0 i.e. as we move
into the interior of the domain where x — 1 is negative. OK — it seems that if a(z) > 0 we must use R(z)
as the interior solution.

The argument above is correct: if a(x) > 0 we use R(z) as the interior solution. And if a(z) < 0
then the boundary layer is at £ = 1 and we should use L(x) as the interior solution.

Let’s now proceed more formally. In the interior we can look for a solution with the expansion

y(z, €) = yo(x) + eyr(x) + - (10.7)
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The leading-order term satisfies
ayly +byo = 0. (10.8)

Yo(x) = gexp (/: mdv) (10.9)

we have satisfied the boundary condition at x = 1. We return later to discuss why this is the correct
choice if a(x) > 0.

Unless we’re very lucky, will not satisfy the boundary condition at = 0. We fix this problem
by building a boundary layer at = 0. Introduce a boundary layer coordinate

With the construction

def T

X<€=, (10.10)
and write
y(x,e) =Y (X e). (10.11)
Then “re-scale” the differential equation using the boundary-layer variables:
Yxx +a(eX)Yx +eb(eX)Y =0. (10.12)
Within the boundary layer, where X = O(1),
a(eX) = a(0) + eXd'(0) + 32 X%a"(0) + O (€%) . (10.13)

There is an analogous expansion for b(eX).
In the boundary layer we use the “inner expansion”:

Y(X,e) =Yo(X)+e¥1(X)+--- (10.14)
The leading-order term is
e Yoxx +a(0)Yox =0, (10.15)
and, for good measure, the next term is
el Yixx +a(0)Yix +a’ (0)XYyx +b(0)Yy = 0. (10.16)

Terms in the Taylor series (10.13)) will impact the higher orders.
The solution of (|10.15)) that satisfies the boundary condition at X = 0 is

Yo = p+ Ao (1 — e*““’)X) , (10.17)

where Ay is a constant of integration. We are assuming that a(0) > 0 so that the exponential in
decays to zero as X — oco. This is why the boundary layer must be at x = 0. The constant Ay can then
be determined by demanding that in the outer solution agrees with the inner solution in
the matching region where X > 1 and x < 1. This requirement determines Ay:

p+ Ay = gexp (/01 ZEZ;&;) . (10.18)

Hence the leading order boundary-layer solution is

Yo =p+ [qexp (/01 z((z))dv> —p] (1 - e—“<0>X) : (10.19)

1
b
= pe~*OX 4 gexp (/0 aigdv) (1 - e_a(O)X) ) (10.20)
We construct a uniformly valid solutions using the earlier recipe

uniformly valid = outer + inner — match . (10.21)

In this case we obtain

Yuni = ¢ €xXp (/: Z((Z))dv> + {p — qexp (/01 fb((zgdv)] ema(Oz/e (10.22)

Exercise: Find the analog of (10.22) if a(z) < 0 throughout the interval 0 < z < 1.
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0.8k (a, 8) = (
0.6 -
Y 0.4t 0.1 ]
0.2f I

_0.2 1 1 1 1

Figure 10.1: Solutions of (|10.25)) with & = —1 < 0 and € = 0.1 (solid blue) and 0.02 (dashed
black). There are boundary layers at * = £1. The interior solution is zero to all orders in e.
There is no internal boundary layer at = 0.

10.2 Internal boundary layers
BO section 9.6 has an extensive discussion of the boundary layer problem
Y +ay +by =0, (10.23)
in which a(z) has an internal zero. The problem is posed on —1 < z < 1 with boundary conditions
y(-=1)=p, y+1)=q. (10.24)

The zero of a(z) is at z = 0 where a(x) = az + O(z?). The differential equation

ax
1422

ey’ + y+By=0 (10.25)

is a typical example. T'll give a simplified treatment of ((10.25) and defer to BO for more details of the
general case.

Case 1: a <0 (easy)

There are boundary layers at both * = 1 and « = —1: see figure for numerical solutions of (10.25]
using the MATLAB routine bvp4c.

Exercise: Use BL theory to construct ¢ < 1 approximations to the numerical solution in figure [10.1] .

Case 2: a >0 (hard)
Next consider (10.25) with o > 0 and boundary conditions
y(-1)=1,  y(+1)=0. (10.26)

This example will reveal all the main features of the general case. Earlier arguments indicate that
boundary layers not possible at either end of the domain. Instead we have two interior solutions — one
for 0 < = < 1 and the other for —1 < x < 0.

The left interior solution, u(z), satisfies the boundary condition at z = —1:

Y =uo+eu; +--- (10.27)
with leading order

ax

_ | B e
T gpte tBu =0, = ug = |z anp|: 2a(x 1)]. (10.28)
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3 T T T T T T T T T
(o, B,v) =(1,0.25,—-0.75)

0.4 0.6 0.8 1

O t |
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
T

Figure 10.2: Internal boundary layer solution of (|10.25) with p = 1 and ¢ = 0, and € = 0.05
(green dotted) and 0.005 (red dashed) and 0.0005 (solid black).
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There is also a right interior solution v(z), satisfying the boundary condition at = +1:
y=1uo+evy £ (10.29)
In this case, with y(1) = 0, the right interior solution is zero at all orders
vy, =0. (10.30)

We need a boundary layer at = 0 to heal the x — 0 singularity in and to connect the right
interior solution to the left interior solution. A distinguished-limit shows that the correct boundary-layer
coordinate is i T

X« 7 (10.31)
We must also re-scale the solution:
y=e Py (X). (10.32)

The scaling above is indicated because the interior solution in is order € #/2* once x ~ y/e.
Without much work we have now determined the boundary layer thickness and the amplitude of the
solution within the boundary layer. This is valuable information in interpreting the numerical solution
in figure — we now understand how the vertical axis must be rescaled if we reduce e further.

Using the boundary-layer variables, the BL equation is

aX
Y. —Y Y =0. 10.33
xxt T Eix Tt B ( )
We solve (|10.33)) with the RPS
Y =Y(X)+eV1(X)+--- (10.34)
Leading order is the three-term balance
Yoxx +aXYyx +B8Yy =0, (10.35)
with matching conditions
Yy — | X| P/ @b/ 2 as X — —oo, (10.36)
Yy — 0, as X — +oo. (10.37)

We have to solve ((10.35)) exactly. When confronted with a second-order differential equation it is
always a good idea to remove the first derivative term with the standard multiplicative substitution. In
this case the substitution

Yo = WeoX*/4 (10.38)
into (|10.35)) results in
Wxx + (8- 3a—1a®X*)W =0. (10.39)
Then, with Z def vaX, we obtain the parabolic cylinder equation
Wzz + (5—1—1Z2>W=0, (10.40)
N
u+%
of order
Y (10.41)
@
Provided that
s #1,2, 3,--- (10.42)
@
the general solution of (|10.35)) is
Yo = e *X/*[AD, (VaX) + BD, (—/aX)] . (10.43)
We return to the exceptional case, in which v =0, 1, 2 -- -, later.
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Parabolic Cylinder Functions
The parabolic cylinder equation is
y"—|—(u—|—%—%x2)y=0.

If v is not an integer then the general solution can be constructed as y = ¢1 D, (z) + coD,(—x).
Values at the origin are

Dy(0) = vm2"2 /0 (3 = gv) . and  Dy(0) = =m0 V2T (—gv) .

Asymptotic expansions on the real axis are

D,(x) ~ zVe=e /4 , as & — 00,
and
Vor .
D,(z) ~ |:E|”e_“”2/4 iy W) e””’|x|_”_1e”’2/4, as r — —00.
—v
If v is a nonnegative integer n =0, 1, 2,--- then

Dy = e~/ 22, (o/v2)

where H,,(z) is a Hermite polynomial.
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To take the outer limits, X — 400, of the internal boundary layer solution in ((10.43]) we look up the
asymptotic expansion of the parabolic cylinder functions e.g. in the appendix of BO, or in the DLMF':

Dy(t) ~t'e /4 ast— oo, (10.44)
Dy(—t) ~ 257N ast 0. (10.45)

Matching in the right-hand outer limit, X — 400, implies that B = 0. Matching in the left-hand
outer limit X — —oo requires that

A = (ae)"tV/2 F\(ﬁ%’;) . (10.46)

10.3 Initial layers

The over-damped oscillator

With our knowledge of boundary layer theory, let’s reconsider the over-damped harmonic oscillator from
problem With a change of notation, the problem in (3.126)) is:

exy +x,+x=0, with the IC: z(0) =0, =x,(0)=1. (10.47)

This scaling is convenient for the long-time solution, but not for satisfying the two initial conditions.
We are going to use a boundary-layer-in-time, also known as an initial layer, to solve this problem.
To address the initial layer we introduce

T, and  X(T,¢) = a(t,e). (10.48)

The rescaled problem is
Xrr+Xr+eX =0, with the IC: X (0) =0, X;(0)=c¢€. (10.49)

Because X satisfies both the initial conditions it is convenient to attack this problem by first solving the
initial-layer equation with

X(T,€) = eX1(T) + €Xo(T) + - - - (10.50)

One finds
Xirr + Xar =0, = Xi=1-¢T", (10.51)
Xorr + Xor = — X1, = Xo=21-e 1) -T-Te ", (10.52)
Xarr + Xar = —Xo, = X;=6(1-eT)=3T(1+e ")~ I7% T +177°. (10.53)

All the constants of integration are determined because the initial-layer solution satisfies both initial
conditions. Once T >> 1, the initial-layer solution is

X e+ (2-T)+e(6—3T+1T%) + O(e*), (10.54)

=e(l—t+ %)+ (2 -3t) + 66 + O("). (10.55)

To facilitate matching at higher order in (10.55) we’ve written the solution in terms of the outer time
t. Terms switch order in passing from (10.54) to (10.55)). We can anticipate that there are further

switchbacks from the O(e?) terms.
We obtain the outer solution by solving (10.47)) (without the initial conditions!) with the RPS

x(t,€) = exy(t) + Exa(t) + - - (10.56)

The first two terms are
Tt +x1 =0, = z1 = Ajet, (10.57)
Tot + T2 = —T1¢t = To = Alteit + A2€7t R (1058)
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0.08} . - - O(€) unif
e X ---0(€?) unif
—~0.06F /7 TR — exact
= . /l TR S
= 0.04 |

Ce—
By —

002 ._g1o T=Iz=-

Figure 10.3: Comparison of (10.62) with the exact solution of ((10.47)).

and the reconstituted outer solution is
z=eAie + & (Aite ™" + Age™") . (10.59)

In the matching region, € < t < 1, the outer solution in ((10.59)) is

= Ay (L—t+3%) + € (Ar + (A — A)t) + O(€%, et?, ) (10.60)
Comparing (|10.60) with (10.55)) we see that
A =1, and Ay =2. (10.61)

Finally we can construct a uniformly valid solution as
g =e(et—e )+ (teT —Te " +2e7" —2e77) + O(e%). (10.62)
Figure compares (10.62) with the exact solution

2¢ —t/2€ \/1_4€t
—e sinh [ —— ] .
V1 —4e 2e

Remark: Might there be a problem in figure — seems like the second-order uniform solution is not accurate
in the outer region?

(10.63)

xr=

Example: Consider
T =—x—xy+ ery, €Y =T — TY — €KY . (10.64)

10.4 Other BL examples

Not all boundary layers have thickness €. Let’s consider a medley of examples.

Example:
e —y=—f(x), y(-1)=y(1)=0, (10.65)
If we solve the simple case with f(z) = 1 exactly we quickly see that y ~ 1, except that there are boundary
layers with thickness /€ at both x = 0 and = = 1.

Thus we might hope to construct the outer solution of (10.65)) via the RPS

y=f+ef +E3f +0(E). (10.66)

The outer solution above doesn’t satisfy either boundary condition: we need boundary layers at x = —1,
and at x = +1.
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Turning to the boundary layer at © = —1 we introduce

def T+ 1

X , and y(z,e) = Y(X,Ve). (10.67)
Ve
The re-scaled differential equation is
Yxx =Y = f(-1+VeX), (10.68)
and we look for a solution with
Y = Yo(X) + VeYi(X) + €Ya(X) + - - (10.69)
The leading-order problem is
Yoxx — Yo = —f(-1), (10.70)
with solution
Yo = f(—1) + Age ¥ + By e~ (10.71)
~—

=0
We quickly set the constant of integration By to zero — the alternative would prevent matching with the
interior solution. Then the other constant of integration Ag is determined so that the boundary condition
at X = 0 is satisfied:

Yo = f(—1) (1 - e_X) ‘ (10.72)

The boundary condition at x = +1 is satisfied with an analogous construction using the coordinate
X« (x — 1)/+/€. One finds

Yo = f(1) (1 - ex) . (10.73)

The outer limit of this boundary layer is obtained by taking X — —oc.

Finally we can construct a uniformly valid solutions via
Yy (2) = fz) — f(=1)e” TV p41)elr IV (10.74)

Example:
ey’ +y=flx), y0)=y1)=0, (10.75)
If we solve the simple case with f(z) = 1 exactly we quickly see that this is not a boundary layer problem.
This belongs in the WKB lecture.

Example: Find the leading order BL approximation to

1
ew —u=———, with BCs u(£1) =0. 10.76
i (D) (10.76)

The leading-order outer solution is
1

Nk
Obviously this singular solution doesn’t satisfy the boundary conditions. We suspect that there are
boundary layers of thickness /€ at z = £1. NThe interior solution is ~ €"1/* as z moves into this
BL. Moreover, considering the BL at = —1, we use X = (1 + z)/+/€ as the boundary layer coordinate,

(10.77)

ug =

so that i 1
= . 10.78
V1—22  /4/X(2 - eX) ( )
Hence we try a boundary-layer expansion with the form
u(z,€) = e * [Ug(X) + VeUr(X) + O(e)] (10.79)
A main point of this example is that it is necessary to include the factor e~ Y4 above.
The leading-order term in the boundary layer expansion is then
1
Uy —Up=——— (10.80)

\/Y )
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which we solve using variation of parameters

X v X _—wv
— € X € X —-X
Us(X)=1e X/ —dv-1e / dv+Pe” + Qe " . (10.81)
? 0o Vv ? o Vv
~eX /X N\f_(e—X/\/Y)

The boundary condition at X = 0 requires
P+Q=0. (10.82)

To match the outer solution as X — oo, we must use the X — oo asymptotic expansion of the integrals
in (10.81)), indicated via the underbrace. We determine P so that the exponentially growing terms are
eliminated, which requires that P = y/7/2. Thus the boundary layer solution is

X _
Uo(X) = /msinh X — / Smh(X = v) 4, (10.83)
0 Vv
(Must check this, and then construct the uniformly valid solution!)
Example: Find the leading-order BL approximation to
ey +ay + 2%y =0, with BCs y(0) =p, y(1)=gq. (10.84)
We divide and conquer by writing the solutions as
y=pf(z.€)+qg(z,e), (10.85)
where
ef +af +a*f =0, with BCs  f(0) =1, f(1)y=o, (10.86)
and
ed/ +xg +2°g=0, with BCs g(0) =0, g(l)=1, (10.87)
The outer solution of the g-problem is
g=e1"2 g4 (10.88)

We need a BL at = 0. A dominant balance argument shows that the correct BL variable is
T
X=—. 10.89
Ve (10.89)

If g(z,e) = G(X, \/€) then the rescaled problem is

Gxx +XGx +eX*G=0. (10.90)
The leading-order problem is
Goxx + XGox =0, (10.91)
with general solution
X 2
Go= P + Q /e*” 2 qu. 10.92
, ; (10.92)

=0 \/2e/m

To satisfy the X = 0 boundary condition we take P = 0, and to match the outer solution we require
oo
Q/ eV dy = 6. (10.93)
0

The uniformly valid solution is

. _ 2 z/Ve
(2, ) = @12 \/f/ eV 2 dy — Ve, (10.94)
0

:e(1*12>/2—,/2£/ e 2 dy. (10.95)
L EING

Now turn to the f-problem. The outer solution is f,(z) = 0 at all orders. The solution of the leading-order
boundary-layer problem is

Fo(X) = \/%/X e 2 dy. (10.96)

This is a stand-alone boundary layer.
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Example: Let’s analyze the higher-order terms in the BL solution of our earlier example

e —y=—f(z), y(=1)=y1)=0. (10.97)
Our provisional outer solution is
y(z) = f(z) +ef"(x) + € " (x) + O(e%). (10.98)

Let’s rewrite this outer solution in terms of the inner variable X (z—1)/+/¢€
y(@) = L+ VeX) +ef"(1+ VeX) + € (1 + VeX) + O(e). (10.99)
Assuming that y/eX is small in the matching region, we expand the outer solution:
1
V) = £+ VEX (D) + e (3X°+ 1) £/0) 4 2 (X4 ) 1700

+é (1 + %XQ + ix“) (1) + 0 (65/2) . (10.100)

We hope that the outer expansion of the inner solution at x = 1 will match the series above.

The rescaled inner problem is

Yxx =Y = —f(1++eX), (10.101)
= —F(1) = VEXF(1) — g X2 (1) + O (10.102)

The RPS is
Y = f(1) (1 - eX) VeV (X) + e¥a(X) + /2Y3(X) O(€2) (10.103)

with

Y/ -vi=-Xf(), (10.104)
Yy —Ys = —-1X%f"(1), (10.105)
Yy — Vs = —%X3f”’(1). (10.106)

We solve the equations above, applying the boundary condition Y, (0) = 0, to obtain
Yi(X) = Xf(1), Ya(X) = (1 +1x? - eX) (1), (10.107)
and  Y3(X) = (X + éX?’) (). (10.108)

The inner limit of the leading-order outer solution, yo(x) = f(x), produces terms at all orders in the
matching region. In order to match all of yo(x) one requires all the Y, (X)’s.

10.5 Problems

Problem 10.1. Assuming that a(x) < 0, construct the uniformly valid leading-order approximation to
the solution of
ey +ay +by=0, with BCs  ¢/(0) =p, ¢'(1)=q. (10.109)

(Consider using linear superposition by first taking (p,q) = (1,0), and then (p,q) = (0,1).)
Problem 10.2. Consider
ey +Vay +y=0, withBCs y(0)=p, y(1)=q. (10.110)

(i) Find the rescaling for the boundary layer near z = 0, and obtain the leading order inner approx-
imation. Then find the leading-order outer approximation and match to determine all constants of
integration. (ii) Repeat for

@ —Vay +y=0, withBCs y0)=p, y()=q. (10.111)
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Problem 10.3. (a) Consider the nonlinear boundary value problem

1
eu +u' + §u2 =0, (10.112)
posed on 0 < z < 1 with boundary conditions

u(0) =1, and u(l)y=1. (10.113)

(a) Use boundary layer theory to construct a leading order uniformly valid solution in the limit e — 0.
(b) (b) Consider the boundary value problem

1
ev' —v + 5112 =0, (10.114)

posed on 0 < z < 1 with boundary conditions
v(0) =1, and v(l)=1. (10.115)

Use boundary layer theory to construct a leading order uniformly valid solution in the limit ¢ — 0. (c)
Find a leading order e — 0 approximations to fol u(z) dz and fol v(x)de.

Problem 10.4. Find a leading order, uniformly valid solution of
ey +Vay +y° =0, (10.116)
posed on 0 < x < 1 with boundary conditions y(0,¢) = 2 and y(1,¢) = 1/3.
Problem 10.5. Find a leading order, uniformly valid solution of
ey —(1+32H)y ==, with BCs 4, (0,¢) = y(1,¢) = 1. (10.117)

Problem 10.6. Find a leading-order, uniformly valid solution of

ey’ — ——=0, with BCs  y(0,¢) = y(1,¢) = 3. (10.118)

Problem 10.7. In an earlier problem you were asked to construct a leading order, uniformly valid
solution of
e —(1+32%)y=2  withBCs  y(0,¢) =y(l,e) =1. (10.119)

Now construct the uniformly valid two-term boundary layer approximation.
Problem 10.8. Consider
e +(1+ey +y=0, y0)=0, yl)=e", (10.120)
m =y, m(1)=0. (10.121)

Find two terms in the outer expansion of y(z) and m(z), applying only boundary conditions at x = 1.
Next find two terms in the inner approximation at x = 0, applying the boundary condition at = = 0.
Determine the constants of integration by matching. Calculate m(0) correct to order e.

Problem 10.9. Use boundary-layer theory to construct a leading-order solution of the IVP
€Ty + 1+ =te " with z(0) = 2(0) =0, as € — 0. (10.122)
Problem 10.10. Find the leading order € — 0 solution of

du dv 9
priakl = U (10.123)

for ¢t > 0 with initial conditions «(0) = 0 and v(0) = 1.
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Problem 10.11. Find the leading order ¢ — 0 solution of

e+ (1+t)u+u=1, (10.124)
for ¢ > 0 with initial conditions u(0) = 1 and @(0) = —e L.
Problem 10.12. A function y(¢, z) satisfies the integro-differential equation

ey = —y+ f(t) +Y(t), (10.125)

where

Y(t) € / y(t, z)e 7" da, (10.126)
0

with 8 > 1. The initial condition is y(0,z) = a(x). (This is the Grodsky model for insulin release.)
Use boundary layer theory to find the composite solution on the interval 0 < ¢ < oo. Compare this
approximate solution with the exact solution of the model. To assist communication, use the notation

ol g and A Y (0), and 70 (10.127)

Problem 10.13. Solve the previous problem with g = 1.
Problem 10.14. The Michaelis-Menten model for an enzyme catalyzed reaction is
§=—-s+(s+k—1)c, ec=s—(s+ ke, (10.128)

where s(t) is the concentration of the substrate and c(¢) is the concentration of the catalyst. The initial
conditions are
s(0)=1, c(0)=0. (10.129)

Find the first term in the: (i) outer solution; (i3) the “initial layer” (7 def t/e€); (iii) the composite
expansion.
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Lecture 11

Multiple scale theory

11.1 Introduction to two-timing

Begin by considering the damped harmonic oscillator

d%z dx
@“rﬁa-‘rm:o, (11.1)
with initial conditions d
2(0)=0,  and d—f(@) =1. (11.2)
You should recall that the exact solution is
2
z=v e P 2ginut, with Y. % . (11.3)

A good or useful g < 1 approximation to this exact solution is
z e P 2sint. (11.4)

Let’s use this example to motivate the multiple-scale method.

Failure of the regular perturbation expansion

If 8 < 1 we might be tempted to try an RPS on (11.1)):
w(t, B) = wo(t) + Ba1(t) + BPaz(t) + - - (11.5)

A reasonable goal is to produce the good approximation (11.4)). The RPS will not be successful and this
failure will drive us towards the method of multiple time a scales, also know as “two timing”.
The leading-order problem is

The solution is
xo =sint. (11.7)

The first-order problem is

d? d
??Jr;vl:fcost, with IC  21(0) =0, %(0):0. (11.8)
This is a resonantly forced oscillator equation, with solution
t .
r1=—g sint. (11.9)
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Figure 11.1: Comparison of the exact solution in (11.3) (the solid black curve), with the two-term RPS
in (11.10) (the blue dotted curve) and the two-time approximation in ((11.23]) (the dashed red curve). It
is difficult to distinguish the two-time approximation from the exact result.

Thus the developing RPS is
. Bt . 2
x(t,B)—smt—?smt—i—ﬁ xo(t) 4+ -+ (11.10)

At this point we recognize that the RPS is misleading: the exact solution damps to zero on a time scale
2/p, while the RPS suggests that the solution is growing linearly with time. With hindsight we realize
that the RPS is producing the Taylor series expansion of the exact solution in about 8 = 0. Using
MATHEMATICA, this series is

x(t,B) =sint — —sint + — [t*sint +sint — tcost] + O(B%). (11.11)

Bt B2
2 8

Calculating more terms in the RPS will not move us closer to the useful approximation in (11.4)): instead
we’ll grind out the useless approximation in . In this example the small term in is small
relative to the other terms at all times. Yet the small error slowly accumulates over long times ~ 871.
This is a secular error.

Two-timing

Looking at the good approximation in (11.4)) we are inspired to introduce a slow time:

s Bt (11.12)

We assume that x(¢, ) has a perturbation expansion of the form
a(t, B) = wo(t, s) + Bai(t,s) + Bas(t,s) + - (11.13)

Notice how this differs from the RPS in (11.5).
At each order x, is a function of both s and ¢ a function of both ¢ and s. To keep track of all the
terms we use the rule

e, i
and the equation of motion is
(8 + 80)> x4+ B (0 + BOs)x + 2 =0. (11.15)
At leading order
B Ofxg +19 =0, with general solution xo = A(s)e + A*(s)e™ ', (11.16)
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The “constant of integration” is actually a function of the slow time s. We determine the evolution of
this function A(s) at next ordetﬂ
At next order

gt 8?331 + x1 = —2x0ts — Tot , (11.18)
= —2iAe! —ide! + co (11.19)

Again we have a resonantly forced oscillator. but this time we can prevent the secular growth of x; on
the fast time scale by requiring that
24, +A=0. (11.20)

Thus the leading-order solution is
zo(s,t) = Age™*/2elt + Afe™/2e71t . (11.21)

The constant of integration Ag is determined to satisfy the initial conditions. This requires

0= A+ Af, 1=idg —i4}, = Ap = 1i. (11.22)
Thus we have obtained the good approximation
zo =e P ?sint. (11.23)
Averaging
11.2 The Duffing oscillator
We consider an oscillator with a nonlinear spring
mi + ki + kzz® =0, (11.24)
and an initial condition
z(0) = zg, z(0)=0. (11.25)

If ks > 0 then the restoring force is stronger than linear — this is a stiff spring. With k3 < 0 we have a
soft spring
We can non-dimensionalize this problem into the form

i+x+er®=0, (11.26)

with the initial condition
z(0) =1 z(0)=0. (11.27)

We use this Duffing oscillator as an introductory example of the multiple time scale method.

Energy conservation,
8%+ 32?4+ et = E (11.28)

1,1
=2tie

immediately provides a phase-plane visualization of the solution and shows that the oscillations are
bounded.

Exercise: Show that in (T1.26)), ¢ = kszd/k;.

"We could alternatively write the general solution of the leading-order problem as
xo =rcos(t+ @), (11.17)
where the amplitude r and the phase ¢ are as yet undetermined functions of s. I think the complex notation in

(11.16) is a little simpler.
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Exercise: Derive ([11.28)).
The naive RPS

x=xo(t) +ex1(t) + - (11.29)
leads to
To+x9g=0, = ro = cost, (11.30)
and at next order
#1411 =—cos’t, (11.31)
—1 (e +3e' + cc) (11.32)
= —%cos3t — 3 cost. (11.33)

The x;-oscillator problem is resonantly forced and the solution will grow secularly, with z; o tsint.
Thus the RPS fails once t ~ ¢~ 1.

Two-timing
Instead of an RPS we use the two-time expansion
x =xo(s,t) +exi(s,t) +--- (11.34)

where s = et is the slow time. Thus the expanded version of ([11.26)) is

(8 + €05)? (zo(s, 1) + €x1(s,8) + -+ ) + (zo(s, 1) + €1 (s, t) + -+ )

+e(wo(s,t) + exy(s,t) +---)> =0. (11.35)
The leading order is
D2xo+10=0, (11.36)
with general solution ‘ ‘
zo = A(s)e' + A*(s)e ™. (11.37)

The amplitude A is a function of the slow time s. At next order, €', we have

02wy 4+ 21 = —20;0,70 — T, (11.38)
= —2iAelt — A3 — 342 A% 4 co (11.39)

To prevent the secular growth of z; we must remove the resonant terms, e*'* on the right of (11.39).
This prescription determines the evolution of the slow time:

2iA, + 3|APA=0. (11.40)
The remaining terms in are
D2xy 41 = —A33 4 cc (11.41)
The solution is 1
T = §A3e3it + Al + cc (11.42)

where A;(s) is a slow-time amplitude. The main point is that z (s, t) remains bounded.
Discuss application of the initial conditions in ((11.30)). Can we argue that A;(s) = 07
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Polar coordinates

To solve (|11.40)) it is best to transform to polar coordinates
A =1r(s)el?®) and Ay = (rs +irf,) e ; (11.43)
substituting into the amplitude equation ([11.40))

re =0, and 0, = gr? (11.44)

The energy of this nonlinear oscillator is constant and thus r is constant, r(s) = ro. The phase 6(s)
therefore evolves as 6 = 6y + 37“35 /2.
The reconstituted solution is

z=roexp[i(1+ 2erd) t+1i6p] + cc+ Ofe). (11.45)

The velocity of the oscillator is
dz

dt

To satisfy the initial condition in (11.27) at leading order, we take 6y = 0 and rq = 1/2. Thus, with this
particular initial condition,

=irgexp [i (14 2erd) t +i6g] + cc+ O(e). (11.46)

T = cos [(1 + 38€> t} + O(e) . (11.47)
The frequency of the oscillator in (11.45]),
v=1+2er, (11.48)

depends on the amplitude ¢ and the sign of €. If the spring is stiff (i.e. k3 > 0) then € is positive and
bigger oscillations have higher frequency.

Exercise: Now investigate nonlinear damping

d%z dz\?
11.3 The quadratic oscillator
The quadratic oscillator is
Ptxter?=0. (11.50)
The conserved energy is
E =1+ 12 + ea®, (11.51)

and the curves of constant energy in the phase plane are shown in Figure [T1.2]
Following our experience with the Duffing oscillator we try the two-time expansion

(8 + €Ds)? (zo(s, 1) + €x1(s,8) + -+ ) + (zo(s, 1) + €xy (s, 8) + -+ )

+€(zo(s,t) +exi(s,t) +---)" =0. (11.52)
The leading-order solution is again
xo = A(s)e + A*(s)e™ (11.53)
and at next order
Owr + w1 = —2 (1A, — iAZe™™) — (A2 4 2|4 + A*2e721) (11.54)
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Quadratic oscillator phase plane, ¢ =1

Figure 11.2: Quadratic oscillator phase plane.

Elimination of the resonant terms e+t

equation is

requires simply Ay = 0, and then the solution of the remaining

z1 = $A%M —2[A] + 1A% (11.55)

This is why the quadratic oscillator is not used as an introductory example: there is no secular forcing
at order e.
To see the effects of nonlinearity in the quadratic oscillator, we must press on to higher orders, and
use a slower slow time:
s=¢ét. (11.56)

Thus we revise (11.52)) to
(0 + €20, )2 (o(s,t) + ex1(s,t) + -+ ) + (zo(s,t) + ex1(s,t) +--+)

+ € (zo(s,t) +exy(s,t) +---)> =0. (11.57)

The solutions at the first two orders are the same as (11.53)) and (11.55)). At order €2 we have

8?3:2 + 29 = —20;05109 — 220771 , (11.58)
= -2 (14,e' —iAle ) — 2 (Ae' + A%e 1) ($4%7" — 2|4 4+ FA*2e ) (11.59)

Tox1

Eliminating the e resonant terms produces the amplitude equation
5
id, = g|A\2A. (11.60)

Although the nonlinearity in (|11.50)) is quadratic, the final amplitude equation in (11.60|) is cubic. In
11.60

fact, despite the difference in the original nonlinear term, the amplitude equation in ((11.60]) is essentially
the same as that of the Duffing oscillator in ((11.40)).
Example: The Morse oscillator. Using dimensional variables, the Morse oscillator is

4+ % =0 with the potential U= % (1— ef‘”’)2 . (11.61)
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o

Figure 11.3: Morse oscillator phase plane.

The phase plane is shown in figure — the orbits are curves of constant energy

_1-2 Z _ —ax)2
E_2$ +2(1 e ) . (11.62)

There is a turning point at £ = oo corresponding to the “energy of escape” Eescape = /2.

A “natural” choice of non-dimensional variables is

=%
o

< ax, and t=aut. (11.63)
In these variables, v — 1 and o — 1 in the barred equations. Thus, the non-dimensional equation of
motion is
ite " (1—e ") =0. (11.64)
If we're interested in small oscillations around the minimum of the potential at x = 0, then the small
parameter is supplied by an initial condition such as

z(0) =€, and z(0) =0. (11.65)
We rescale with
r=€X, (11.66)
so that the equation is
X e X (1 - e_ex) =0, (11.67)
or 3 .
X+X-eX+ X =0() . (11.68)
2 6
The multiple time scale expansion is now
X = Xo(s,t) + eXi(s,t) + € Xo(s,t) + - - (11.69)

with slow time s = €2t.

The main point of this example is that it is necessary to proceed to order €2, and therefore to retain the
term 7e2X?/6, to obtain the amplitude equation. One finds

iA, = (11.70)

171



11.4 Symmetry and universality of the Landau equation
So far the two-time expansion always leads to the Landau equation
Ag =pA+qlAPA. (11.71)

If you dutifully solve some of the early problems in this lecture you’ll obtain (11.71])) again and again.
Why is that? If we simply list all the terms up to cubic order that might occur in an amplitude equation
we have

Ay = TAFTA AR AP I A 1243 + AP AT APA 743 - (11.72)

The coefficients are denoted by “?” and we're not interested in the precise value of these numbers, except
in so far as most of them turn out to be zero. The answer in is simple because we have two terms
on the right, instead of the nine in . We’ve been down in the weeds calculating, but we have not
asked the big question why do we have to calculate only the two coefficients p and ¢?

Remark: Why no terms such as A%|A| in (I1.72)? They’re “nonanalytic” because |A| = v/ AA*. Can one devise
an example in which such terms appear?

We have been considering only autonomous differential equations, such as

d
d—f+x+ex5 =0. (11.73)

This means that if z(t) is a solution of (11.73)) then so is z(t — «), where « is any constant. In other
words, the equations we’ve been considering are unchanged (“invariant”) if
tot+a. (11.74)
Now if we try to solve ({11.71)) with a solution of the form
z(t) = A(s)elt + A*(s)e "t + exy(t,8) + - - (11.75)
then o ‘ .
r(t+a) = Ae¥e + A*e e fexy + - (11.76)

Thus the time-translation symmetry of the original differential equation implies that the amplitude
equation should be invariant under the rotation

A — Ae™, (11.77)

where « is any constant. Only the underlined terms in (11.72]) respect this symmetry and therefore only
the underlined terms can appear in the amplitude equation.

Exercise: many of our examples have time reversal symmetry i.e. the equation is invariant under ¢t — —t. For
example, the nonlinear oscillator (with no damping) is invariant under ¢ — —t. Show that this implies

that p and ¢ in ((11.71) must be pure imaginary.

11.5 Parametric instability
Consider an oscillator whose frequency is changing slightly

d?x 9 9
@—l— (w? +v?cosot)x=0. (11.78)

How does the small fluctuation v cosot affect the oscillations? To motivate arguments below, notice

that the energy equation for (11.78)) is

d d
— (%xZ + %wsz) + 2 cosat

I a%ﬁ =0, (11.79)
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or alternatively
d

dt

If 2(t) ~ coswt then x? has a 2w-harmonic and x? sin ot will result in a “rectified” energy source

(3% + Jw?a2® + 1P cosota?) + S osinot = 0. (11.80)

o=2w. (11.81)

We live dangerously by rewriting (11.78)) as

d?z
— + (w* +ecosot) 2 =0, (11.82)

de?
where € = v? is the perturbation parameter. Note dime = dimw? = dimo? = T72. Let’s apply a
multiple time scale approximation to (11.78). We’ll write the unperturbed (e = 0) solution as
= Ae¥t 4 A*eTWt, (11.83)

When we switch on the perturbation the amplitude A becomes a function of slow time s = et.

Remark: Before doing the algebra, we show that the only amplitude equation consistent with all symmetries

of (TL.78) is
A, =inA+imA*, (11.84)

where m and n are real.

Because the linear equation ((11.78]) is invariant under z — ax the amplitude equation must also be linear:
Ay = pA+qA*. (11.85)

But (11.78) is also invariant under time reversal ¢t — —t. Time reversal applied to the amplitude-equation
ansatz in (11.83) is equivalent to A — A*. Hence time reversing (|11.85)

—A; =pAT +qA, = AL = —pA" —qA. (11.86)
But the complex conjugate of (11.85)) is
AL =p A" +q"A. (11.87)

Comparing (11.86)) with (11.87) we conclude that p and ¢ in (11.85)) must be pure imaginary.

A further remark: In a 2025 lecture I remarked that if the forcing in was presented as sinot then
we could use the quarter wave symmetry to change sint to cost and thus recover ¢ — —t symmetry and
its consequence . The class was in open revolt against this maneuver. I believe there is nothing
wrong with this argument. But perhaps there is another way to argue that if the forcing is cos(ot + x)
the amplitude equation will have the form (11.84).

We attack (11.82) with the multiple scale expansion

= A(s)e + A*(s)e ! dexy(s,t) 4 - - (11.88)
zo(s,t)
where s = et. At order €l
(07 + w?) 21 + 2iwA e’ — 2iwAfe ™ + § (7" +e71") (A + A%e ) = 0. (11.89)

Resonant terms are etiw?

. The final term contains frequencies
w+o, —w+o0o, w—o —w—o. (11.90)

Can any of these four frequencies equal w and resonantly force z17 Yes:

w=-wto = w=tio. (11.91)

173



Taking w = %O’ and eliminating the resonant terms we emerge triumphantly with the amplitude equation

2i30As+ 34, =0, or oA, = JiA", (11.92)

implying that
0?Ags—1A4=0. (11.93)
Thus A will grow exponentially ~ e%/27 = e’t/20 This is parametric subharmonic instability: the

natural frequency of the oscillator, w, is one-half is a subharmonic of the forcing frequency o. Equivalently
the period of the forcing is half the period of the oscillator. (You pump a swing twice in one period.)

Example: What happens if w is not exactly equal to one half?
We investigate this by introducing a slight de-tuning:

d?z 1
ﬁ—i—(z—&—eﬁ—&—ecosf)xzo. (11.94)

. . . . T . def
Above we have non-dimensionalized time via = ot and the order parameter is € = v?/o>. The natural

frequency is written as w = oy /i + €. Proceeding as before, we find the amplitude equation

As =iBA + 3iA", = A+ (-1 A=o0. (11.95)

1 . . o . o1s
If |3| > 5 then the de-tuning quenches the parametric subharmonic instability.

11.6 The resonantly forced Duffing oscillator

The linear oscillator

First consider the forced linear oscillator
&+ i + w?x = fcosot. (11.96)

We can find the “permanent oscillation” with

= Xelt 4 XeTlot (11.97)
After some algebra
f 1
X==—-"-— 11.98
2w?— o2 +ipo’ ( )

and the squared amplitude of the response is

f? 1
4 (w2 _ 0-2)2 +}L20'2 :

|X|? = (11.99)

We view |X|? as a function of the forcing frequency o and notice there is a maximum at o = w i.e. when
the oscillator is resonantly forced. The maximum response, namely

max | X| = /

11.100
Vo 2,U/O' ’ ( )

is limited by the damping p. In the neighbourhood of this peak, where w & o, the amplitude in (11.99)
can approximated by the Lorentzian

|X|? ~ A (11.101)
T 402 Mw—0)2 4 p2’ .

The difference between w and o is de-tuning.
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Nondimensionalization of the nonlinear oscillator

Now consider the forced and damped Duffing oscillator:
&+ pi + w?x +nxd = fcosot. (11.102)

We're interested in the weakly damped and nearly resonant problem. That is p/w is small and o is close
to w. Inspired by the linear solution we define non-dimensional variables

_ d d
t=ot d therefa — =0—= 11.103
ot, an erefore ETimkErE ( )
and the amplitude scaling
=g (11.104)
uo

(Note particularly the definition of the non-dimensional displacement Z in (11.104). Naively we
might have balanced the restoring force w?z against the forcing and introduced the non-dimensional
displacement

eI Dy (11.105)

This is not the most convenient scaling for analysis of the near-resonant excitation of a weakly damped
oscillator. As an exercise you can try to repeat the following calculations using this alternative scaling
— you’ll encounter a problem right at leading order.)

The non-dimensional equation is then
/,[/ —

pEre 7 = = cost. (11.106)

w2 2

Ty + Hi“{—ﬁ- (*) T+ nf
o o

To proceed with the perturbation expansion we define the small parameter

XL (11.107)
o
We must also ensure that the nonlinearity and de-tuning appear at order €' in the expansion. We do
this by introducing the detuning parameter 5 and the nonlinearity parameter -y defined by
w nf®

2
(;) —1+e¢3, and gt = €T (11.108)

Dropping the decoration, the non-dimensional equation (11.106|) is now
Ty + ey + (1 4+ €B)x + eya® = ecost. (11.109)

We have used the exact solution of the linear problem to make a non-obvious definition of the non-
dimensional amplitude in . Even in the linear case — n = 0 in (11.102)) — one might not guess
that the forcing should be scaled so that it appears at order € in (11.109). In (11.109) we can now take
the distinguished limit ¢ — 0 with £ and ~ fixed and use two-timing to understand the different effects
of nonlinearity and de-tuning on a resonantly forced oscillator.

Exercise: Suppose one naively balances the restoring force w?z against the forcing fcosot in (11.102) and
therefore introduces the non-dimensional displacement

w? w?

Tr="z. 11.110
7T ( )

Find the Z-version of (11.109) and explain why it is not suitable for the two time expansion.

[o9
o

A €
xr =
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The amplitude equation and its solution

We attack with our multiple-scale expansion
x=uxo(t,s) +exi(t,s)+ - (11.111)
with slow time s = et. The leading-order balance is
(07 +1)20=0. (11.112)

Because of our amplitude scaling in ((11.104) the forcing does not appear at this order. The familiar
leading order solution is therefore _ _
ro = Ae't + A*e. (11.113)

At order €! we have . _
(83 + 1) x1 + 205t + xor + Bro +yTh = %e‘t + %e_lt . (11.114)

Eliminating the resonant terms we obtain the amplitude equation
24,4 (1 —iB)A — 3iy|A[PA = —3i. (11.115)

The scaled problem (11.109) has three non-dimensional parameters, ¢, 3 and y. But in the amplitude
equation (11.115) only 8 and -y appear. (Of course € is hidden in the definition of the slow time s.)
These perturbation expansions are called reductive because they reduce the number of non-dimensional
parameters by taking a distinguished limit.

Steady solutions of the amplitude equation

Although (11.115)) is simpler than the original forced Duffing equation (11.106)), it is still difficult to
solve. We begin by looking for special solutions, namely steady solution A; = 0. In this case we find

1 1
AT+ + HAPE

|A]? = (11.116)

If we set v = 0 we recover a non-dimensional version of our earlier Lorentzian approximation (11.101])
to the response curve of a linear oscillator. With non-zero 5 we can exhibit the response curve, while
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avoiding the solution of a cubic equation, by solving (11.116] for the de-tuning 3 as a function of |A|?:

| 1
_ _ 2 _
B=—3yAP + rITEARES (11.117)

Figure is constructed by specifying |A|? and then calculating 8 from . There are “multiple
solutions” i.e. for the same detuning (3 there as many as three solutions for |B|?. The middle branch
is unstable — the system ends up on either the lower or upper branch, depending on initial conditions.
Figure illustrates the two different attracting solutions.

Solutions of the amplitude equation

We can try attacking (I1.115) with A = re'? ...
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Figure 11.5: Energy F = (i? + w?z?)/2 + Bz /4 as a function of time for five ode45 solutions of the
forced Duffing equation differing only in initial conditions. There is a high energy attractor
that collects two of the solutions, and a low energy attractor that gets the other three solutions. The
MATLAB code is below. Note how the differential equation is defined in the nested function oscill so
that the parameters om, mu defined in the main function ForcedDuffing are passed.

function ForcedDuffing
% Multiple solutions of the forced Duffing equation
% Slightly different initial conditions fall on different limit cycles
tspan = [0 300]; om =1; mu =0.05; beta = 0.1; f = 0.25;
sig = 1.2%om; yinit = [0 1 1.0188 1.0189 2];
for n=1:1:length(yinit)
yZero=[yinit(n) 0];
[t,y] = ode45(Qoscill,tspan,yZero);
%Use the energy E as an index of amplitude
E = 0.5%( om¥om* y(:,1).72 + 0.5%beta*xy(:,1).74 + y(:,2).72 );
subplot(2,1,1) plot(t,E(:))
xlabel(’$t$’,’interpreter’,’latex’,’fontsize’,16)
ylabel(°$E(t)$’,’ interpreter’,’latex’,’fontsize’,16)

hold on
end
f————————= nested function -------------—- yA
function dydt = oscill(t,y)
dydt = zeros(2,1);
dydt (1) = y(2);
dydt(2) = - mu*xy(2) - om™2%y(1) - betaxy(1)"3 + fxcos( sig*t );
end
end
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11.7 Problems

Problem 11.1. In an early lecture we compared the exact solution of the initial value problem
Ff+(Q+ef=0, withICs f(0)=1, and f(0)=0, (11.118)

with an approximation based on a regular perturbation expansion — see the discussion surrounding
(3.101). Redo this problem with a two-time expansion. Compare your answer with the exact solution
and explain the limitations of the two-time expansion.

Problem 11.2. Consider

ng
a2 T

2
1+6<i§’)]g:o, withI0s  g(0)=1, and %(o):o. (11.119)

(i) Show that a RPS fails once ¢ ~ ¢~ 1. (ii) Use the two-timing method to obtain the solution on the
long time scale.

Problem 11.3. Consider the initial value problem:

d? d
CEAu=2+2a®,  withICs  u(0) = 5/(0) = 0. (11.120)
(i) Supposing that € < 1, use the method of multiple time scales (s = et) to obtain an approximate
solution valid on times of order e~!. (%) Consider
d?v _dv

@—&—v:u, with ICs v(0) = E(O) =0, (11.121)

where u(t, €) on the right is the solution from part (i). Find a leading-order approximation to v(t,e€),

valid on the long time scale ¢ ~ ¢~ 1.

Problem 11.4. Consider the initial value problem:

d?w
dt?

d
+w = 2cos(et) + 2ew?, with ICs w(0) = d—l:(()) =0. (11.122)

Supposing that € < 1, use the method of multiple time scales (s = €t) to obtain an approximate solution

valid on times of order ¢ 1.

Problem 11.5. Use multiple scale theory to find an approximate solution of

@
dt?

d
tr =2t +e2e 2?2, withICs  2(0) = d—f(@) =0, (11.123)

valid on the time scale t ~ ¢! < €72,
Problem 11.6. Consider an oscillator parametrically forced at its natural frequency:

d%z

@—k(lﬁ—ecost)m:O. (11.124)

Show that x(¢) will grow exponentially, and calculate the growth-rate. (Following the discussion of
parametric instability in the lecture, you won’t find resonance at order €'. So go to higher order.) Study
the effect of slightly detuning the frequency: 1 — 1 + €’ 3. How large must 3 be to prevent exponential
growth?
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Problem 11.7. (a) Use multiple scales to derive a set of amplitude equations for the two coupled, linear
oscillators:

i+ 2eax + (1 + ke)x = 2eu(x — y),

7+ 2epy + (1 — ke)y = 2eu(y — x). (11.125)

(b) Consider the special case « = § = k = 0. Solve both the amplitude equations and the exact equation
with the initial condition z(0) = 1, y(0) = y(0) = £(0) = 0. Show that both methods give

x(t) = cos [(1 — ep)t] cos(ept) . (11.126)
Problem 11.8. Consider two nonlinearly coupled oscillators:
&+ 4z = ey?, i +y=—eaxy, (11.127)

where € < 1. (i) Show that the nonlinearly coupled oscillators in (1) have an energy conservation law.
(i) The multiple scale method begins with

x(t) = A(s)e* + cc, y(t) = B(s)e™ + co, (11.128)

where s & et is the “slow time” and A and B are “amplitudes”. Find the coupled evolution equations for
A and B using the method of multiple scales. (44) Show that the amplitude equations have aconservation
law
|B|> —2a|A* = F. (11.129)

Use this result to show that

4A, — aEA —20°%APA=0. (11.130)
Obtain the analogous equation for B(s). (iv) Describe the solutions of (11.130) in qualitative terms.
Does the sign of a have a qualitative impact on the solution?

Problem 11.9. The equation of motion of a pendulum with length ¢ in a gravitational field g is

§+w?sing=0, with o2 dzef%. (11.131)

Suppose that the maximum displacement is 0. = ¢. ( z) Show that the period P of the oscillation is

wP_2f/

(11.132)
\/cos 9 —cos ¢
(ii) Suppose that ¢ < 1. By approximating the integral above, obtain the coefficient of ¢? in the
expansion:

wP =27 [1+7¢ + O(¢%)] (11.133)
(i4i) Check this result by re-derving it via a multiple scale expansion applied to (11.131). (iv) A grand-
father clock swings to a maximum angle ¢ = 5° from the vertical. How many seconds does the clock
lose or gain each day if the clock is adjusted to keep perfect time when the swing is ¢ = 2°7

Problem 11.10. (H) Find a leading order approximation to the general solution z(¢,€) and y(¢,¢€) of
the system

&2z da dy ,
=t 2eyE +r=0, and Tl lelnz?, (11.134)
which is valid for t = O(e™1). You can quote the result
1 27
— [ Incos?6df = —In4. (11.135)
2 0

Problem 11.11. (H) Find the leading order approximation, valid for times of order ¢!, to the solution
x(t,€) and y(t, €) of the system

i+ eyi+a=1y*, and =€l +z—y—y?), (11.136)

with initial conditions x =1, £ = 0 and y = 0.
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Lecture 12

Rapid fluctuations, Stokes drift and
averaging

12.1 A Lotka-Volterra Example

Consider the Lotka-Volterra equation with a sinusoidally varying carrying capacity. Using non-dimensional

variables the problem is
dn 1 I (12.1)
—=n|{l-—]. .
dt 1+ Kcoswt

Problem asked you to analyze this equation with x < 1 i.e. small fluctuations in the carrying
capacity. Here we consider the case of rapid fluctuations: w — oo, with x fixed and order unity. In this
limit the small parameter is .
def

€=~ (12.2)
Figure shows a numerical solution with the carrying capacity 1 + xcoswt varying by a factor of
seven over a cycle. After an initial population explosion n(t) fluctuates about an average value which is
close to 1/7/16 = 0.6614. This average population is quite different from the average carrying capacity,

namely 1.

Method 1: heuristic averaging

We introduce an average over the fast oscillation

(A(t)) & 2 /1t t+w/§(t') v . (12.3)

27 —7/w

This average is a low-pass filter: () removes variability with frequencies greater than w.

The numerical solution n(t) exhibits two time scales: fast wiggles with small amplitude superposed
on a slower evolution that looks like a Lotka-Volterra solution. Although the carrying capacity is varying
rapidly, the population n(t) hardly reacts to these fast, large-amplitude fluctuations. Clouds blowing
overhead lead to modulations in sunlight on the scale of minutes. But plants don’t die when the sun is
momentarily obscured by a cloud.

It is important that the fast wiggles in n(t) have small amplitude so that

(n) =n, (12.4)
dn\ _d(n)
<dt> ~ (12.5)
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Figure 12.1: Solution

of (12.1)) with w = 20
and v = 3/4. The

o : o = > o 30 blue line is at \/7/4 =
¢ 0.6614.
Thus averaging
d(n) n
N 1 — . 12.
dt <n< 1+/$coswt)> (12.6)

But the fast oscillations in n(t) have small amplitude, so

<n (1 - H:COSM» ~ (n) (1 - <1+choswt> <n>) . (12.7)

The average of the reciprocal carrying capacity is calculated by invoking a favourite textbook example
of the residue theorem

1 [ 1
— v _ . (12.8)
2 Jo 14 kKcosT /1 — K2
Putting it all together, (12.6) becomes
d(n) (n)
— & 1l——) . 12.9
ac "~ ( View 129)

Thus, the long time limit is

lim (n) = /1 — k2. (12.10)

t—o00

This prediction is in agreement with the MATLAB solution in Figure [12.1

Method 2: two-timing

Define a fast time
T=wt=-, (12.11)

and assume that the solution has the multiple time scale expansion
n=no(t,7)+eny(t, )+ - (12.12)

depending on both ¢ and 7. Thus the expanded version of (12.1)) is

_ _ 0 2
(0r + €0¢) (ng + eny) = eng <1 T KJCOST) + 0 (€%) . (12.13)
At leading order
e Orno =0, with solution no = g(t) . (12.14)

We decide to define g(t) so that all subsequent terms in the expansion have zero average i.e.
g=(n). (12.15)

This definition has the implication that g(t) does not satisfy the initial condition on n(t) i.e. g(0) # n(0).
(See the discussion of the “guiding center” in section [12.2])
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At next order

dt 14 kcosT
Using (12.8)), we average the equation above over the fast time scale to obtain

% _y (1 _ ﬁ) , (12.17)

This confirms the earlier heuristic average.
To determine the fluctuations about this average g(t) we can subtract (12.17)) from (12.16)) to obtain

Oyny = ! ! 2 (12.18)
T = V1—kr2 14+ kcosT g - '

To perform the integration and obtain n;(7) one can invoke the Fourier series

1 1 2 X (vi—m2-1\"
— =— Z cosnT .
V1 — K2 1+ kcosT V1 — K2 et K
This may be more than we need to know. The main point is that the fast fluctuations about the mean

solution g(t) scale with w™1! i.e. faster fluctuations in the carrying capacity induce smaller variations in
population.

d
: dmt—2=yg <1 9) . (12.16)

(12.19)

Example: Consider
dx

Pl coswt . (12.20)

Example: Consider
i—f = —a(z + cos® wt). (12.21)

12.2 Stokes drift

An acoustic wave

Consider the motion along the z-axis of a fluid particle in a simple compressive wave e.g. a sound wave.
The position of the particle is determined by solving the nonlinear differential equation

d
d—f = ucos(kxr — wt), (12.22)

with an initial condition z(0) = a. We non-dimensionalize this problem by defining

_ def

T = kx and t = wt. (12.23)
The non-dimensional problem is
dz _ . _ _
i ecos(T — 1), with IC z(0) =a. (12.24)
The non-dimensional wave amplitude,
e det Uk (12.25)
w

is the ratio of the maximum particle speed u to the phase speed w/k. We proceed dropping all bars.

Figure shows some numerical solutions of with € = 0.3. Even though the time-average
velocity at a fixed point is zero there is a slow motion of the particles along the z-axis with constant
average velocity. If one waits long enough then a particle will move very far from its initial position and
travel through many wavelengths.
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Figure 12.2: Solutions of & = 0.3 cos(z — t).

Method 1: Exact solution
We can reduce (12.24)) to quadratures with the substitution X = x — ¢, leading to

dX
E—l—l =e€cos X . (12.26)

Now separate variables etc.

Method 2: Two-timing
To analyze this problem with multiple scale theory we introduce
s e (12.27)

Why €2 above? Because we tried €' and found that there were no secular terms on this time scale.
Exercise: Assume that s = et and repeat the following calculation. Does it work?
With the slow time s, the dressed-up problem is
g+ = ecos(x —t). (12.28)

We now go to town with the RPS:

x = x0(s,t) +exy(s,t) + (s, t) + - - (12.29)
Notice that

cos(z — t) = cos(zg — t)—sin(zo — t) [ex1(s,t) + (s, 1) + -]
2

—cos(zg — t) [ex1(s,t) + €aa(s,t) + -]+ (12.30)

We cannot assume that xq is smaller than one, so must keep cos(xg—t) and sin(xg —t). We are assuming
the higher order z,,’s are bounded, and since ¢ < 1 we can expand the sinusoids as above.
At leading order, €°:
ot =0, = zo = f(s). (12.31)

The function f(s) is the slow drift. At next order, e
21t = cos(f — 1) = xz1 =sin f —sin(f — ). (12.32)

We determined the constant of integration above so that x is zero initially i.e. we are saying that f(0)
is equal to the initial position of the particle.
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At €2
fs+ a9 = —sin(f —t) [sin f —sin(f —t)] . (12.33)

=z

Averaging over the fast time ¢ we obtain

1
fo=(sin®(f —t)) = 3 (12.34)
Thus the average position of the particle is
F=24 i ra (12.35)
=—4a=— . .
2 2

The prediction is that the averaged velocity in figure is (0.3)2/2 = 0.045. You can check this by
noting that the final time is 207.
Subtracting (12.34) from (12.33) we have the remaining oscillatory terms:

xor = —sin(f — ) sin f — sin(2f — 2t) . (12.36)

Integrating and applying the initial condition we have
xy = —cos(f —t)sin f + § cos(2f — 2t) + cos fsin f — § cos2f . (12.37)

This is bounded and all is well.
The solution we’ve constructed consists of a slow drift and a rapid oscillation about this slowly
evolving mean position. Note however that the mean position of the particle is

(z) = f + esin f 4€2 [2sin2f — 1 cos2f] +0(e?) (12.38)
(1) (z2)

In other words, the mean position is not the same as the leading-order term.

The guiding center: In this variant we use the two-timing but insist that the leading-order term
is the mean position of the particle. This means that the leading-order solution no longer satisfies the
initial condition, and that constants of integration at higher orders are determined by insisting that

Vn>1: (xn) =0. (12.39)
OK, let’s do it, starting with the scaled two-time equation in (12.28)). The leading order is
xot =0, = xo =g(s). (12.40)

The function g(s) is the “guiding center” — it’s different from f(s) in the previous method.

At next order, e':

x1¢ = cos(g — 1) = x1 = —sin(g —1t). (12.41)

This is not the same as the first-order term in (12.32)): in (12.41)) we have determined the constant of
integration so that (x1) = 0.
At order €2 we have

gs + xoy =sin®(g —t) = 3 — L cos(2g — 2t). (12.42)
The average of (12.42) is the motion of the guiding center:
2
€
gs =% = g=5t+9(0). (12.43)
The oscillatory part of the solution, with zero time average, is
To = %sin(2g — 2t). (12.44)

Now we must satisfy the initial conditions by requiring that
a=g(0) —esin (g(0)) + * 1 sin (2g(0)) + - - - (12.45)

We can invert this series to obtain
g(0)=a+esina+--- (12.46)

I prefer this guiding-center method. But in either case the essential point is that the leading-order drift
velocity is €/2.
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A deepwater surface gravity wave

Following Stokes 1847 we consider an irrotational deepwater surface gravity wave with velocity potential
U kz o
o(x, z,t) = ¢ sin(kz — ot) , (12.47)
and free surface displacement
s(x,t) = acos(kx — ot) . (12.48)
Above o = v/gk and U = ac where g is the gravitational acceleration. The velocity is
u = ¢, = Ue" cos(kx — ot), and w= ¢, = Ue* sin(kz — ot). (12.49)

Sanity check: Verify the kinematic boundary condition that at the surface sy = w(0). The pressure is p = — ¢
and verify that p(0) = gs.

To track particles we must solve

dz

i Ue** cos(kx — ot), (12.50)
% = Ue*? sin(kx — ot) . (12.51)

The “natural” non-dimensionalization is

(7,2) def (kz, kz), and t=ot. (12.52)
Dropping the bar, the scaled equations are then
d
(Tytc =ee”cos(z —t), (12.53)
d
£ =ee®sin(z —t), (12.54)
where the “wave steepness” is
of Uk
e ="~ ka. (12.55)
o
We proceed with
d
s=ét, and Fri O + €20 (12.56)
The displacement is expanded as
= X(s) +e(s,t) + (s, t) + - (12.57)
z=Z(s) +e((s,t) + 2a(s,t) + - -+ (12.58)

To avoid a lot of subscripts we use the distinctive notation (X, Z) and (€, (). We have anticipated that
the leading-order displacement, (X, Z), does not depend on the fast time ¢. We anticipate needing

u(z,2) = w(X, Z) + euy (X, Z) + eCu. (X, Z) + O(€?) (12.59)

w(w, 2) = w(X, Z) + efwy (X, Z) + eCw. (X, Z) + O(€?) . (12.60)
We are suppressing the ¢ and s arguments of all variables above. We resist the temptation to write out
the various derivatives above in terms of cos(X — t), sin(X —¢) etc.

The leading-order, €” terms from (12.53) and (12.54)) are satisfied because X and Z do not depend
on fast time ¢. At order e':

& =u(X,Z) =e? cos(X —t), and G=w(X,Z)=e?sin(X —t). (12.61)
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We integrate the equations above with the guiding-center prescription
€= —eZsin(X — 1), and ¢ =+eZcos(X —t). (12.62)
At order €2
Tor + X = Eugy + Cuy, and 2ot + Zs = Ewy + Cw, . (12.63)
Averaging over the fast time
X = (€uy) + (Cus), and  Zs = (fwy) + (Cws). (12.64)

Computing the averages above
X, =e??, and  Z,=0. (12.65)

Returning to dimensional variables with 9 = (e20)~0;, X — kX and Z — kZ we have
X, = oka?e**? (12.66)
Remark: We should calculate the RHS of ((12.63|) before averaging. I find
z

uy + Cu, = &2 , and fwz +Cw, =0. (12.67)

In this case we are left with zo; = 29, = 0.

12.3 The Kapitsa pendulum

If you google “Kapitsa pendulum” you’ll find videos which show the stabilization of an inverted pendulum
by a rapidly vibrating point of support. The equation of motion of this system is

d2 2
Kf 4 <‘z + % cos Vt> sinp =0, (12.68)

where a is the amplitude of vibration and v is the frequency. There is a steady solution ¢ = 7 and in
the absence of vibrati on (a = 0) this solution is unstable.

Let’s scale the equation and show that if v is large enough then solution ¢ = 7 becomes stable. We
begin the analysis by introducing a nondimensional time

(12.69)

where w & v/g/¢ is the linear frequency of the pendulum. The non-dimensional equation of motion can
then be written as

d? t
d—{f + [1 + %cos <€>] sing =0, (12.70)
where w aww
e (12.71)
v 9

To investigate the stability of ¢ = m we introduce § = m — ¢ so that
singp = —sinf = —0 + 0(6°). (12.72)

Dropping the bar on the nondimensional time, the linearized problem is

d26 @ t
@_ <1+6COS <€)>9—0 (1273)

We take the distinguished limit ¢ — 0 with « fixed.

187



Introduce the fast time 7 = ¢/e so that

d 1
— =29, , 12.74
1 68 + 0 (12.74)
and use the two-time expansion
0=00(t,7)+eb(t,7)+ - (12.75)
The expanded equation of motion is
(8T + 2€0:0; + 626152) (90 + ey + 6292) — €20y — eacosT (B +€61) = O (63) ) (12.76)
At order €% we have
220y =0, = 0o = S(t). (12.77)

Above, at leading order, the leading order displacement is a function of only the slow time ¢. At next
order €!:

8301 +20:0,5S —aS cosT =0, = 01 = —aScosT. (12.78)
——
=0
At order €2
0205 + 2 0,0,60, +0}S — S — acosTh =0. (12.79)
N—— N——
aSisinT —a2Scos? T

Averaging the equation above we find that
Su—(1-3a%)S=0. (12.80)

The inverted pendulum is stable if o > V2.
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The averaging theorem

There is theoren]? that can be used to justify the method of averaging. Consider the differential
equation

d
di: = ef(zte), (1)

where f is periodic in time with period p:
flx,t+p,e)=f(x.te). (2)

With enough assumptions regarding the smoothness of f, there exists an ¢y > 0 and a function
u(x,t,€) such that if |e] < ¢y then the change of variables

x =y + eu(z,t,e), (3)
transforms (1) into
Y= fw)+ iy 1.0). (@
In (4)
s der 1 [7
F s [0 5)

is the average of f. The change of variables from « to y in (3) is a near-identity transformation
that takes (1) into (4) exactly. Neglecting the €2 term in (4) we obtain an approximate autonomous

differential equation

d _

= = cf(2). (6)
We hope that the solution z(t) of (6) approximates the solution y(t) of (4) over some long time
interval. This hope is justified if the solutions of (4) are stable when subject to the small, order €2,

persistent f(y,t,€) perturbations.

“See Sanders & Verhulst Averaging Methods in Nonlinear Dynamical Systems
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12.4 Problems

Problem 12.1. Consider the nonlinear inverted pendulum

d%e « t .
@ [1—1— ?cos (EH sinf =0.

Figure 12.3: The solid curve
is the numerical solution of
(12.82), with w = 8; the ini-
tial condition is indicated by
the blue x; the system has
been integrated from t = 0
to t = 203.7 x 27/8 ie. al-
most 204 periods of coswt. The
black dashed curve is the guid-
ing center.

(12.81)

Apply the two-time method to this nonlinear equation and find the effective potential resulting from
averaging the rapid oscillations. Use MATLAB to show the phase-plane orbits in the effective potential.

Problem 12.2. A solution of

dx ot
— = sinwt cos
ar Y,

dt

dy
— = coswt Ccos T,

(12.82)

with w = 8 and initial condition [z(0),y(0)] = [1.1,0] is shown in figure [I2.3] Find an expression for the

trajectory of the guiding center (the black dashed curve).

Problem 12.3. As a generalization of problem investigate Stokes drift in the two-dimensional

incompressible velocity field with streamfunction

¥ = a(z,y) cos(t/€) + b(z, y) sin(t/e) ,

and velocity
dz

E:_pr)

dy

(12.83)

(12.84)

Obtain an expression for the streamfunction of the Stokes flow in terms of @ and b. Check your answer

by showing that if @ = b there is no Stokes drift.
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0 w w w w w w w and the almost constant action
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Problem 12.4. Consider an oscillator with a slowly changing frequency w(et):
i+wlr=0. (12.85)

Use the method of averaging to show that the action A¥p /w is approximately constant. Test this
result with ode45 using the frequency

w(t) = 3+ 2tanh (et) , (12.86)

and the initial condition z(—40) = 0 and ©(—40) = 1 e.g. see Figure [12.4] Use several values of € to test
action conservation e.g. try to break the constant-action approx1mat10n w1th large e.

Problem 12.5. A multiple scale (0 < ¢ < 1) reduction of Hinch’s crazy oscillator system

d?z dz dy ,
1w + ZGyE +x=0, At (12.87)
begins with
z = [A(s)e! + A% (s)e ] + exi(t,8) + - -, y = B(s)+eyr(t,s)+ - (12.88)

where s = et is the slow time. (i) Find coupled evolution equations for A(s) and B(s). (i) Figure [12.5]
shows a numercial solution of (12.87) with the initial conditions

z(0) = 2, %(0):0, y(0)=0. (12.89)

Explain why lim; ,.y = 1.
Problem 12.6. Consider particle motion in the incompressible velocity field (u,v) = (=, 1) obtained

from
Y(z,y,t) = asinycos(x — t) (12.90)

with @ < 1. Some Lagrangian trajectories, computed with MATLAB, are shown in the figure [I2.6] Find
the mean Lagrangian velocity and discuss the agreement with the numerical solution.

191



w

25

0.5

—~

-~

~— 1

D

o

g 0

oy

—

+~ 4L 4
~—

8

) . . . € =0.05
0 20 40 60 80 100 120
t
Figure 12.5: Numerical solution of (12.87)).
+ Flierl Model a = 0.25 —

ORI
00

ey
L * 4
1 1 1 1 l 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 15 2
X

192

Figure 12.6: Nine particle
trajectories computed over
the interval 0 < ¢t < 207. Ini-
tial positions are *.



Lecture 13

WKB

Suppose we need to solve
2y +q(x)y=0, ase— 0. (13.1)

The approximate WKB solution to this singular perturbation problem is

Y~ { /th} — 7 exp {/ th} , (13.2)

or equivalently
yqui [ /\/ dt] sm{ /\/ dt} . (13.3)

The constructions above are most convenient if g(x) > 0 so that the solution of (13.1)) is oscillatory. But
WKB also works if ¢(z) < 0 and in that case the approximation is

‘1/46 P{ /\/76115} PG exp{ /ﬁdt}. (13.4)

We have not specified the lower limits of the integrals in through . Different choices amount
to altering the constants A, B et cetera.

The approximations in through fail in the neighbourhood of z, where g(z.) = 0. The
point z, is called a turning point. We’ll need a different approximation in the vicinity of a turning point.
But everywhere else WKB provides a spectacular ¢ — 0 approximation.

Exercise: Check the special cases ¢ = 1 and ¢ = —1 and commit the WKB approximation to memory.

13.1 The WKB series

Following BO, an expeditious route to the approximations in (13.2]) through (13.4) is to make the
exponential substitution
is
Y = exp <> (13.5)
€

in (13.1). One finds that the phase function s(x) satisfies the Ricatti equation
ies” —s?+q=0. (13.6)

We've “nonlinearized” the linear equation (13.1). The advantage is that (13.6) has an obvious ¢ — 0
two-term dominant balance. This motivates the RPS

5= so(w) + es1(x) + 2sa(z) + - - (13.7)
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The first four terms in this “WKB hierarchy” are

st =q, (13.8)

isy — 25481 =0, (13.9)

is] — 2spsh — s =0, (13.10)
isy — 2s(s5 — 28755, = 0. (13.11)

The solution of the first two equations is
S0 = :I:/ Vq(t)de, (13.12)
s1=1lIng. (13.13)

Using the two terms above, we have
R 1
y = exp [il / Va(t)dt = JIng+ 0 (e)] , (13.14)
€
= ¢ Ytexp [ﬁ:I/\/q(t) dt} (14 0 (e)] . (13.15)
€

Linearly combining the two solutions above we obtain (13.2) and (13.3). BO refer to the two term
approximation above as physical optics (PO).

A necessary condition for the validity of the WKB approximation

2

We launched our peturbation expansion by neglecting the term es” relative to s'#. Thus a necessary

condition for the validity of the PO approximation is that

P50 ase—0. (13.16)
S0
Suppose that ¢(x) has a simple zero at z, i.e. ¢ oc & —x,. Then s}y  (z —x,)"/? and sfJ o (z — )~ /2.
The condition in ((13.16) is therefore
C 50  ase—0. (13.17)

(x — @,)3/2

So, in order to apply the PO approximation, we must ensure that x is at distance greater than ¢2/3 from
the turning point at x,.

Exercise: Suppose that ¢ o< (x — z4)™. Show that validity of PO requires that z — . > €2/ (m+2),

In physical problems involving wave propagation through a spatially inhomogeneous medium = has
the dimensions of length and

| g (13.18)

is a spatially varying wavenumber with dimensions (length)~!. The argument of the sinusoidal functions

in ([13.3]), namely N
S0 = /k(t) dt, (13.19)

is dimensionless. Suppose the wavenumber k(z) changes over a length ¢. In the neighbourhood of z
waves have a typical “reduced” wavelengtfﬂ Az) = 1/k(x). With s = k = 1/X the condition for the
validity of PO in (13.16)) can

d1l dXx

al_dh 13.2
Wk dr S (13.20)

'The reduced wavelength is X = \/2.
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It is easy remember because the left hand side of is dimensionless and the inequality says
that the rate of change of the local wavelength with distance x is much less than one i.e. locally the
solution looks like a sinusoid with constant wavelength. We return to this perspective on WKB in the
problems.

We’ll examine the validity of the WKB approximation in much more detail below. But first we
develop some confidence in the approximation by comparing WKB solutions with numerical solutions.

13.2 Some examples

The oscillatory case

Let’s apply the WKB approximation to

ey’ + (1+pe ") y=0, (13.21)
—_———
a(z)
with initial conditions
y(0) =0, and ¢ (0)=1. (13.22)

In (13.21)), B is a parameter which is fixed as € — 0; the wavenumber ,/q/e varies from /14 /e at
x=0to 1/e as x — oc.
The leading-order phase function is

S0 = /z\/l + Be~tdt, (13.23)
0
=24+2/1+8—-2V1+fe=%+2In (H W) : (13.24)

1+V1+53

Because the initial conditions are imposed at * = 0, it is convenient to use 0 as the lower limit in the
phase integral on the right of (13.23): sq(0) = 0. We construct the WKB approximation using the
sinusoidal form in ((13.3]), and secure the initial condition y(0) = 0 by setting F = 0:

F_in (8?0) . (13.25)

YWKB = \/%

We must determine F' so that y(yxp(0) = 1. This calculation is easy: to leading order

FV/50 o (%’) . (13.26)

/
y =
WKB €

Mercifully, to obtain a consistent approximation to Yy we don’t differentiate the 1/4/s{ amplitude
in ((13.25): those terms are much less than the 1/e produced by differentiating the phase sg/e.

At x = 0 we have s = /1 + § and therefore (13.25)) implies 1 = /1 + SF/e. Thus the physical
optics approximation is
€ sin (so/€)

o (13.27)

YWKB =

where the phase so(x) is given in (13.24)).
Example: Solve the differential (13.21)) exactly and compare ywkp to a numerical solution of the initial value
problem.
We observe that the exact solution of
d%w
dz2

+ (\e* —v*)w =0, is  w=Je,(Ne%). (13.28)
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y and ywrp

y and ywkp

Figure 13.1: Comparison of the WKB approximation (green dashed) in with a MATLAB
integration (solid blue) of the initial value problem and . The upper panel shows
€ = 1 and the lower panel e = 2. We use 5 = 399 so that the wavenumber varies by a factor of
20 between z = 0 and oco.

If v is not an integer then the +v in (|13.28)) provides a linearly independent pair. Changing variables to

r = —2z, the w equation becomes
d*w 1,2 & 2
(e ) w =0, (13.29)
Comparing this with (13.22), we see that A\*/4 = 8/¢* and —v?/4 = 1/€*. Thus
44/2
Ji2i/e <7E\ef) (13.30)

is a linearly independent pair of solutions to ((13.21). For MATLAB enthusiasts this is a pyrrhic victory:
MATLAB Bessel function routines do not include complex orders. Instead we make the comparison using
ode45: see Figure|13.1

The exponential case

Next, consider

ey’ —(1+pe™)y=0, (13.31)
with conditions
y(0)=1, and le y(z) =0. (13.32)

The e-folding scale varies from /1 + 3/e near x = 0 to 1/e as & — co. The exact solution is

_ Dy(2vB/eexp(e/2)

NN PR (13.33)

and I, is the modified Bessel function.
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exp(2z/€)y(x)

Figure 13.2: An e = 1 and 8 = 3 comparison of the WKB approximation (green dashed) in
(13.34)) with the analytic solution in (|13.33)). To reveal the solutions when x > 1 we “compen-
sate” by dividing y(z) by the BL solution ypr(z) in (13.35) (with 8 = 3).

The WKB approximation is

1+8 \'* _,.,
_ € 13.34
YWKB (1+Bem) € ) ( )

where so(x) is given in ((13.24)). Figure compares the exact and approximate solutions.
There is also a simple boundary-layer type approximation:

ypr = e~ ViThe/e, (13.35)

Figure shows that this approximation is not as accurate as WKB.

An example of WKB without an obvious ¢

Next we use WKB to obtain an approximate solution of
vy +Vry =0, with initial conditions y(1) = 0 and ¢'(1) = 1. (13.36)

In this example € = 1 and ¢ = v/z. The phase integral is therefore
1/ 4 ( 54
t/hde = (x - 1) (13.37)
1

We're going to apply the initial conditions at x = 1, so it is wise use t = 1 as the lower limit in the
integral above. Thus the solution satisfying y(1) = 0 is

A 14
PO _ _“* |22 5/4 _
y = _qgsin L 5 (m 1)} + O(e) . (13.38)

The cosine is eliminated by the requirement that y(1) = 0. Even though we’re interested in € = 1 we've
included the factor e~! because when we take the derivative of (13.38)) we have

dy™® A 14/ 54

When we take the derivative we only differentiate the cosine and not the amplitude 2~'/® — the derivative
of the amplitude factor is order e smaller. Requiring that y’'(1) = 1 we see that A = ¢ = 1. Thus the
WKB approximation is

yFO(x) = 28 sin [: (:1:5/4 - 1)} . (13.40)
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Figure 13.3: Comparison of the WKB approximation (black dashed) in with a MATLAB
integration (solid blue) of the initial value problem (shooting both ways starting at
x = 1). The upper panel shows close agreement over a large interval and the lower panel shows
failure of the WKB approximation close to the turning point at = = 0.

Figure shows that unless we get too close to the turning point at z = 0 this is an excellent
approximation to the solution to the initial value problem.

Why does the WKB approximation work when there is no €? Suppose we’re interested in the
solutions of with x large. If we introduce

X5y (13.41)

then the rescaled equation is
& Pyxx +VXy=0. (13.42)

As 6 — 0 with X fixed we obtain the standard WKB problem with the small parameter
e =04, (13.43)

Thus we expect that the PO approximation ((13.40)) is asymptotic as x — oo.
Now consider the more general equation

y' +a%y=0. (13.44)

Is the WKB approximation valid as £ — oo? The problems invite you to explore this issue in detail
e.g. by examining the higher order corrections to the physical optics approximation. But the re-scaling
argument shows very quickly that WKB is valid provided that a > —2 (you should do this).

Exercise: Show that as z — oo the WKB approximation applies to (13.44]) provided that a > —2.

Failure of WKB

Consider
y=0, (13.45)
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L = T T T = ode45

Y, ywrp & Ypert

Figure 13.4: Failure of the WKB approximation. Should plot an expanded view near = = 1 to
show that the perturbation solutions satisfy both initial conditions.

with initial conditions
y(1)=1, and y'(1)=0. (13.46)

The condition for the validity of PO in (13.16]) is strongly violated:

s
2
S0

3 1/2
= xQ — 00, as T — 00. (13.47)

Ignoring this red flag, we proceed to construct the PO approximation

ywin = 2%/ cos [2(1-a712)] . (13.48)
Differentiating only the cos in .

Yook = o~ sin [2 (1 - x*lﬂ)} . (13.49)

The comparison with the numerical solution in Figure [I3.4]is disastrous.

Exercise: In figure why doesn’t yykp satisfy the initial condition y'(1) = 07?

Remark: Instead of WKB there is a simple iterative solution starting with yo = 1, and then proceeding with
Yngr =2 Yn . (13.50)

Iterating once and twice we have

—1 44z — 22 1—12¢ + 2722 — 423  Inz
= d = - —. 13.51
u 2z R 1222 2 (13.51)
And once more for good measure
_ 2 3 4 _
s = 1 —24x + 108z~ + 8z° + 5lx + (e —3)Inz (13.52)

14423 12z

These iterative approximations compare well with the numerics in Figure

The iterative solution is based on the idea that =2 goes to zero rather rapidly as  — oo, and thus
the term 3y has a small effect on the initial condition. But eventually as £ — co the approximation
yo will deviate significantly from the exact solution. To see this failure of iteration we might extend
the plot in Figure to x larger than 50. Alternatively we solve (13.45]) exactly in terms of Bessel
functions.
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13.3 An example: radiation of waves on a string
Consider shaking a string stretched along the half-line > 0. The problem is

PGt — T'Caa =0, (13.53)

The tension T' (Newtons) is constant and the density p (kilograms per meter) is some positive function
of . The wave speed ¢ (meters per second) is

det | T
co(z) € PeR (13.54)

The energy conservation equation follows from ¢; (13.53):
Ei+J, =0, (13.55)

where the energy density E and the energy flux J are

def def
= ipG +3T¢, and J = TG, (13.56)

Imagine forcing the string by shaking the end. A simple example of shaking is the boundary condition
x=0: €(0,t) = acoswt. (13.57)

Suppose that this = 0 shaking has gone on forever so that there is a permanent wave with frequency
w propagating towards x = co.
If we first assume that p is constant then we can easily solve this problem with

¢(x,t) = acos(wt — kx), (13.58)
where the wwavenumber k is ot W
k= - (13.59)

Remark: If we try to solve the problem above with separation of variables, Z coswt Z (z), then we quickly
find {( = acoswt coskxz. This separable solution satisfies wave equation and the x = 0 boundary
condition . Nonetheless the separable solution a coswt cos kx does not correspond to the physical
situation. Why?

The solution ¢ = a coswt cos kx corresponds to a standing wave which might be established by reflection
of a wave incident from x = 400 being reflected from a free boundary at x = 0. The free boundary
condition is (;(0,t) = 0 — this boundary condition is satisfied by ¢ = acoswt cos kz.

To more deeply understand the physical situation we should calculate E and J. The standing wave
solution has (J) = 0 i.e. there is no source of energy at # = 0. The radiating solution in (13.58)) has
non-zero constant flux, (J). In the radiating case the hand shaking the end of the string is doing work.

INCOMPLETE — now consider non-constant p as an example of WKB

13.4 Eigenproblems

Consider the problem of determining the eigenfrequencies of a vibrating string with non-uniform mass
density p(z) and uniform tension T

bue +w? = $=0. (13.60)

{~=

def
=02

The wave speed is 0~!. The ends of the string at = 0 and ¢ are “clamped” i.e. we have the Dirichlet
boundary conditions

¢(0) = ¢(£) = 0. (13.61)



The eigenfrequencies are ordered
D<w) <wg < --- (13.62)

and we know that w,, — oo as n — oco. To find an approximation to these large eigenvalues, we say that
wy = € ! and rewrite the differential equation as

Epe + 020 =0. (13.63)

The PO approximation is then:

o0 = ac™?sin [w /”a(a:’) dx'] , (13.64)
0

where a is a normalization constant. The construction above secures the boundary condition at x = 0.
The other boundary condition at x = 1 provides the eigenfrequency

nm
who = —F———. (13.65)
Joo(z)dz

A standard way of normalizing the eigenfunctions is to require
¢
1= | ¢20%da. (13.66)
0
This normalization determines a in (13.64]) as

1=a? /0 Z sin? {wPO /O ma(x')dx’] o(x)dz. (13.67)

We can evaluate the integral above using the “WKB coordinate”

z / / x ¥4
&(x) def foe o() do = o /o(a:’) da’ = odzr = (/ de) d¢. (13.68)
0 0

Jo o(a’) da’ nm

In terms of ¢, the normalization condition (|13.66)) is

1 =d? (/fodx) /01 sin? (n7€) d¢ . (13.69)

—_—
=1/2
Example: If 0 =1+ 2% and £ = 1 then (13.65) gives

po _ 3m (13.70)

4

The upper panel of Figure [[3.5] shows the percentage error
2 2

¢ el 100" — BT/ (13.71)

w

with w determined numerically using bvp4c. The error is less than 3% even for the first mode.

Example: Let’s use the WKB approximation to estimate the eigenvalues of the Sturm-Liouville eigenproblem
y'+A(z+2"")y=0, with BCs y'(1)=0, y(L)=0. (13.72)
——
w(x)
The eigenvalues are function of the parameter L. The physical optics approximation is

L
y=w "*sin ()\1/2/ Vw(a') dm') , (13.73)

—_———
phase
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and the leading-order derivative is

L
y = —AY2wt 4 cos (/\1/2/ \/w(a:’)dx') . (13.74)

The phase in (13.73)) has been constructed so that the boundary condition at = L is already satisfied.
To apply the derivative boundary condition at x = 1 we have from ((13.74)

NVKB (L) = 7 (n + %) . n=0,1,- (13.75)

where .
J(L) d:ef/ Vz+azldz. (13.76)
1

In Figure we take L = 5 and compare the WKB eigenvalue with those obtained from the MATLAB
routine bvp4c. It is not easy to analytically evaluate J(L), so instead we calculate J(L) using quad. Figure
[[376] shows the relative percentage error,

Abvp4<: - )\WKB

e =100 x , (13.77)

>\bvp4 c

as a function of n = 0,2,--- 5. The WKB approximation has about 18% error for Ao, but the higher
eigenvalues are accurate.

Example: Compute the next WKB correction to the n = 0 eigenvalue and compare both (13.75) and the
improved eigenvalue to the numerical solution for 1 < L < 10.

13.5 Airy’s equation and turning points

Airy’s equation,

y' —axy=0, (13.78)
is the simplest second-order differential equation with a turning point. There are two linearly independent
solutions Ai(z) and Bi(z), shown on the real axis in figure

Although there is no obvious € we still attack ((13.78) with the WKB approximation. We find that
as x — +00

2 2
y ~ Az~ Y4 exp (3903/2) + Bz Yexp (—3x3/2> . (13.79)

And as z — —o0
2 2
y ~ Elz|~Y* cos <3|x|3/2) + Flz|~Y*sin <3|x|3/2> . (13.80)

The approximations above don’t work at the turning point £ = 0. But they do tell us that if we
numerically integrate from x = 0 then we might hope to find special values of y(0) and y'(0)
such that lim, ., y(z) = 0. In other words, if we use the right initial conditions then we can arrange
things so that when we arrive at z = oo, A =0 in (13.79). These “right initial conditions” produce the
Airy function, Ai(z), shown in figure m The other solution, with A nonzero in , is the Bairy
function Bi(z). The Airy function, Ai(x), is defined as the solution that decays as * — oo, with the
normalization

/OoAi(:z:) dz =1. (13.81)

An integral representation

We obtain an integral representation of Ai(x) by attacking (13.78)) with the Fourier transform. Denote
the Fourier transform of Ai(x) by

Ai(k) = / OOAi(x)e’”” dz. (13.82)

—0o0
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0.5

Ai(x) and Bi(z)

-0.5
-8

Figure 13.7: The functions Ai(x) and Bi(x). The Airy function decays rapidly as z — oo and
rather slowly as x — —oc.

Fourier transforming ((13.78)), we eventually find

Ai(k) = /3. (13.83)
Using the Fourier integral theorem
Ai(z) = / gibatit? /3 4R (13.84)
o 27
1 [ K3
= 7/ cos (k:z: + ) dk. (13.85)
™ Jo 3

The integral converges at k = oo because of destructive interference or catastrophic cancellation.
From the integral representation (13.85) we find the magic initial conditions that produce rapid
decay of Ai(x) as x — oo:

Ai(0 —1/00 BYapo— L (13.86)
T NS = 32/30(2/3) '

(o) = —L /OO i (B apo oL
AI'(0) = = k sin 3 dk = SUAT(1/3) (13.87)

Exercise: Fill in the details between (13.82]

and (13.83). Why does the Fourier transform provide only one

solution of the second order equation

13.82)7

Applying asymptotic techniques to the integral representations in (13.85)) one obtains as * — —oo

1 2% o«

Ai(x)

And as x — +oo:

~J 1 - . 1 .
N sm( 3 4) (13.88)
 243/2
. 3
Ai(w) ~ 5 (13.89)

In figure [13.8] we compare the asymptotic approximations in (13.88) and (13.89) with the Ai(z). The

approximations ((13.88)) and (|13.89)) are sp
The Bairy function Bi(z) is defined so

lendid, except close to the turning point.
that as x — —oo:

1 20232«

Bi(z)

" VAl

(13.90)

(5i)
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Figure 13.8: Comparison of the PO approximations in ([13.88]) and (13.89)) with Ai(x).

And as x — +oo:

2%/
. € 3
Further Bairy factoids are
Bi(0) = v3Ai(0), and  Bi'(0) = —V/3Ai'(0). (13.92)
The Wronskian is 1
Ai(x)Bi'(x) — Bi(z)Ai'(z) = = . (13.93)
T

We can use Airy and Bairy to extend the utility of the WKB approximation.

Example: An eigenproblem with a turning point

Let’s apply the WKB approximation to estimate the large eigenvalues of the Sturm-Liouville eigenprob-
lem

¢" + Asinz =0, ¢(0):¢>(g) —0. (13.94)

There is a turning point at z = 0 so the WKB approximation does not apply close to the boundary.
Hope is eternal and we begin by ignoring the turning point and constructing a physical optics
approximation:

@°Pe = (sin x)71/4 sin <\[\/z \/sinvdv) ) (13.95)
0

The construction above satisfies the boundary condition at x = 0 and then the other boundary condition
at 7/2 determines our hopeful approximation to the eigenvalue. To ensure that ¢"°Pe(7/2) = 0, the
argument of the sin must be nm and thus the approximate eigenvalue is

Niope _ (%ﬁ)g =12, (13.96)

In the expression above the integral of the phase function is

def ™2 2 3
J= / Vsinvdv = 4/ =T? (4) =1.19814- - (13.97)
0 ™

We'll see later that the approximation in (|13.96) is not very accurate — we can’t ignore the turning point
and hope for the best. Instead we use a combination of WKB and asymptotic matching to account for
the turning point and obtain a better approximation to the eigenvalues.
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The outer solution — use WKB: we apply the WKB approximation where it is guaranteed to work.
This is in the outer region defined by A'/3z >> 1. The construction that satisfies the boundary condition
at x = m/2 is

/2
PWEB — (sinz)"4sin (\f)\/ \/sintdt> : (13.98)
xT
To perform the match we will need the “inner limit” of the approximation above. In the region where

V<<l (13.99)
the WKB approximation is valid and we can simplify the phase function in (|13.98]):

dVEB = (sinz)~V* sin (\[\J —/ \/mdv) ) (13.100)
0
~ o W sin (VA = 2V + 0 (a72) ) (13.101)

The inner solution: close to = 0 — specifically in the region where 2\'/? is order unity — we can
approximate the differential equation by

buz+ A (z+ 0(2%) o =0. (13.102)

As an inner variable we use
X =3, (13.103)

so that the leading-order inner approximation is a variant of Airy’s equation
OPxx +XP=0. (13.104)
The solution that satisfies the boundary condition at X =0 is

Ai(-X) Bi(—X)]
Ai(0) — Bi(0)

>=Q { (13.105)

Matching: To take the outer limit of the inner solution in (|13.105)) we look up the relevant asymptotic
expansions of the Airy functions. Then we write the outer limit of (13.105) as

2Q 1 V3 (2 3/9 7T> 1 <2 3/9 T
b~ — ¥3ogin (2X32 4+ 2 ) — L cos (X324 2 , 13.106
V3mAi(0) X1/4 LQ/ 3 4) X 3 4 } ( )

cos g sin g
20 1 (2 . T
=< SXx32 4 ) 13.107
V3rAi(0) X174 <3 - 12) ( )
20 1. T 24

_ _T 232 13.108
V3mAi(0) X /E T ( 12 3 ) (13.108)

We now match the phase in (13.101)) with that in (13.108)). This requires

VM = = —% , (13.109)
or 9
WKB m
A :<(n—%)j) Con=1,23- (13.110)

With n = 1 the hopeful approximation in ((13.96]) is about 18% larger than the correct WKB-Airy
approximation in ({13.110)). The numerical comparison below shows that (13.110) is good even for n = 1:

Abvpac  ©.7414  25.2094 58.4349 105.4114 166.1422 240.6232
AwkB  O.7771 25.2568 58.4341 105.4673 166.1456 240.6793

The bvp4c results fluctuate in the final decimal place as I play with the resolution and the initial guess.

206



Some ODESs that can be solved using Bessel functions
We are going to encounter some second-order differential equations that can solved exactly in terms
of Bessel functions. Here are results extracted from Abramowitz & Stegun 9.1.49 to 9.1.54.

Denote any solution of Bessel’s equation

d?y dy
2 2 2
stz —+ (" -v)y=0

by C,(z). For example, C, = J, or Y,, or a linear combination of J, and Y,. Then

2 1
T R e R N a 2CS
W (g0, s w=2e0e)
w” + A22P 2w =0, = w = Zl/QCl/p(2)\Zp/2/p) )
w' = 2=y $ N =0, = w=2"C(2\2),
2w’ + (1= 2p)aw’ + (N¢*2* +p* — P ¢P)w =0, = w = 2"Cyyp(A21).
w’ + (\2e?* — 1w =0, = w = Cy(Ae?),

Denote any solution of the modified Bessel equation

d?y dy
2 2 2
s tr——(+v)y=0

by Z,(z). For example, Z, = K, or I,, or a linear combination of K, and I,. Then A2 in the
differential equations above can be replaced by —\? if C, is replaced by Z,. For example

w” — X222 =0, = w =222, ,,(2):7? /p) .
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13.6 Higher order terms in the WKB approximation

In (13.16)) we obtained a necessary condition for the validity of the PO approximation. In this section
we provide further elaboration of the conditions required for the PO approximation to work.
The solutions of the WKB hierarchy at the next two orders are

_ x q// 5 q/2
S2 = ?/ 8577 — 327 dt, (13.111)
1 q// 5 q/2
is3 = —— — ——. 13.112
B T162 T 64 ( )
These formulas are equivalent to
L (" i 174)”
59 = 15/ Y (q* / ) dt (13.113)
and
1 11
isg = —07/” (q*1/4) . (13.114)
Let’s apply these formulas to Airy’s equation
Yy = ay (13.115)
with x — oo.
Example: Consider
ey —x 'y =0. (13.116)

How small must € be in order for the physical optics approximation to within 5% when x > 17

Example: Consider

y' +kx %y =0, y(1) =0, y'(1)=1. (13.117)
Is WKB valid as £ — 00?
With k =1, I found
_ 1—a _a _ala—4) (aq
sofiQ_a(x 2 1), and slf4lnx, and 527716(04—2) (m2 1).
(13.118)

The calculation of s2 should be checked (and should do general k). But the tentative conclusion is that
WKB works if o < 2. (This includes oo < 0 e.g. a = —1/2 is the example in figure [I3.3]) Note a =2 is a
special case with an elementary solution.

13.7 Using bvp4c

In this section I discuss the MATLAB solution of (13.72))

y"+X(z+27")y=0, with BCs y'(1)=0, y(L)=0.
—_——

w(z)

To use bvpdc we let y;(z) = y(z) and write the eigenproblem as the first-order system

yi = ys, (13.119)
yo =Mz +a )y, (13.120)
ys=(z+az7 ") yi. (13.121)

This Sturm-Liouville boundary value problem always has a trivial solution viz., y(x) = 0 and X arbitrary.
We realize that this is trivial, but perhaps bvp4c isn’t that smart. So with (13.121)) we force bvpé4c to
look for a nontrivial solution by adding an extra equation with the boundary conditions

y3(0)=0, and  y3(L)=1. (13.122)
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We also have y2(1) = 0 and y; (L) = 0, so there are four boundary conditions on a third-order problem.
This is OK because we also have the unknown parameter A\. The addition of y3(z) also ensures that
bvp4c returns a normalized solution:

L
/ v (z+27!) de=1. (13.123)
1

An alternative that avoids the introduction of y3(x) is to use y1(1) = 1 as a normalization, and as an
additional boundary condition. However the normalization in (13.123)) is standard.

In summary, the system for [y1,y2,y3] now only has nontrivial solutions at special values of the
eigenvalue \.

The MATLAB function billzWKBeig, with neither input nor output arguments, solves the eigenprob-
lem with L = 5. The code is written as an argumentless function so that three nested functions can
be embedded. This is particularly convenient for passing the parameter L — avoid global variables. All
functions are concluded with end. In this relatively simple application of bvp4c there are only three
arguments:

1. a function odez that evaluates the right of (13.119)) through (13.121));

2. a function bcz for evaluating the residual error in the boundary conditions;
3. a MATLAB structure solinit that provides a guess for the mesh and the solution on this mesh.

solinit is set-up with the utility function bvpinit, which calls the nested function initz. bvp4c
returns a MATLAB structure that I've imaginatively called sol. In this structure, sol.x contains the
mesh and sol.y contains the solution on that mesh. bvp4c uses the smallest number of mesh points
it can. So, if you want to make a smooth plot of the solution, as in the lower panel of Figure [13.6
then you need the solution on a finer mesh, called xx in this example. Fortunately sol contains all the
information needed to compute the smooth solution on the fine mesh, which is done with the auxiliary
function deval.
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function billzWKBeig

L =5; J = quad(@(x)sqrt(x+x."(-1)),1,L);
%The first 6 eigenvalues; n = 0 is the ground state.
nEig = [0 1 2 3 4 5]; lamWKB = (nEig+0.5).72*(pi/J)"2;

lamNum = zeros(1,length(lamWKB));

for N = 1:1:length(nEig)
lamGuess = lamWKB(N);
x = linspace(1,L,10);
solinit = bvpinit(x,@initz,lamGuess);
sol = bvp4c(@odez,@bcz,solinit);
lambda = sol.parameters;
lamNum(N) = lambda;

end

err = 100*(lamNum - lamWKB)./lamNum;

figure

subplot(2,1,1)

plot(nEig,err,’*-’)

xlabel(’Mode Number’,’interpreter’,’latex’)
ylabel(’$e$’,’interpreter’,’latex’,’fontsize’,16)

% Plot the last eigenfunction

xx = linspace(1,L); ssol = deval(sol,xx);
subplot(2,1,2)

plot(xx,ssol(1,:))
xlabel(’$x$’,’interpreter’,’latex’,’fontsize’,16)
ylabel(’$y_5(x)$’,’ interpreter’,’latex’,’fontsize’,16)

=== Nested Functions ----------- %
function dydx = odez(x,y,lambda)
%0DEZ evalates the derivatives
dydx = [ y(2); -lambda*(x+x~(-1))*y(1);
(x+x~ (1)) *y (D *y (D] ;
end

%% BCs applied

function res = bcz(ya, yb, lambda)
res = [ ya(2) ; yb(1); ya(3) ; yb(3) - 11;
%Four BCs: solve three first-order
%equations and also determine lambda.

end

%% Use a simple guess for the Nth eigenmode
function yinit = initz(x)
alpha = (N + 1/2)*pi/(L-1);
yinit = [ sin(alpha*(L - x))
alpha*cos(alpha*x(L - x))
-0D/C-1D 1;
end
end
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13.8 Problems
Problem 13.1. Consider the IVP
i+256e*r =0,  2(0)=0, 2(0)=1. (13.124)

Estimate the position and magnitude of the first positive maximum of x(t). Compare the WKB approx-
imation with a numerical solution on the interval 0 < ¢ < 1.

Problem 13.2. Consider the differential equation

400
1!
2 =0,
Y 00122 Y
———
Q)

(13.125)

How can we apply the WKB approximation to this equation? Compare the physical optics approximation
to a numerical solution with the initial conditions y(0) = 1 and y’(0) = 0.

Problem 13.3. Use the exponential substitution y = exp(S/e) to construct a WKB physical-optics
approximation to the differential equation

Epy) +qy=0. (13.126)
Above p(z) and g(x) are coeflicient functions, independent of the small parameter e.

Problem 13.4. Consider a
Y+ —y=0. (13.127)

Take a > 0 and obtain the physical-optics approximation. Compare to the exact solution. Is the physical-
optics approximation asymptotically valid as x — c0? As & — 0?7 Is the physical-optics approximation
ever valid?

Problem 13.5. Find an approximation to the large eigenvalues of the Sturm-Liouville problem
¢+ Xe*"p =0, posed on 0 < z < 1, with BCs: ¢(0) =0, ¢'(1)=0. (13.128)
(Bonus for comparison with a numerical solution.)

Problem 13.6. Substitute the WKB ansatz y = ¢5/¢ into the fourth- order differential equation
dy
4
—0 13.129
€ i TQ=0, ( )

and obtain a nonlinear equation for S. Using the expansion S = Sy + €51 + €255 + - -- find Sy and S;
in terms of Q. (Consider both signs of Q.)

Problem 13.7. Put Bessel’s differential equation

d*y | dy

2 2 2y, _

into Schrodinger form
42y V2 — 1
— 1-—2)Yy=0. 13.131
d’l"2 + ( 7"2 ) ( )

Consider r = R/e with ¢ — 0 and R fixed. Obtain the physical optics approximation to (13.131)) in this

limit. Compare your answer to Bessel-function asymptotics in some convenient reference.
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Figure 13.9: A figure for problem

Problem 13.8. Consider the differential equation
' +2%y=0, withICs y(1)=0, y(1)=1, (13.132)

posed on the semi-infinite interval x > 1. Solve the differential equation using the PO approximation
and assess the accuracy of the large-x PO approximation by considering the third term in the WKB
expansion. Find the exact solution in terms of Bessel functions. Use MATLAB to compare the Bessel
function solution with the WKB approximation.

Problem 13.9. The top panel of figure shows the solution to one of the four initial value problems:

eyl —e Ty =0, »(0)=0, y(0)=1,
Eyl —e"yy =0, 12(0) =0, %5(0)=1,
Eyy+eTy; =0, y3(0)=0, y5(0)=1,
Eyl +e®ys =0, y4(0)=0, ,0)=1.

(a) Which y,(x) is shown in figure [13.9¢ (b) Use the WKB approximation to estimate the value of €
used in figure [13.9

Problem 13.10. Estimate the large eigenvalues of
" + Asin®zep =0, with BCs ¢(0) = ¢(7/2) = 0. (13.133)

Compute the first five eigenvalues with bvp5c and compare the numerical estimate with your approxi-
mation.

Problem 13.11. Consider the eigenproblem
"+ wp =0, #(0) =0, #(1)+¢(1)=0. (13.134)

The weight function, w(z) above, is positive for 0 < z < 1. (3) Show that the eigenvalues A, are real
and positive. (4) Show that eigenfunctions with distinct eigenvalues are orthogonal

1
(A — Am) /O bndmwdz = 0. (13.135)

(#i) With w = 1, find the first five eigenvalues and plot the first five eigenfunctions. You should obtain
transcendental equation for A, and then solve that equation with MATLAB. (iv) Next, with non-constant
w(x), use the WKB approximation to obtain a formula for A,. (v) Consider

w=(a+2)2. (13.136)

Take a = 1 and use bvp4c to calculate the first five eigenvalues and compare AW X5 with \PP4¢. (i) Is
the WKB approximation better or worse if a increases?
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Problem 13.12. Consider the Sturm-Liouville problem
(wy') + Xy =0, (13.137)

with boundary conditions
lir% wy =0, y(1) =0. (13.138)
T—

Assume that w(z) increases monotonically with w(0) = 0 and w(1) =1 e.g. w(x) = sinwz/2. Further,
suppose that if x < 1 then

w(z) = wiz + %xz + %x?’ +--e (13.139)

There is a regular singular point at z = 0, and thus we require only that y(0) is not infinite.
Show that the transformation y = w~1/2Y puts the equation into the Schrodinger form

by w// w/2:|Y:0.

Y" + [ -+ (13.140)

w 2w 4w?

Use the WKB method and matching to find an approximation for the large eigenvalues (A = €72 > 1)
in terms of the w,,’s and the constant

1
dx
e (13.141)
0 vw(x)
Problem 13.13. Consider the epsilonless Schrodinger equation
y' +p°y =0, (13.142)

where p(z) > 0. (i) Try to solve the equation by substituting

Y = exp (j:i /09;(75) dt) . (13.143)

Unfortunately this doesn’t work: Y (x) is not an exact solution of (13.142)) unless p is constant. Instead,
show that Y satisfies

Y+ (p* Fip') Y =0. (13.144)
(ii) Compare ((13.144) with (13.142)), and explain why Y (z) is an approximate solution of (13.142) if
d1
alioq 13.145
sal< (13.145)
(i4i) Prove that if y; and ys are two linearly independent solutions of ([13.142)) then the Wronskian
W =y1ys — v1y2 (13.146)

is constant. (i) Show that the Wronskian of

¥i = exp (—i—i /0 () dt) and Y = exp (—i /0 () dt> (13.147)

is equal to 2ip. This suggests that if we modify the amplitude of Y (z) like this:

Y3 = \}ﬁ exp (—i—i /0;9(15) dt) and Y, = \;ﬁ exp (—i /O;Q(t) dt) , (13.148)

then we might have a better approximation. (v) Show that the Wronskian of Y3 and Y} is a constant.

(vi) Find a Schrodinger equation satisfied by Y3 and Yy and discuss the circumstances in which this
equation is close to (13.142]).

Problem 13.14. Consider
y' +xy=0, (13.149)

and suppose that
y(x) ~ z= Y4 cos(20%/%/3) as xr — 400. (13.150)

Solve this problem in terms of well known special functions. Find the asymptotic behaviour of y(z) as
x — —o00. Check your answer with MATLAB (see Figure [13.14))
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Figure 13.10: Figure for the problem [13.14] showing a comparison of the exact solution (the
solid black curve) with the asymptotic expansions as © — —oo (the dot-dash blue curve) and

(13.150)) as x — +oo (the dashed red curve).
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bvpdc

percentage error

Figure 13.11: Figure for the problem with ((13.151)).

Problem 13.15. (i) Consider the eigenproblem
Y +E(1+nz)y=0, y(0) =0, y(r) =0, (13.151)
where 7 is a parameter and E is an eigenvalue. With 7 = 0 the gravest mode is
y=sinzx, E=1. (13.152)

(i) Suppose |n| < 1. Find the O(n) shift in the eigenvalue using perturbation theory. If you're energetic,
calculate the O(n?) term for good measure (optional). (i) In equation (10.1.31) of BO, there is a WKB
approximation to the eigenvalue E(n). Take n = 1, and expand this formula for £ up to and including
terms of order n?; compare this with your answer to part (i). (iii) Use bvp4c in MATLAB to calculate
E(n), with 0 < n < 2, numerically. Compare the WKB approximation in (10.1.31) with your numerical
answer by plotting Eyypac(n) and Ewkg(n) in the same figure.
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Eigenvalues for y” +A(1 + asin x)?y = 0.
4 T T T

T T
—x— First eigenvalue
—6— Second eigenvalue
3.54 - — —WKB

Figure 13.12: Figure for the problem containing ((13.153]).

Problem 13.16. Consider the Sturm-Liouville eigenproblem
Y +A(1+asinz)’y=0, y0)=y(x)=0. (13.153)

(a) Using bvp4c, compute the first two eigenvalues, A1 and Ao, as a functions of a in the range —3/4 <
a < 3. (b) Estimate Ai(a) and A2(a) using the WKB approximation. (¢) Assuming |a| < 1 use
perturbation theory to compute the first two nonzero terms in the expansion of A;(a) and Az(a) about
a = 0. Compare these approximations with the WKB solution — do they agree? (d) Compare the
WKB approximation to those from bvp4c by plotting the various results for A\, (a)/n? on the interval
-3/4<a<3.

Remark: If ¢ = —1 the differential equation has a turning point at x = 7/2. This requires special
analysis — so we're staying well away from this ticklish situation by taking a > —3/4.
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Lecture 14

Boundary layers in fourth-order
problems

14.1 A fourth-order differential equation

Let us consider a fourth-order boundary value problem which is similar to problems occurring in the
theory of elasticity:
— Uy + Uz = 1, (14.1)

with boundary conditions
u(—1) =v(-1) =u(l) =u(1) =0. (14.2)

The outer solution might be obtained with the RPS such as
u(z, €) = uo(x) + € uy (x) + - - (14.3)
At leading order

2 —1

5 (14.4)

Uozr = 17 = Ug =

We’ve applied only two of the four boundary conditions above.

Before worrying about higher order terms in , let’s turn to the boundary layer at x = —1. We
assume that the solution is an even function of z so the boundary layer at x = +1 can be constructed
by symmetry.

If we look for a dominant balance with X = (x + 1)/0 we find that 6 = e. Thus we consider a
boundary layer rescaling

def T +1

u(z,e) =U (X, e) , where X . (14.5)
€

The boundary layer problem is then
—Uxxxx +Uxx =€. (14.6)
Writing the leading-order outer solution in in terms of X, we have
uo(z,€) = —eX + %€2X2' (14.7)
Anticipating that we’ll ultimately need to match the term —eX in , we pose the boundary-layer

expansion

U(X,e) = eUi(X) + Us(X) + Us(X) + - - - (14.8)

There is no term Uy(X) because the outer solution is O(e) in the matching region.

217



Thus we have the hierarchy

“Uixxxx +Uixx =0, (14.9)
—Usxxxx +Uaxx =1, (14.10)
—Usxxxx +Usxx =0, (14.11)
and so on.
The general solution of (14.9)) is
Uy =A +BX+Cie ™ + Dy ¥ (14.12)
—
=0

Above we’ve anticipated that Dy = 0 to remove the exponentially growing solution. Then applying the
boundary conditions at X = 0 we find

Up=A (1-X—-e7). (14.13)

To match ([14.13) against the term —eX in the interior solution in (14.7)) we take

A =1. (14.14)
Now we can construct a leading-order solution that is uniformly valid in the region near x = —1:
21
Ui (7) = = e (1 —e—@“)/f) . (14.15)
The derivative is
uunix(x) =x+ e—(m—i—l)/e y (1416)
which is indeed zero at © = —1.
Higher order terms
The equation for Us, ((14.10)), has a solution
X2
Up(X)=" +A(1-X —e ). (14.17)

2

Above, we've satisfied both boundary conditions at X = 0. We've also matched the term ¢2X?/2 in
(14.7). To summarize, our boundary layer solution is

X2
UX) = e(\l/ -X —e*X) +ET A (1-X - )+ 0(F). (14.18)

orphan

But we have unfinished business: we have not matched the orphan above with any term in the leading-
order outer solution wug(x).
To take care of the orphan we must go to next order in the interior expansion:

2

u(z,€) = + euy(z) + O (€%) . (14.19)
Thus
Ulgz =0, = u(z)= P + Q1 x (14.20)
~—
=1 =0

We take Q1 = 0 because the solution is even, and P; = 1 to take care of the orphan. The solution u, ()
does not satisfy any of the four boundary conditions. To summarize, the outer solution is

2
u(w ) = L et 0. (14.21)
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The O(e) term above was accidently included in the uniform solution : in the outer region the
expansion of already agrees with all terms in .

Because ugzz0 = 0, there are now no more non-zero terms in the outer region i.e. us = 0, and
therefore A3 = 0 in . Moreover, all terms Us, Uy etcetera are also zero. Thus we have constructed
an infinite-order asymptotic expansion. Using symmetry we can construct a uniformly valid solution
throughout the whole domain

2.1
Ui () = = e (1 o@D /e _ e(ac—l)/e) _ (14.22)

14.2 Problems

Problem 14.1. Solve (|14.1]) exactly and use MATLAB to compare the exact solution with the asymptotic

solution in ({14.22]).

Problem 14.2. Find two terms in € in the outer region and match to the inner solution at both

boundaries for
" —u = e, (14.23)

The domain is —1 < x < 1 with BCs
w(—1)=4/(-1) =0, and  u(l)=4(1)=0. (14.24)

Problem 14.3. Find two terms in € in the outer region and match to the inner solution at both

boundaries for
Eu"" —u" = 0. (14.25)

The domain is 0 < 2 < 1 with BCs
w(0)=0, 4(0)=1, and  wu(l)=4/(1)=0. (14.26)
Problem 14.4. Considering the eigenproblem
—u" " = I, (14.27)
on the domain is 0 < z < 7 with BCs
u(0) =4/(0) =0, and  u(m)=u'(m)=0. (14.28)

(i) Prove that all eigenvalues are real and positive. (i) Show that with a suitable definition of inner
product, that eigenfunctions with different eigenvalues are orthogonal. (7ii) Use boundary layer theory
to find the shift in the unperturbed spectrum, A =1, 2, 3-- -, induced by e.
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