SIO203B/MAE294B Final 2015

No computers, calculators, iphones etc.

Problem 1

Find the leading-order, $x \to \infty$, asymptotic expansion of

$$E(x) \stackrel{\text{def}}{=} \int_0^\infty e^{-xt - t^4/4} \, \mathrm{d}t \,, \qquad \text{and} \qquad F(x) \stackrel{\text{def}}{=} \int_0^\infty e^{xt - t^4/4} \, \mathrm{d}t \,. \tag{1}$$

Problem 2

Use multiple scale theory to find an approximate solution of the initial value problem

$$u_{tt} + u = 2 \left[\cos(\epsilon t) + \epsilon u^2 \right], \quad \text{with ICs} \quad u(0) = 0, \quad u_t(0) = 0.$$
 (2)

Problem 3

The function $y(x, \epsilon)$ satisfies

$$\epsilon y'' + \sqrt{x}y' + e^{-y} = 0, \quad \text{in } 0 < x < 1,$$
(3)

and is subject to the BCs y(0) = 0 and y(1) = 1. (i) Find the rescaling for the boundary layer near x = 0, and obtain the leading-order inner approximation. (ii) Find the leading-order outer approximation and match the two approximations. (iii) Construct a uniform approximation. All definite integrals should be evaluated in terms of $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$.

Problem 4

If $\epsilon = 0$ the eigenproblem

$$(1 + \epsilon y) \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \lambda y = 0, \qquad y(0) = y(\pi) = 0,$$
 (4)

has the solution $\lambda = 1$ and $y(x) = a \sin x$. Use perturbation theory $(0 < \epsilon \ll 1)$ to investigate the dependence of the eigenvalue $\lambda(\epsilon)$ on a and ϵ . To check your answer, show that if $\epsilon = 1/7$ and a = 1 then $\lambda \approx 37/33$.

Problem 5

Find a leading-order $\epsilon \to 0$ approximation to

$$F(\epsilon) \stackrel{\text{def}}{=} \int_0^\infty \frac{x \, \mathrm{d}x}{(\epsilon^2 + x^2)\sqrt{1 + x^2}} \,. \tag{5}$$

Some of these indefinite integrals

$$\int \frac{\mathrm{d}t}{1+t^2} = \arctan t \,, \qquad \int \frac{\mathrm{d}t}{\sqrt{1+t^2}} = \ln\left(t+\sqrt{1+t^2}\right) \,, \tag{6}$$

$$\int \frac{\mathrm{d}t}{t^2 \sqrt{1+t^2}} = -\frac{\sqrt{1+t^2}}{t}, \qquad \int \frac{\mathrm{d}t}{t\sqrt{1+t^2}} = \ln\left(\frac{t}{1+\sqrt{1+t^2}}\right), \tag{7}$$

$$\int \frac{2t \, dt}{1+t^2} = \ln\left(1+t^2\right) \,, \qquad \int \frac{t \, dt}{\sqrt{1+t^2}} = \sqrt{1+t^2} \,. \tag{8}$$

might be useful.

TURN THE PAGE — THERE IS ANOTHER QUESTION

Figure 1: Figure for problem 6.

Problem 6

The top panel of figure 1 shows the solution to one of the four initial value problems:

$\epsilon^2 y_1'' - e^{-x} y_1 = 0 ,$	$y_1(0)=0,$	$y_1'(0) = 1$,
$\epsilon^2 y_2'' - \mathrm{e}^x y_2 = 0,$	$y_2(0)=0,$	$y_2'(0) = 1$,
$\epsilon^2 y_3'' + e^{-x} y_3 = 0 ,$	$y_3(0)=0,$	$y_3'(0) = 1,$
$\epsilon^2 y_4'' + \mathrm{e}^x y_4 = 0,$	$y_4(0)=0,$	$y'_4(0) = 1$.

(i) Which $y_n(x)$ is shown in the top panel figure 1? Lucky guesses don't count — explain your answer. (ii) Use the WKB approximation and the information in the bottom panel of Figure 1 to estimate the value of ϵ as either a decimal with one significant figure or as a simple fraction.