
Second recitation SIO203B/MAE294B, 2025

For discussion in the recitation on Friday April 11th

Some of these problems will be set for hand-in

Problem 2.13 with a = 1

Read section 2.5 of the notes and use the L1 and L2 notation found there. Consider

ϵy = e−y . (1)

Use iteration to find a two or three terms in the ϵ → 0 asymptotic solution of (1). Use matlab to
make a graphical comparison between your approximation and the answer.

Problem 3.1 Air resistance

(i) Consider the projectile problem with linear drag:

d2z

dt2
+ µ

dz

dt
= −g0 , (2)

and the initial conditions z(0) = 0 and dz/dt = u. Find the solution with no drag, µ = 0,
and calculate the time aloft, τ . (ii) Suppose that the drag is small – make this precise by non-
dimensionalizing the equation of motion and exhibiting the relevant small parameter ϵ. Hint:
non-dimensionalize so that (g0, u) 7→ (1, 1). (iii) Use a RPS to determine the first correction
to τ associated with non-zero drag. (iv) Find the time to reach maximum altitude. Does the
projectile take longer going up or coming down? (v) Integrate the non-dimensional differential
equation exactly and obtain a transcendental equation for τ(ϵ). Solve this transcendental equation
approximately in the limit ϵ → 0. Make sure the ϵ → 0 solution agrees with the earlier RPS.

Problem 4.1 with q = 3

Consider

A(x, p)
def
=

∫ ∞

x
e−pt3 dt . (3)

With a change of variable express A(x, p) in terms of the simpler function B(x) = A(x, 1). Find
the leading-order x → ∞ approximation to B(x).

Iterating belligerent drunks

Read section 3.2 so that you understand where the boundary value problem

uxx = αu2 , u(±1) = 1 (4)

comes from. Consider the α ≪ 1 iterative schemes

(a) u(0) = 1 , u(n+1)
xx = αu(n)

2
, (5)

and
(a) u(0) = 1 , u(n+1)

xx = αu(n)u(n+1) (6)

Calculate u(1)(x) in both cases and compare with the results in the lecture notes. Which scheme
is likely to be more accurate? Discuss the difficulty of proceeding to u(2)(x).
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Figure 1: Numerical solution of (7) with various initial conditions. The carrying capacity, K(t), is
the heavy black curve. At large time all initial conditions convergence to a periodic solution that
lags the carrying capacity i.e. the peak population is is after the peak carrying capacity.

A logistic equation with time varying carrying capacity

Consider the logistic equation with a periodically varying carrying capacity:

Ṅ = rN

(
1− N

K

)
, with K(t) = K0 +K1 cosωt . (7)

The initial condition is N(0) = N0. (i) Based on the K1 = 0 solution, non-dimensionalize this
problem. Show that there are three control parameters. (ii) Suppose that K1 is a perturbation

i.e., ϵ
def
= K1/K0 ≪ 1 and that N(t) ≈ K0. Use first-order terturbation theory to find the periodic-

in-time solution of the perturbed problem e.g. see Figure 1. (iii) How does the phase lag between
the population, N(t), and the carrying capacity K(t) depend on parameters?

Belligerent drunks with Neumann boundary conditions

This problem is difficult – finding the “best” way to non-dimensionalize the problem is tricky. Don’t
spend a lot of time on this at the expense of the other problems.

Let’s make a small change to the formulation of the belligerent-drunks example in section 4.2 of
the notes. Suppose that we model the bars at x = 0 and ℓ using a Neumann boundary condition.
This means that the flux of drunks, rather than the concentration, is prescribed at x = 0 and ℓ.
Thus the boundary condition in the notes is changed to

κux(0, t) = −F , and κux(ℓ, t) = F , (8)

where the constant F , with dimensions drunks per second, is the flux entering the domain from the
bars. Try to repeat all calculations in section 4.2, including the analog of the β ≪ 1 perturbation
expansion. You’ll find that it is not straightforward and some ingenuity is required to understand
the weakly interacting limit with fixed-flux boundary conditions.
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