Second recitation SIO203B/MAE294B, 2025

For discussion in the recitation on Friday April 11th

Some of these problems will be set for hand-in

Problem 2.13 with a = 1

Read section 2.5 of the notes and use the L_1 and L_2 notation found there. Consider

$$\epsilon y = \mathrm{e}^{-y} \,. \tag{1}$$

Use iteration to find a two or three terms in the $\epsilon \to 0$ asymptotic solution of (1). Use MATLAB to make a graphical comparison between your approximation and the answer.

Problem 3.1 Air resistance

(i) Consider the projectile problem with linear drag:

$$\frac{\mathrm{d}^2 z}{\mathrm{d}t^2} + \mu \frac{\mathrm{d}z}{\mathrm{d}t} = -g_0\,,\tag{2}$$

and the initial conditions z(0) = 0 and dz/dt = u. Find the solution with no drag, $\mu = 0$, and calculate the time aloft, τ . *(ii)* Suppose that the drag is small – make this precise by nondimensionalizing the equation of motion and exhibiting the relevant small parameter ϵ . Hint: non-dimensionalize so that $(g_0, u) \mapsto (1, 1)$. *(iii)* Use a RPS to determine the first correction to τ associated with non-zero drag. *(iv)* Find the time to reach maximum altitude. Does the projectile take longer going up or coming down? *(v)* Integrate the non-dimensional differential equation exactly and obtain a transcendental equation for $\tau(\epsilon)$. Solve this transcendental equation approximately in the limit $\epsilon \to 0$. Make sure the $\epsilon \to 0$ solution agrees with the earlier RPS.

Problem 4.1 with q = 3

Consider

$$A(x,p) \stackrel{\text{def}}{=} \int_{x}^{\infty} e^{-pt^{3}} dt.$$
(3)

With a change of variable express A(x, p) in terms of the simpler function B(x) = A(x, 1). Find the leading-order $x \to \infty$ approximation to B(x).

Iterating belligerent drunks

Read section 3.2 so that you understand where the boundary value problem

$$u_{xx} = \alpha u^2, \qquad u(\pm 1) = 1 \tag{4}$$

comes from. Consider the $\alpha \ll 1$ iterative schemes

(a)
$$u^{(0)} = 1$$
, $u^{(n+1)}_{xx} = \alpha u^{(n)^2}$, (5)

and

a)
$$u^{(0)} = 1$$
, $u^{(n+1)}_{xx} = \alpha u^{(n)} u^{(n+1)}$ (6)

Calculate $u^{(1)}(x)$ in both cases and compare with the results in the lecture notes. Which scheme is likely to be more accurate? Discuss the difficulty of proceeding to $u^{(2)}(x)$.

Figure 1: Numerical solution of (7) with various initial conditions. The carrying capacity, K(t), is the heavy black curve. At large time all initial conditions convergence to a periodic solution that lags the carrying capacity i.e. the peak population is after the peak carrying capacity.

A logistic equation with time varying carrying capacity

Consider the logistic equation with a periodically varying carrying capacity:

$$\dot{N} = rN\left(1 - \frac{N}{K}\right)$$
, with $K(t) = K_0 + K_1 \cos \omega t$. (7)

The initial condition is $N(0) = N_0$. (i) Based on the $K_1 = 0$ solution, non-dimensionalize this problem. Show that there are three control parameters. (ii) Suppose that K_1 is a perturbation i.e., $\epsilon \stackrel{\text{def}}{=} K_1/K_0 \ll 1$ and that $N(t) \approx K_0$. Use first-order terturbation theory to find the periodic-in-time solution of the perturbed problem e.g. see Figure 1. (iii) How does the phase lag between the population, N(t), and the carrying capacity K(t) depend on parameters?

Belligerent drunks with Neumann boundary conditions

This problem is difficult – finding the "best" way to non-dimensionalize the problem is tricky. Don't spend a lot of time on this at the expense of the other problems.

Let's make a small change to the formulation of the belligerent-drunks example in section 4.2 of the notes. Suppose that we model the bars at x = 0 and ℓ using a Neumann boundary condition. This means that the flux of drunks, rather than the concentration, is prescribed at x = 0 and ℓ . Thus the boundary condition in the notes is changed to

$$\kappa u_x(0,t) = -F$$
, and $\kappa u_x(\ell,t) = F$, (8)

where the constant F, with dimensions drunks per second, is the flux entering the domain from the bars. Try to repeat *all calculations* in section 4.2, including the analog of the $\beta \ll 1$ perturbation expansion. You'll find that it is not straightforward and some ingenuity is required to understand the weakly interacting limit with fixed-flux boundary conditions.