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ON THE SCALE OF ATMOSPHERIC MOTIONS

BY
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United States National Research Fellow in Meteorology.)
Astrophysical Institute, University of Oslo.*

{Manuscript 1eceived

In a recent publication entitled The Dynamics
of Long Waves in a Baroclinic Westerly Current*
(1947) the writer pointed out that, in the study
of atmospheric wave motion, the problem of inte-
gration is greatly complicated by the simul-
taneous existance of a discrete set of wave motions
all of which satisfy the conditions of the pro-
blem, namely that the motion be simple-har-
monic and of a specified wave-length. Whereas
only the long inertially-propagated waves are
important for the study of large-scale weather
phenomena, one is forced by the generality of the
equations of motion to contend with each of the
theoretically possible wave types. This extreme
generality whereby the equations of motion apply
to the entire spectrum of possible motions — to
sound waves as well as to cyclone waves —
constitutes a serious defect of the equations from
the meteorological point of view. It means that
the investigator must take into account modi-
fications to the large-scale motions of the atmos-
phere which are of little meteorological importance
and which only serve to make the integration
of the equations a virtual impossibility.

One does not encounter difficulties of this
kind in other branches of applied hydrodynamics,
where the special characteristics of the motions
dealt with are used as a means for simplifying
the basic equations. For example, the fundamen-
tal equations of aerodynamics have been conside-
rably simplified by the introduction of the in-
compressibility, homogeneity, and boundary layer
approximations.

The successful procedure of such related

* Now at the Institute for Advanced Study,
Princeton, New Jersey.
! Hereafter referred to by the abbreviation DLW.
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sciences suggests that a corresponding set of
simplifying principles, characterizing the meteoro-
logically significant motions, can be utilized to
“filler out the noise” from the meteorological
equations. In the search for such a set of prin-
ciples, one is guided by the experience of synoptic
meteorologists who have found that the weather
producing motions of the free atmosphere can be
characterized as quasi-hydrostatic, quasi-adiabatie,
quasi-horizontal, and quasi-geostrophic. But here
one encounters difficulties; although the first
three approximations can be introduced without
difficulty, no acceptable method has been pro-
posed for using the geostrophic approximation
in dynamic analysis. Instead, one can point to
instances in which this approximation breaks
down, such as in the application to the
caleulation of pressure changes. Nevertheless
it was found in DLW that the use of the geo-
strophic approximation in ceriain terms of the
equations of motion has just the effect of filtering
out the meteorologically insignificant wave solu-
tions.

The method of simplification which was em-
ployed in the special case of wave motion has
been extended in the present paper to apply
to the most general large-scale motions. It will
be shown how the geostrophiec approximation,
together with the other three approximations
mentioned above, can be incorporated into the
general equations of motion to obfain a dynami-
cally consistent set of simplified equations appli-
cable to all large-scale motions.

But if the present theory is to be free of
inconclusive empirical elements, a means of
estimating the accuracy of the approximations
used must first be given; in particular, one must
demonstrate the validity of the geostrophic

1
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approximation in a manner which will be accep-
table to those meteorologists who have questioned
its applicability. In the first section of this work
an attempt is therefore made to formulate an ade-
quate theory of meteorological approximations.

Since the meteorologically significant motions
are distinguished from all other types of atmos-
pherie motion only by a great difference in secale,
it is clear that any attempt to justify the peculiarly
meteorological approximations must take into
account the scale of the motion. The present
theory is therefore based on a kind of dimensional
analysis similar to that used in the boundary layer
theory of aerodynamics.® In the latter theory,
the motion is characterized by a length parameter
and a velocily parameter in terms of which the
orders of magnitude of the individual terms in
the equations of motion are evaluated. In the
present theory, the parameters are chosen to
characterize the horizontal and vertical scales of
the motion, the speed of propagation of the
streamline pattern, the horizontal particle speed,
and the internal statie stability. It is then shown
that the geostrophic deviation is negligible for
those disturbances whose characteristic frequency
is small compared to the frequency of an horizon-
tal inertial oscillation, i.e., for the primary large-
scale perturbations of the atmosphere.

A further consequence of the theory is that
the terms comprising the horizontal divergence
in rectangular coordinates compensate in such a
way that they are individually one order of
magnitude larger than the horizontal diver-
gence itself. It is this circumstance that makes
it impossible to evaluate the horizontal diver-
gence by means of the geostrophic wind; for
the error incurred thereby would have the same
order of magnitude as the horizontal diver-
gence itself. But, if the horizontal divergence
is excluded, it may be shown that the geostrophic
wind can be used to approximate the horizontal
velocity field in all other terms in the equations
of motion. Hence if the equations of motion are
so transformed as to eliminate the horizontal
divergence both implicitly and explicitly, the
geostrophic approximation can be applied to
derive a dynamically consistant simplification of
the equations of motion.

1 See, for example, Goldstein (1938).
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The elimination of the horizontal divergence
and the application of the geostrophic, hydro-
static, adiabatic and quasi-horizontal approxima-
tions yield a set of equations which express the
following physical principle: The large-scale
motion of the atmosphere is governed by the laws
of conservation of potential temperature (or
wet-bulb potential temperature) and absolute
potential vorticity, and by the conditions that
the motion be in hydrostatic and geostrophic
equilibrium, Thus the conservation equations of
potential temperature and absolute potential
vorticity, together with the hydrostatic and geo-
strophic equations, form a closed, mutually consi-
stant, dynamical system which applies only to
the meteorologically significant motions and is
therefore free of the defect of too great generality.
By way of illustration it is shown that the simpli-
fied system does filter out the meteorologically
insignificant wave components from the wave
equations for barotropic and baroclinic motion,

These results also have an important appli-
cation to the problem of numerical integration,
The difficulty that has attended this problem
so far is the practical impossibility of evaluating
the initial distributions of horizontal accelera-
tion and horizontal divergence with sufficient
accuracy. But if the simplified equations are
used, the integration presupposes only a know-
ledge of the initial pressure field, a field
which is given directly by available radiosonde
data.

The theory of approximations offered here
contains a justification of the rule that the indi-
vidual time derivative of density is due almost
entirely to the vertical motion. This rule furnishes
the basic reason for the failure of the tendency
equation to serve as a means for caleulating pres-
sure changes; it implies that the local pressure
change at the ground is a small difference between
two large quantities — the total positive and total
negative horizontal mass divergence — whose
values cannot be evaluated with sufficient ac-
curacy from observations. However, if the fen-
dency equation is regarded, not as an instrument
for calculating pressure tendencies, but as a state-
ment of the approximate balance between the
total horizontal mass convergence and divergence,
it may be converted into a useful tool for calcu-
lating the speed of systems by the simple expedient
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ON THE SCALE OF ATMOSPHERIC MOTIONS

of evaluating the horizontal divergence in terms
of the individual time derivative of the vertical
vorticity component. If this method is applied
to small amplitude wave motions, it leads to the
known results of Rossby (1939), Haurwitz (1940),
and Holmboe (1945) for a barotropic atmosphere,
and to those of the writer (1947) for a baroclinic
atmosphere. But that the method is quite gene-
ral is shown by its application to the caleulation
of the veloeity of propagation of the large ampli-
tude cyclone wave containing closed streamlines
at low levels.

1. A THEORY OF METEOROLOGICAL
APPROXIMATIONS.

We shall let = be the west to east distance
measured along a fixed latitude from a fixed
meridian to the meridian through the variable
point, y the south to north distance measured
along the fixed meridian from the fixed latitude
to the latitude through the measured point, and z
the vertical distance measured upwards. Then
in order to avoid unnecessary geometrical compli-
cations in the analysis, we shall suppose that the
equations of motion in this curvilinear system take
the same form as in a rectangular system whose
z and y axes are tangent respectively to the fixed
latitude and meridian at their point of inter-
section, and whose z axis is directed vertically
upwards from this point. This approximation
ignores the influence of curvature on the motion
but not the variation with latitude of the coriolis
parameter. Whereas the neglect of curvature pro-
duces only a certain distortion in the kinematics of
the flow, which is of minor importance except for
extremely large-scale motions, the variability of
the coriolis parameter is essential for the ex-
planation of the local dynamics of the motion.
It can be shown that to ignore the variation
of the coriolis parameter in a barotropic atmos-
phere is virtually equivalent to ignoring the
effect of the earth's rotation altogether.

The Eulerian equations may now be written

d : 1@
o +jw=——2F, M)

o ox
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dv o 1 ép .
E-l-fu e (2)
w 2 1 op
= Eri——o o (3)
and the equation of continuity
d [ew | &v | ow)
ot = —|— - — - =—1. 4
7 (ne) & ta T (4)

Here u, v and w are the z, y, and z velocity
components respectively; p is the pressure; ¢ the
density; f the z-component of the earth’s vorticity,
2 2 sing; j the corresponding y-component,
20 cosg ; 2 the angular speed of the earth’s rotation
about its axis; and ¢ the latitude. The opera-
tor d/dt is the time derivative following the
motion of a particle, i.e.,

d o 2 2 2
T -} Tta—f— va+103_z’
or
d ]
T -0,

where 7 is the gradient operator id[éx +
jéley + kééz, i, j and k being unit vectors
along the 2, y, and z axes respectively.

As it is not our purpose to enter into the
theory of thermodynamicapproximations, although
these may be treated by an analogous method
of dimensional analysis, we shall assume that the
motion is adiabatic. Hence

df

Z=0, (5)

where 0 is the potential temperature, defined by
# = constant X p'p?, (6)

¢ being the ratio ¢ /e, of the specific heat of dry
air at constant pressure to that at constant volume.
Finally we add the equation of state of the

atmosphere, which is assumed to be a perfect
gas,

p = o RT. ()
Here T is the absolute temperature and R the
specific gas constant, equal to c¢,—¢,.

The scale properties of a given motion are
determined as follows: The spatial dimensions
are characterized by &S, the mean horizontal
distance between points at which the velocity
components take extreme values, and by H, the
corresponding mean vertical distance. The time
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dimensions are characterized by V, the mean
magnitude of the horizontal velocity component,
by W, the mean magnitude of the vertical velo-
city component, and by ¢, the mean speed of
propagation of the horizontal streamline pattern.
Roughly speaking, S is the mean distance between
trough and wedge in the streamline pattern, and H
is the height of the tropopause if defined for
and v, and usually somewhat smaller, though of
the same order of magnitude if defined for .

For large-scale motions — represented by the
major waves and vortices on the upper level
weather maps — 8 is of the order of 10° m,
H is of the order of 10* m, ¢ is of the order
10 megee~?, and V is of the order 10 m sec-!
throughout the greatest part of the atmosphere.
The order of W may not be assigned independently
for it is dependent on the remaining character-
istic parameters.

Finally, to characterize the static stability of
the atmosphere it is convenient to choose the
non-dimensional parameter

bt T ke g
where y, is the dry-adiabatic lapse rate of tempe-
rature g/c,, and y is the actual lapse rate in the
atmosphere. The values of K as a function of y for
a mean temperature of 260°C are given in table 1.
They are seen to have the order of magnitude 10—
for the normally observed lapse rates in the free
atmosphere.

Table 1.
Values of the static stability parameter.
»Ckm—? 0 2 4 6 8 10
K 038 031 023 015 008 000

The following list summarizes the various
orders of the characteristic parameters:

S ~ 108m
H ~ ]0" m
C' ~ 10 msec—!
V' ~ 10 msec-! (9)
K~ 101

. g~ 10 msec—2

foj ~10-% sec? |

The orders of f and j between the latitudes

o

15 and 75° and the order of g have heen added

CHAPTER 14

for later reference. The symbol “~" denotes
equality in orders of magnitude.

We are now in a position to evaluate the
orders of magnitude of all quantities appearing
in the equations of motion. This is done by
replacing differentials by finite increments and
expressing the incremental ratios in terms of
S,H,C, V,and K. Thus to determine the order
of du/és, s being a horizontal distance coordinate,
we replace du/és by Au/As and choose As equal
to 8. Then, by definition, Au has the same order
of magnitude as y itself, and we have,

du AHu FV
i SR R T 10
a8 As 8 (1
In the same way
v V¥V
el 11
as S \R
and
cw W
i 12
o8 8 (12)

Finally, by taking increments in the z direction,

ou V & V aw W
0 %" B m—® M

The space derivatives of p and p are estimated
in & similar manner. But here, in order to avoid
having to introduce separate characteristic values
for p and p, we evaluate their logarithmic deriva-
tives instead. Since the fields of pressure and
density have the same horizontal scale as the
velocity field, and since their horizontal space
variations are not greater in order of magnitude
than their mean values, j and 5, we may write

o w200 e LAOD 1
28 “n]‘i) Sl 'Pa‘f Ej &8 S SI i
Oy~ L2, 1de 1 '
o8 e —?E'S g8 = S’

On the other hand, since the vertical incre-
ments in p and p through the distance H have
the same order as p and p themselves, we have

F ) 1
% (Inp) ~ = (in O~ 5 (15)

To estimate the orders of magnitude of the
time derivatives we may make use of the fact
that the streamline, isobaric, and isopyenic pat-
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ON THE SCALE OF ATMOSPHERIC MOTIONS

terns translate horizontally with the speed C.

Then the system moves the distance ds in the

time ds/C', and the time variation d/dt is given by
d 0 d

at  as/C ds

(16)

The case where the local time variation
is produced by a change in amplitude — in
addition to a translational motion — is provided
for by supposing C to be composed of the speed
of propogation plus an additional term which
allows for the change in amplitude. The order
of magnitude of C (10 m sec™) is kept the
same as before, because the specification of
this order for C is precisely what distinguishes
the meteorologically significant motions from the
several varieties of theoretically possible motions
having the same values of §, H, and V that
may exist. Thus C has the order 10* m sec?
in external gravity waves and the order 10° m sec!
in tidal waves, and by assigning the order
10 m sec~! we exclude such motions. To put the
matter in another way: the motion of the atmo-
sphere is not determined by the initial space
distribution of the kinematie variables; it is also
necessary to assign initial time derivatives. Hence
when the order of V' is determined, we may
regard the relation
OV (17)

as the one which distinguishes the meteorologically
significant motions from all other types of atmo-
spheric motion,

The order of W can now be estimated as
follows. Writing the equation of continuity (4)
in the form

d @ )
g-t- (Ing) + o (Ing) + v (‘y (Inp) +
ou | ov b dw
55+ = V5 (O —Z, (1)

and evaluating its terms by means of (10—16),
we obtain, in the same order,

(o200 A L S O | A

et oI e S Ve ey S
Bl Bt Bt = T
The inequality sign must be added as a
possibility because éu/dr and dv/dy may tend to
compensate. It then follows as a consequence
of (17) that
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7 7
W 1; (19)
H ~8
so that the equation of continuity establishes an
upper limit for the magnitude of W.

The above relation, together with (10—13)
and (17), now permits the evaluation of the
operator d/df as applied to u, », and w. We
find that

o (20)
dt h S
and if this order of magnitude is inserted info
the hydrodynamical equations (1—3), we obtain

] 1 ép

el TS ol allr 2
N FritelVictogn o oz’ (21)
i _, 1 ap 55
it ~ e (22)
(Gfi TS 1 @p =
g W4+iV+g ~ 5.0 (23)

It then follows from (9) and (19) that the
term involving w in the z-component of the
coriolis force is at least one order smaller than
the term involving » and can therefore be ignored.
Hence by (21) and (22) we obtain

horizontal acceleration 2 w A, N (24)

horizontal coriolis foree f N i

The quantity N is the characteristic frequency,
CS-1, of the motion, and N, is equal to f, the
frequency of an horizontal inertial oscillation.
In terms of these quantities equation (24) states
that the geostrophic dewviation decreases with the
ratio of the characteristic frequency to the frequency
of a horizontal inertial oscillation.

This criterion may be used to prove that the
principle atmospheric perturbations are quasi-
geostrophic, for by substituting the values of
C, 8, and f from (9) into (24), we find
10/10° 1

) ot Sl e 25
horizontal coriolis foree ~ 104  10° (25)

horizontal acceleration

which shows that the horizontal acceleration is
one order of magnitude less than that of the
horizontal coriolis force. (Here, as well as in
other sections, an approximation is said to be
valid if the error is less than the term to be approx-
imated by at least one order of magnitude.) We
may therefore regard the geostrophic approx-
imation to be substantiated for the primary large-
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scale perturbations of the atmosphere — as mani-
fested, for example, in the isobaric patterns on
the upper level pressure maps.?

It is not strictly proper to regard the
large-seale motions as independent of the small-
scale motions, for the governing equations are
non-linear and the motions are not super-
posable. But if, as in the atmosphere, the
bulk of the energy is associated with the
large-scale systems, the small-scale motions
may be regarded as turbulent fluctuations
giving rise to small Reynold’s stresses and
heat transports which may be ignored in the
first approximation.

The following additional relationships, ob-
tained from (23), (19), and (9),
vertical coriolis force GV 104%10

" i

- i N~ 10-¢,
acceleration of gravity g 10

vertical acceleration ClWW _CH
acceleration of gravity — gS < gA&®
)2 a
 ORIDE s
10 X 10
when taken together, serve to justify the hydro-
static approximation.

The establishment of the geostrophie approxi-
mation for large-scale motions makes it possible
to ‘derive a more precise value for W than is
furnished by (19). Thus the expansion of (5)
gives

dih o8 d, 8 &
= e e o = — Posls 4 2
4 dtlez — di (In 6) 132 (In#), (26)
where
dy El b
@ o TV (27)

and », and V7, denote the horizontal components of
v and 7 respectively. Now from the geostrophie
wind equation

* A good illustration of the fact that significant
geostrophic deviations are associated only with high-
frequency, and therefore small-scale perturbations, is
provided in an article by Houghton and Austin (1946).
Figures 1, 2, and 3 of this article show that the value of 8
corresponding to the large-scale motion — determined
by the 10,000 ft pressure field — is 4 to 5 times greater
than the value of 5 corresponding to the observed field
of the geostrophic deviation.
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k
AR —=XVip 28
'l Qf ¥ { }

and the hydrostatic equation

E}j o 92

oA ge, {"9}
we obtain

T @
kxs7; (In p) ~ — TV (In p),

and therefore, with the aid of (15),

r

J
e ~ L. (30)

Furthermore, differentiation of (28) with respe:t
to z and substitution of (29) gives

k X x(Ing) ~ —%m% (Ing —%%Ef;
whence, by (13) and (15),
i¥
gH’
By differentiation of (6) with respect to s and
substitution of (30) and (31) we then obtain

o
5= (In o) ~ (31)

a - 1 _a_ F f]- :
= (In 4) = = (In p) — e (In p) ~ ol (32)
since ¢ = 1.4; and from (16)
@ fCV .
v (In 6) ~ oH
Hence, by (17) and (27),
da icv
E:‘. (In I’)‘) ~ EJ? < {33}

Iinally since by (8) & (In #)/8z ~ K[H, (26) gives

OV  10-4x 10 x 10 .

”rhf o~ X -~ ~2 5 _l‘ 4

gk 10 % 10=1 10—2 m sec—t, (34)

If we now substitute this order of magni-
tude for W into the equation

@ _ Ly R
at W dt Sy
we obtain, with the aid of (10—13) and (16)
du dv CV . fOV®

ey —m — ~z ]0O=4 -2/

P Iy T R 7 e Sk L
Since K has the order 10~ we may conclude
that the term in duv,/dt involving w is one order
of magnitude smaller than the others, i. e.,

4oy dibs

dat ot
Thus the acceleration of the horizontal wind
may be computed as if the motion were purely
horizontal.

(33)
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(28)

(29)

(30)

respe:t

(31)

& and
tain

; (32)

(33)
) gives
1. (34)

magni-

d (18)
K).

nclude
 order

(35)

wind
purely
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We also observe that the accuracy of the
approximation (35) increases with the static
stability, This condition may be attributed to
the inhibitory effect of the stability on the vertical
motion; for if the parameters S, H,C,and V
are held constant and the stability parameter K
is decreased, the isentropic surfaces, and therefore
the particle motions, become more and more
horizontal.

Application of (15),(16),(30), and (34) now gives

d d, ; d
i (In p) = v (In p) 4 w % (In p)
fCcV | fcv
" gH " gHK
~10-7 4 16~7/K ;
and it follows from (9) that the individual change

in pressure is due almost entirvely to the wvertical
motion, i.e.,

d a2 .dp . op %
= (Inp) ~ H’E{lu p), or e (36)

But here in contrast with (35) the accuracy
of the approximation diminishes with increasing
stability.

By exactly the same reasoning we obtain

do do

Eiil YW, (37)

which shows that the individual time rate of change
of density is also due almost entirely to the vertical
molion. This last relationship is often used for
the computation of vertical velocities.®
Substituting (34), (37), (13), and (15) into
(18), we obtain
ou oy fCV
— b~ ~ 10— seCL 38
ox ' oy = gHK . (38)
and contrasting this result with the relations
ou & V
dx oy 8
obtained from (10) and (11), we see that the terms
éu ox and @v/éy comprising the horizontal diver-

~ 10-5 gec? (39)

gence tend to compensate. This fact helps to
explain why different methods of computation
lead to wide diserepancies in the values obtained
for the horizontal divergence. In the first place
the magnitude of the error in the observed winds
is only one order less than that of the winds
themselves, so that the error in computing the

¢ See, for example, Panofsky (1046),
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large-scale divergence directly from wind obser-
vations will have the same order of magnitude
as the divergence itself. But what is probably
of even greater importance is that the small-scale
motions superimposed on the large-scale systems
may have greater divergences than the large-
scale motions themselves. This is because the
small-scale motions are low level phenomena which
quickly damp out with height so that H is small
in (38), and because the lapse-rate in the small-
scale systems may approach the adiabatic so
that K may also be small.

Beers (1946) remarked that the values of the
divergence computed by Fleagle (1946) are of
the order 10—% sec—?, whereas those computed by
Namias and Clapp (1946) are of the order 10-% sec™.
To explain this discrepancy one need only point
out that Fleagle's results were based on actual
wind observations from which, presumably, the
small-seale perturbations with large divergences
were not smoothed out, whereas Namias and
Clapp’s computations were based on 5-day mean
charts from which the small-scale perturbations
are surely eliminated. Moreover, in the latter
case, the divergence was computed by means
of the vorticity equation (42), an equation which
can be justified only for large-scale motions.
One is apparently forced to the conelusion that
it. is impossible to determine the wvalues of the
horizontal divergence pertaining to the large-
scale motions from instantaneous wind obser-
vations.

The approximations (29) and (35) together
with the inequality V>>=W at last enable the
Eulerian equations to be written

dyws i e = ! 7.
dt +fk X vv=——"p, (40)

0

1
ST T

L]

4 (41)

the form most often used in meteorology.

It must of course be clearly understood that
the validity of the foregoing theory of approxi-
mations depends upon the correctness of the
orders of magnitude that have been assigned to
the characteristic parameters S, H, €, V, and K.
For the most part, these values are observed to
be correct; there are, however, regions near the
tropopause in which V has the order 10* m sec™.
In such regions, the approximations are of a
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doubtful character and must be used, if at all,
with a great deal of caution. In any case, it is
advisable to test the approximations by using
the observed values of 8,H,C, V, and K. It
will then often be found that though V is large
8 is also large, and the approximations remain
valid.

2. INCORPORATION OF THE GEOSTRO-
PHIC APPROXIMATION INTO THE
EQUATIONS OF MOTION,

In spite of the fact that the geostrophic
approximation is successfully applied in synoptic
practice, it has never been incorporated into the
equations of motion in an acceptable manner.
The difficulty can in part be attributed to the
fact that the outright use of the geostrophic ap-
proximation destroys the possibility of accounting
for changes in the motion. To neglect the
acceleration terms entirely in the Rulerian
equations is to throw out the baby with the
bath; if the motion is geostrophic and hydro-
statio the acceleration is zero, and the motion
will not change.

There have been a number of attempts
— notably by Hesselberg (1915), Brunt and
Douglas (1928), and Phillips (1939) — to over-
come this difficulty by a method which consists
essentially in the formal inversion of the operator
dy/dt 4 fle > in the horizontal Bulerian equations

(d, 1
[f}f_ +fke % ) Py = - T Vap
One obtains an expression for p, in the form
of an infinite series of iterated individual deriva-
tives of the horizontal pressure force. But in
addition to the fact that this series has not been
shown to converge, it is doubtful whether the
terms retained in practice provide an acceptable
approximation to the wind. Tn the case of the
Brunt-Douglas isallobaric approximation, Haur-
witz (1946) has shown that they do not: and
though it seems possible that the inclusion of
more terms would yield a better approximation,
there is evidently a need for a more justifiable
approach to the whole problem.

CHAPTER 14

The failure of the geostrophic approximation
as a means of calculating changes in the motion
is traceable to the fact that it fails to provide a
valid approximation to the horizontal divergence,
We have seen from (38) and (39) that the two
terms &u/ox and av/ay comprising the horizontal
divergence are individually one order greater in
magnitude than their sum. If these terms.were
approximated, as by the geostrophic wind, with
an error less by only one order of magnitude
than the terms themselves, the error would have
as great an order of magnitude as the horizontal
divergence itself.* On the other hand, an appli-
cation of the scale theory of approximations
shows that the horizontal wind vy may be replaced
by the geostrophic wind

= ;c.'('\_‘ /]
v"'_r_lf' VAT

in all .other terms oceuring in the equations of
motion. These circumstances suggest that the
way to incorporate the geostrophic approxima-
tion is to eliminate v7,- v, from the equations of
motion and then introduce the geostrophic
approximation p, = p,. Now the horizontal di-
vergence oceurs implicitly in the horizontal
Eulerian equations as well as explicitly in the
equation of continuity. This may be shown by
deriving the equation for the vertical component
of vorticity . Thus by taking the horizontal cur|
of (40) we obtain

: W
FE+C+) Vi vs=—k-| | X Vap,

which now contains ;- p, in explicit form. Since
the geostrophic approximation is valid for all
terms except \7,:w;, the elimination of Av/e)
from (4) and (42) will yield an equation in which
the geostrophic approximation may be consi-
stently introduced; and this equation, together
with the adiabatic equation (3), the hydrostatic
equation (29), and the geostrophic equations (28),
will constitute a dynamically consistent set of
equations which may be used to study the large-
scale motion of the atmosphere. However, in-
stead of proceding with the direct elimination

® The fact that owing to the coordinate Approxi
mation used the horizontal divergence here used is in
error by an amount (v/9) tan @, with i the radius of the
carth, does not effect the reasoning; for this term has

also the order of the horizontal divergence (10- Bec-1),
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IN THE SCALE OF ATMOSPHERIC MOTIONS

it will be more convenient to derive an equivalent
system of equations by a method which has the
additional advantage of furnishing a greater
insight into their physical significance. For this
purpose we derive a theorem whose approxi-
mate form was first given by Rossby (1940).
We consider two isentropic surfaces in-
finitesimally close together and characterized by
the values 0 and 6 - 80 of the potential tempe-
nture. A cylinder with sides perpendicular to
these surfaces and with infinitesimal cross-section
guts them in the congruent closed curves de
enclosing the infinitesimal areas 4. If we denote
the vertical distance between the surfaces by dn,
then 0Adn is the volume and pdddn the mass
enclosed by the part of the cylinder contained
within the isentropic surfaces. The law of con-
gervation of mass requires that gé4 én be constant
during the motion. Now the circulation theorem
of V. Bjerknes states that the time rate of change
of absolute circulation around de¢ is equal to the
number of pressure-volume solenoids enclosed by
the curve, which in this case is zero because the
curve is always contained in an isentropiec surface.
But the cireulation around an infinitesimal curve
is equal to the area enclosed by the curve times
the absolute vorticity component perpendicular to
the plane of the curve—in the present case
to gg84, where g, is the absolute vorticity compo-
nent perpendicular to the isentropie surface.
Hence ¢,04 is constant, and since we have
established that pdAddn is constant, we may con-
clude that gg/pdn is also constant. Since, moreover,
0l = (80/06n) én is constant for isentropic motion,
we finally obtain that (60/0n) (gg/0) is a conser-
vative quantity, or, in differential form, that
d (98 qa

Efﬂ ?, = 0. (43)

It is noteworthy that the only assumptions made
in deriving the above equation of conservation
are that the motion is isentropic and frictionless.

Since (43) does not contain the horizontal
divergence, it may be used together with (5), (28)
and (29) in place of the system consisting of the
equation obtained by elimination of Ay:ws be-
tween (4) and (42) together with (5), (28), and (29)

Before proceding further we shall derive a
simplification of (43). Writing

: |

: (g

tel] ')2_ e\ (@A {

o) = lez) Ty
and utilizing (8), (9), and (32), we have
(128\* [12@a8\® f2V2
(72 ~ o3| ~Fm
[1 a8\ K?
|..-Hw az] e
which show that &0/on may be replaced by &f/z.
We may therefore write
4109 g
dt \2z o

in place of (43); or, in view of the hydrostatic

| \ez)

~ 10-18 3p—2;
(44)
~ 10-10m=—2;

H| =0 (45)

relationship (29),

(g6): __ (90)0o : (46)

(dp),  (dp)q
where dp is the difference in pressure, measured
along a vertical, between the two isentropic sur-
faces with potential temperatures 0 and 6 4- 60
respectively, and the quantities (6p),, (¢s)e, and
{cip).'{q,,), refer to the values of dp and ggat two
different positions of a moving particle. If we
choose a standard value for (dp),, then (gg) is
constant for the motion, and shall call it the ab-
solute potential vorticity to conform to the
terminology introduced by Rossby (1940).

Equations (5) and (45), together with the
stipulation that o, and v, are to be evaluated in
terms of p by means of (6), (28) and (29), are the
mathematical expressions of the following physical
principle: the motion of large-scale atmospheric
disturbances is governed by the laws of conservation
of potential temperature® and absolute potential
vorticity, and by the conditions that the horizontal
velocity be quasi-geostrophic and the pressure quasi-
hydrostatic.

For purposes of numerical integration it is
necessary to eliminate not only the horizontal
divergence from the equations of motion — as
has been done — but also the vertical velocity
component, for the later quantity likewise can
not be evaluated with the necessary accuracy

* It is evident that the potential temperature in
equations (5) and (45) may be replaced by any other
conservative quantity. In practical applications it may
he |1:>efo.1-a.h]o to use the wet-bulb pn‘belll.inl temperature,
for this quantity is conserved in both dry and saturated
adiabatic processes, To do this would of course neces-
sitate a knowledge of the water vapor distribution in
the atmosphere.
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from the available data. To eliminate w a further
simplification of (45) is required. If p, denotes
the absolute velocity, we may write

ge = (V Xva-70)/(0/on)

a6 o6 ofl Gl an aﬂ
Geelo + 5l + Gl
ox .Em ay' en ‘oz cn

I

where ¢,, q,, and g, denote respectively the z, y,
and z components of absolute vorticity. By (9—13)
and (34) we have

am av

= — ~ IO -3 »'ec_l‘
Iy c’)J oz . 4
du ow
Iy =S + 2 Qcosp ~ 10~ gec™;
o
= i +: O sing ~ 10-4 sec1;
ox

and taking these magnitudes together with those
of (44) we see that g, may be replaced by g,
with a negligible error. Hence (45) may finally
be written

d (20 ¢ +f] (47)

dt | ez o

Now if the individual derivatives in (5) and (47)
are expanded, we may eliminate w to obtain

:\Ek lf]
oz ¢

aﬂ dl" —
zdi\z o

dil oz

rn -1f) d,f @ b, (48)

which, when p and p; are expressed in terms of p
by means of (28) and (29), is alone sufficient to
determine the motion.

Since (48) involves only p as dependent
variable, and is moreover of the first order in ¢,
its integration requires only a knowledge of the
initial pressure distribution. This cireumstance
makes (48) particularly well-adapted for numerical
forecasting. Indeed, some such equation or system
of equations is necessary; it is quite illusory
to suppose that the primitive equations (1—5)
can be used for numerical forecasting for the
reason that mneither the horizontal acceleration

nor the horizontal divergence pertaining to
the large-scale motion can be evaluated from
the observed data.

The evaluation of  in equation (48) is facili-
tated by the following approximation.
the horizontal curl of (28) we obtain

Taking

CHAPTER 14
rodl [k Va'p
(=R va.xka—fxvm} o]
_Vip Ve 14/ 10p

of e fayefoy
Now from (9—11), (28), and (31), we have

Vip e fI

oH ~ 1077 geg1,

of o
1df[1 ép u )QCUSQ? v

ey e ) ~ i~ 108 ~1
fdy |{_)f EyJ 280sinp N bl 0% et

£~ 10-% gge—1

where R is the radius of the earth. Tt is then
seen that the last two terms in the expression
for £ can be ignored in comparison with the
first, so that we have

a2 ViEp . _l. |._L éﬁ (49)
© T of  oflext’ 3.*;"} ' '

This expression for { has an advantage for
numerical caleulation over those in which { is
expressed in terms of the wind field, for the
operations of calculating wind components are
eliminated. Thus if » denotes a small space in-
crement, we may write simply

(= ﬁ:yf (F—p) (0)

where j is the mean of the pressure values af
the points (z -+ k, ¥), (x—h, ¥), (@, + h), and
(x, y —h).

A single equation analogous to (48) for the
case of barotropic motion cannot be derived by
specialization of (48) because of indeterminacies
that arise. It is necessary to return to the
basic equations. Since o is a function of p in
a barotropic atmosphere, and since p, is nearly
independent of height, it follows that (40) is
almost exact and that (42) may be written

BN+ CHNVm=0. @)

If further the equation of continuity (4) is
written

d 2
= — eV vi— o (ow) (82)

and integrated from the ground to the top of
the atmosphere, we obtain, when the ground is
assumed level,
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d
ldfi“ = — Py Vi 0s. (53)

Here use is made of the facts that p, isindependent

of height and ¢w vanishes at the ground and at

the top of the atmosphere. The quantity p,
denotes the pressure at the ground. Elimination
of y-wy between (51) and (53) then gives

dy s.-ij

di Po o (54)

This equation suffices to determine the motion
providing we add the condition of geostrophic
balance,

v Po VT e
U=k>(J—"—ka--, il
: oof 7 i
where g, is the surface density and @ the baro-
P
5
tropic pressure function f'ﬁ’ It follows from
Yo
(55) that py. 7y = 0, so that we have
{tfen '
= 56
(“(s—l-f} RT, " (56)
where T, is the ground temperature.

The linearized form of (48) for small per-
turbations in a barcclinic zonal current 7 (2)
with constant lapse rate is found, with the aid
of (49), to be

d . &p |, &Pp\ & ;i a-p""

S el e et L)
) df d* v 1 da) cp S o
+(f='aJ hEaE T

where primes denote perturbations, bars denote
undisturbed values, and

’b-___H:(?_z:ﬂ’._'(Jld_T}’
H =RI1,

g

205 1
B e T B

The quantity », is the frequenc¢ of a buoyancy
oscillation and H is the height of a homogeneous
atmosphere with surface temperature 7.

In case the motion is independent of the
y-coordinate, a somewhat simpler form of (57a)
can be obtained by changing the dependent
variable from p to v. By differentiation of (57a)
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with respect to 2 and use of the geostrophic
relationship é‘p"'az = gfv’, we obtain
o' 1 év"
atllfz od " o2 H oz (67b)
’LLILE‘U d"-'r | du) &' .
fidy dz® ' H dz! 9% T 8
where it is assumed that f and df/dy are to be
replaced by suitable mean values.
In a similar manner the linearized form of
(56) for a constant zonal current is found to be
\6 : o\ [*x!  &a’\  dfés’ [ o

d 7
o T

1 du\ év'

a " Ve (af T ap) Tayer gHy ol (56,
or, when l-he motion is independent of y, in
terms of o,
_ L% _ 6. (s8b)
gH, &l

In the next section it will be demonstrated
by applying (57b) and (58b), the linearized forms
f (48) and (56), that the simplified equations
(48) and (56) act as filters to eliminate the
meteorologically insignificant wave components
from the equations for baroclinic and barotropic
wave motion,

1—4

8] &' df &'

ox) 8x® ' dyér

3. APPLICATION OF THE SIMPLIFIED
EQUATIONS TO WAVE MOTION,

Let us first consider the case of wave motion
in a constant barotropic zonal current. This
problem has previously been treated by Rossby
(1939) and by Holmboe (1945),
equation is found to be

The frequency

: s ¢
e W gH,— (@ —c)?’ (89)
when the motion is assumed to be quasi-hydro-
static and the velocity independent of the
y-coordinate. Here u is the mean zonal wind,
¢ the wave-velocity, T, the mean surface temp-
erature, and g and %, are defined by

2%
M= __L")
- il i
* L tdy’

where L is the wave length, and it is understood
that f and df/dy denote mean values.
In the derivation of (59) it is specified only
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that the waves be simple-harmonic vibrations
traveling in the a-direction. The solution of (59)
must therefore yield the velocity of the quasi-
hydrostatic gravitational waves as well as the
velocity of the meteorologically important in-
ertially-propagated long waves first studied by
Bjerknes (1937) and Rossby (1939).7 And indeed
it can be shown that two of the roots of (59)
are closely approximated by those of
(& — c)* = gH,, (61)
the equation for the velocity of gravitational
waves in a barotropic current on a non-rota-
ting earth, and the third by that of
2

@—c—u, =;£-§(}E c,
an equation derived from (59) by use of the
inequality

(62)

(e —c)?
gH,
stating that the relative velocity of the long
inertially propagated wave is small compared to
the gravitational wave velocity. Since the latter
is equal to (RT,)! and therefore has the same
order as (e RT,)}, the velocity of sound, the

apptoximation is surely justified.

Now it may be inferred from the fact that f
does not appear in (61) that the rotation of the
earth exerts virtually no influence on the propaga-
tion of external gravitational waves and conse-
quently that the gravitational wave motion is
non-geostrophic. Then, since (58 b) is designed to
govern only the large-scale quasi-geostraphic
motions, we should expect it to filter out the non-
geostrophic gravitational wave components from
(59) and reduce directly to (62). That it does so
can be seen by introducing the wave expression

v’ = Veiulz—et)

into (58 b); we obtain

1>> (63)

: 3
— it (@—e) V 4 iu g{; V4 ’i_ua%;cV =0}

or

2

U—0C —U = :I;ZQ_HU c,
which is identical to (62).

A more general verification of the effective-
ness of the simplified equations for excluding

? Sound waves are excluded by the hydrostatic
assumption.
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meteorological “noise” is obtained by applying (48)
to wave motion in a baroclinic zonal current. It
was shown in DLW (pg. 147, eq. 58) that the
motion of small amplitude waves of infinite lateral
extent is governed by the equa.tion

a L -

1da .
txat s % (o4
where V is the amplitude of the v’-wave, ie,
=V (2) gin(a—et) (ﬁﬁ}

Equation (64) was obtained by a systematic use
of the inequality
» - |
- [/

where N; is the frequency of an horizontal
inertial oscillation, and » the frequency of the
long wave. This inequality has the effect of
eliminating gravitational waves and indeed all
waves whose frequency is of a higher order of
magnitude than that of an horizontal inertial
oscillation. But these are precisely the waves that
are excluded by the geostrophic approximation
(cf. equation (24)). We should therefore expect (64)
to follow directly from (48). That it does so is
seen by substituting (65) into (57 b), the linearized
form of (48); it is found that the resulting equation
reduces exactly to (64).

2mne

1>>(Lu"

4. THE PROGNOSTIC USE OF THE
TENDENCY EQUATION.

If the equation of continuity in the form (52)
is integrated with respect to z from 0 to @, we
obtain the so-called tendency equation

=0}
f?o 0})0 . __gf\—;‘h-;_;w, dz, (66)

(1]
where, as before, p, is the pressure at the ground,
which is assumed to be level. Equation (37),
combined with the equation of continuity, implies
that dg/ét is lower in order of magnitude than
Va* 0¥, whereas (66) states that the z-integrals
of these quantities are equal. It must follow,
therefore, that the magnitude of the integral on
the right of (66) is at least one order smaller than
the magnitude of either its positive or negative

ON THE SCALI

parts, i.e., the
ence between t}
horizontal mas
zontal mass di
quantities can |
curacy from wi
sec. 1), we mus
in its primitive
a more suitabl

Since @p,fét
the individual t
begin by settin

J
a
This equation i
stent since it s
zero, but it can
long as it is not i
pressure change
zontal mass di
extending from
atmosphere is a
horizontal mass
be transformed
following manne
of approximatio
term in (42) has f
whereas the le
10~ sec2, Alsoi
to give
Vs ov,

it is found that
one order of ma,
term. Hence we

di
Pl —In (

and (67) in the fc

f.

Then, by combini

fm-‘f_ In (¢ +f)

[

which states that
logarithmic deriv
vorticity compon




'HAPTER 14

pplying (48)
current. It
8) that the
inite lateral

e — uc) I"+

(64)

-wave, i.e.,
(65)

tematic use

horizontal
ney of the
s effect of
indeed all
or order of
tal inertial
waves that
roximation
expect (64)
does so is
e linearized
1g equation

F THE

e form (52)
| to o, WO
1

2, (66)

he ground,
ation (37),
ty, implies
tude than
z-integrals
ust follow,
ntegral on
naller than
r negative

ON THE SCALE OF ATMOSPHERIC MOTIONS

parts, i.e., the pressure tendency is a small differ-
ence between the two large quantities — the total
horizontal mass convergence and the total hori-
zontal mass divergence. Since neither of these
quantities can be evaluated with the necessary ac-
curacy from wind observations (see last part of
sec. 1), we must abandon the idea of using (66)
in its primitive form as a prognostic tool and seek
& more suitable reformulation.

Since 2pyfot will always be small compared to
the individual terms on the right of (66), we shall
begin by setting it equal to zero, we obtain

[+ 2]

J'U,\-gw_ dz=0. (67)

o
This equation is of course dynamically inconsi-
stent since it states that the pressure change is
zero, but it can be used as an approximation as
long as it is not intended as a means for calculating
pressure changes. It states that the total hori-
zontal mass divergence in a vertical column
extending from the ground to the top of the
atmosphere is approximately balanced by the
horizontal mass convergence. Equation (67) can
be transformed into a more useful form in the
following manner. By applying the scale theory
of approximations we find that the right-hand
term in (42) has the order of magnitude 10~ sec—2,
whereas the left-hand terms have the order
10719 sec—2, Also if the integrand in (67) is expanded
to give

Ve ovn=p0Vavs+uvn Vio,

it is found that the density advection term is
one order of magnitude less than the divergence
term. Hence we may write (42) in the form

ds 2 o

Eff_]n ('-. Ilf) == N7k Uns
and (67) in the form

o
J OV oz = 0.
]

Then, by combining the two equations, we obtain

o [}
dy 4 N s e S
fgmlﬂ (.. -i—f} 6.._—-3— —tﬁln{,T }l]p—“ ([lh)
[ Pa

which states that the mean value of the individual
logarithmic derivative of the absolute vertical
vorticity component, averaged with respect to
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pressure from the bottom to the top of the atmo-
sphere, is zero.

The last equation derives its nusefulness from
the fact that it may be used to determine the
speed of propagation of a system of streamlines
from an empirical knowledge of the geometrical
shape of the streamline pattern alone. Thus by
supposing, to a first approximation, that the
gystem is moving with a constant speed ¢ in the
fixed direction specified by the unit vector n,
we have

o

=—cn- Vi,

CYPY

and if this relation is substituted into (68), we
obtain

v W (& -i-,_f)

'-vn-‘?u: T
= L “|op=0,
f B S
Pa
or
a
o D), |
j Cl Jr l'p‘,
c=R— (69)
AR L

¥o

The velocity ¢ may be evaluated by numerical
integration from observed streamline patterns or
by integration of a suitable idealized model of
the observed patterns,

The utility of (69) may be illustrated by
using it to determine the velocity of both infinite-
simal and finite amplitude lox-lg waves. In the
:ase of long waves of infinite lateral extent in a
barotropic zonal current, the horizontal velocity
field is independent of height, and substitution
of v = V exp i u (x— ct) into (69) gives, by the
method of small perturbations,

t—c—u.=0, (70)

which is the same as (62) except for the absence
of the small right-hand term. This term is the
contribution of ép/ét in the tendency equation,
and it can be verified that it is smaller in order
of magnitude than the left-hand terms.

Again, if the amplitude factor ¥ in (65) is
assumed to be a function of z, substitution into
(69) yields the following formula for the veloeity
of baroclinic waves of infinite lateral extent
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moving in the z-direction and imbedded in a
variable zonal current % (z):

0
J'ﬂl’d‘ij

¢ =t —u,. (71)

()

[Vop

o
This equation is mnot the complete solution
to the equations of motion because V is undeter-
mined (an expression for V is derived in DLW
under the assumption that % is a linear function
of z). However the equation is well-adapted for
numerical integration from the observed distri-
butions of V' and u (see also DLW, pp. 146—147).
If the phase of the wave changes with height,
V and ¢ are complex numbers and the wave is
damped or unstable.

The velocity of waves of finite lateral extent

can be found in the same way. Assuming

2mi
Al 2
f— ~y . e o=
u=1M%f(—2n D e CDSDy.
(72)
s BE 75 2x
U= 2a—g—¢ sin— ¥,
and substituting in (69) and (67), we obtain
a o
e B B
_‘_f[a"' + F)Hﬁp fﬁ Jdp
c= ’-3-5'-—9—— - . _1‘_-!0 3 — U, (73)
[A ,B\.}.__ (A IB'J.
A+Zly  [Gtl)o
j"o -3-10
and
0
[(A—B)sp=0. (74)

[t

Pa
The streamlines corresponding to (72) are repre-
sented in fig. 1 by dashed lines.
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If the atmosphere is barotropie, 4 and B are
independent of z, and (73) together with (74)
reduces fo

D2
L= DA

c=i—

which is identical to the original equation derived
by Haurwitz (1940).

If the restriction that 4 and B be small is
removed, ¥ and v in (72) may be taken as the
velocity components of a wave of finite amplitude.
We make use of the fact that f>>{, which
follows from (9) and (39). It is then found that
(72) always satisfies (67) and (68) providing
(a) ¢ is given by (73), (b) L = D, and (¢) 4 and B
satisfy (74). By a proper choice of 4 and B, subject
to restriction (e), the streamlines can be made
to approximate the typical structure of a young
cyclone wave with closed streamlines at low
levels and open streamlines aloft. An example
of the type of pattern that can be obtained is
shown in fig. 1. The dashed curves represent the
high level streamlines, and the solid curves the
low level streamlines. The change in phase of
the streamline pattern with height is obtained by
assigning complex values to 4, B, and s.
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