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ABSTRACT

The dynamical properties of potential temperature anomalies on the tropopause are analyzed for quasigeo-
strophic flow on an fplane. The potential vorticity is taken to be piecewise constant, with a single discontinuity
at the tropopause. The tropopause potential temperature, on scales too small to feel the lower boundary, is found
to be proportional to the tropopause geopotential height. The constant of proportionality is the geometric mean
of the stratospheric and tropospheric lapse rates. Results from a general circulation model are found to be in
agreement with this prediction.

The streamfunction associated with a combination of anomalies on the lower boundary and tropopause is also
derived. The solution, determined completely by the potential temperature distributions, in general has a nonzero
velocity at the lower boundary. Applying the theory to the time-mean zonal-mean jets, which must have a near-
zero velocity at the ground, imposes a constraint on parameters defining the jet.

The dynamical properties of the system are further elucidated using the scaling argument previously applied
by Charney to geostrophic turbulence. Chamey’s assumption of vertical homogeneity is replaced by the as-
sumption that the dynamics is concentrated around the tropopause. In the nonlinear cascade to small scales the
Rossby number is predicted to increase with horizontal wavenumber, leading to an eventual breakdown of
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geostrophic balance.

1. Introduction

Much of the dynamics of the troposphere is influ-
enced by movement of the tropopause. This surface
divides the well-mixed troposphere (low static stabil-
ity, weak potential vorticity) from the stratosphere
(high static stability, strong potential vorticity ). In this
paper the dynamics of the tropopause are examined for
an idealized situation in which the potential vorticity is
uniform in both the stratosphere and troposphere.

Potential vorticity and related concepts provide a
useful means of decomposing and visualizing extra-
tropical atmospheric flows (Hoskins et al. 1985). In
quasigeostrophic theory the inversion operator relating
velocity and height fields to the potential vorticity is
linear. It follows that the flow contribution from dif-
ferent potential vorticity anomalies can be superim-
posed linearly to build up the total flow. This concept
is used here to separate the flow associated with tro-
pospheric and tropopause potential vorticity anomalies
from that due to stratospheric anomalies. The piecewise
constant form of the three-dimensional potential vor-
ticity distribution considered here is conveniently rep-
resented in terms of the vertical displacement of the
surface of discontinuity (the tropopause). The three-

Corresponding author address: Dr. Martin Juckes, Meteorolo-
gisches Institut der Universitdt Miinchen, Theresienstrasse 37, Miin-
chen 80333, Germany.

© 1994 American Meteorolasical Societv

dimensional flow is thus specified by a two-dimen-
sional field.

The restriction to quasigeostrophic flow excludes sit-
uations of great interest, such as tropopause folding.
The results nevertheless give interesting insight into
synoptic-scale dynamics.

Most work on the Eady model of baroclinic insta-
bility has used a rigid lid. This is equivalent to taking
infinite static stability in the stratosphere. Previous
work with finite stratospheric static stability has given
analytic results only for linearized equations (e.g.,
Eady 1949; Pedlosky 1977; Gamer et al. 1992). Rivest
et al. (1992) analyze the properties of Eady baroclinic
instability with a finite static stability in the strato-
sphere. Their normal modes have a structure consistent
with that derived below for general tropopause poten-
tial temperature distributions. The derivation given be-
low generalizes this aspect of their work by removing
the dependence on linearization about an initial state.

A distinct issue, but closely related, concerns the ex-
tent to which a given velocity field can be attributed to
the potential vorticity as opposed to the boundary con-
ditions and variations in the background medium, such
as variations in the static stability (Thorpe and Bishop
1993, personal communication).

The inversion calculations below are linear: this is
because the nonlinearity of the equations does not enter
into the inversion of the quasigeostrophic potential vor-
ticity. No nonlinear terms have been neglected beyond
the approximations made in the formulation of the qua-
sigeostrophic equations. The restrictions on disturbance
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amplitudes necessary for linear time-dependent solu-
tions are not needed here.

It is shown below that the dynamics of temperature
anomalies on the tropopause is precisely equivalent to
the dynamics of temperature anomalies on a solid sur-
face, differing only by a rescaling of the timescale of
the evolution by a factor that depends on the change in
static stability across the tropopause. The properties of
turbulence in such a system have been analyzed by Blu-
men (1978) and Hoyer and Sadourny (1982). Section
7 discusses their results and gives a simplified deriva-
tion of the spectral slope based on scale analysis.

2. Some preliminary GCM results

This work is to some extent motivated by the struc-
ture of the midlatitude troposphere in the U.K. Univer-
sitiecs Global Atmospheric Modelling Project GCM
(UGCM). This model is derived from a 1986 version
of the European Centre for Medium-Range Weather
Forecasts (ECMWF) forecast model; more details are
given in Juckes et al. (1994). The model version used
here includes a corrected radiation code (Li 1992) that
reduces the noise in the temperature profiles and the
consequent blurring of the tropopause that afflicted ear-
lier experiments.

The tropopause can be defined either as a disconti-
nuity in lapse rate or, following Reed (1955), as a dis-
continuity in potential vorticity (PV). In the idealized
quasigeostrophic model discussed below the two defi-
nitions are equivalent. In the diagnostics of the numer-
ical model the potential vorticity definition has been
used. This definition is more closely linked with the
theoretical ideas developed here. Previous observa-
tional work (e.g., Danielsen 1968) has suggested that
the PV tropopause evolves more smoothly in time than
that defined by the lapse rate. Hence, the former acts
as a better indicator of the dynamical structure. In the
GCM discussed here the lapse rate tropopause showed
considerably more noise than the PV tropopause, but
this may be in large part due to the use of a diagnostic
algorithm that constrained the lapse rate tropopause to
lie at one of the discrete model levels.

Figures 1 and 2 show longitude—pressure sections
through the model. The shaded PV values mark the
tropopause, separating regions with distinct PV char-
acteristics (note that the contouring interval has been
increased in the stratosphere to avoid saturation of the
plot). In the stratosphere PV increases monotonically
with height such that the isopleths form quasi-horizon-
tal surfaces. In the troposphere, in contrast, the contours
show a more complicated structure.

In both figures the tropopause has large vertical dis-
placements associated with synoptic weather systems.
The PV anomalies in the interior of the troposphere are
weak compared with those associated with this dis-
placement. This has the consequence that the dominant
wind anomalies are those associated with the larger dis-
placements of the tropopause. The dominance of the
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boundaries is further illustrated by the fact that none of
the wind profiles shown has a maximum in the interior
of the troposphere. The wind speed either increases
monotonically from the lower boundary or has a min-
imum in the troposphere. It should be noted that if
smaller scales were to be realistically represented these
comments would probably not hold. Nevertheless, if
we restrict attention to scales resolved by the model we
can say that on those scales the wind field is consistent
with PV anomalies concentrated at the boundaries of
the troposphere. Note also in Figs. 1a and 2a that there
is a strong negative correlation between the tropopause
height and the height of upper-tropospheric potential
temperature surfaces (heavy contours). This correla-
tion is another illustration of the importance of the tro-
popause displacement.

3. The streamfunction associated with a tropopause
temperature anomaly

It is natural to consider the tropopause as a material
surface. This requires a slightly different approach to
that used in standard quasigeostrophic theory. That the-
ory linearizes the vertical advection of potential tem-
perature (), so that

06 96,

> oz
This approximation is not strictly valid when the gra-
dient of 6, is discontinuous because the neglected ver-
tical gradient of perturbation potential temperature is
in this case infinite. An alternative is to follow the ver-
tical displacement (6z) of the tropopause explicitly.
The approximation equivalent to Eq. (3.1) is then to
linearize the equations with respect to 6z. It is necessary
to assume that §z is much smaller than the height scale
of the flow: this is not a new restriction; it is equivalent
to assuming small Rossby number [see scale analysis
below Eq. (3.9)].

We take the tropopause to be a surface dividing two
regions, the stratosphere and troposphere, with Brunt—
Viisdld frequencies N; and N,. The potential vorticity
is taken to be uniform in each region. The problem to
be considered here is as follows: Given the potential
temperature distribution on the tropopause, 8,,(x, y),
what is the associated geostrophic streamfunction and
vertical displacement of the tropopause?

We will use the quasigeostrophic equations within
each region and treat the tropopause as a material sur-
face.

Since the potential vorticity is uniform in each re-
gion, the perturbation potential vorticity is zero. This
gives

(3.1)

24,08, 0 (1) o

x> " Ay* 9z \N? oz
in the stratosphere and a similar equation for the tro-
posphere obtained by replacing N, with N,.
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FIG. 1. Longitude—pressure sections from the UGCM at 60°N during December of a seasonal cycle
experiment. (a) Ertel’s potential vorticity (PV ), shaded between 2 and 4, contour interval 0.2 (PV
< 4)and 4 (PV > 4), where PV is in units of 107® K m? kg ™' s~'. The two heavy contours show
potential temperature of 285 and 300 K. (b) Potential temperature, contour interval 5 (below 350 K)
and 50 (above 350 K). Wind barbs are shown for the horizontal wind, each flight corresponding to
5 m s™'. The shading is the same as in (a).

In this section we neglect the lower boundary. This Yy—0 as z— (3.3)
produces a simple result that is in remarkably good
agreement with the behavior of the tropopause in a de- [as used by Rivest et al. (1992) in their analyses of
tailed numerical simulation (section 4). The boundary linear Rossby waves on the tropopause] and ¢, 6 con-
conditions used in this section are tinuous at the tropopause. The calculation including the



1 OcToBER 1994 JUCKES 2759
Longitude
0 50 100 150 200 250 300 350

Pressure (mb)

A@
1000 Q%Q/\ ~ /\

=g

rrrrrygprrrrror~—rr1rr1rrrror1Trorrrr1t

Longitude

0 50

N

50

Con)
£
é 500
Qo
o]
=
w0
0
Qv
bt
A ]
W N =

 BERLAREL L B B M B |

Ty irrrrJyyrrrrJyrrrrryrrrrroerrrTrr7

FiG. 2. As in Fig. 1 except at 50°S and the sign of potential vorticity is reversed.

lower boundary is given in section 5. The tropopause
is displaced in the vertical by a distance 6z from its
undisturbed position at z = 0. The condition on 4 here
appears to be at odds with the usual condition that the
vertical velocity (w) should be continuous. Continuity
of w implies that ' is discontinuous. The two ap-
proaches are consistent when allowance is made for the
vertical displacement of the tropopause, as will be
shown below.

Initially we consider a sinusoidal temperature per-
turbation

6, =8,(ke**, (3.4)

where k is a horizontal wave vector, X = (x, y) the hor-
izontal position, and 8, is the potential temperature of the
tropopause. The prime here and throughout the paper de-
notes a departure from a globally uniform basic state at
rest. The perturbation includes any zonal-mean flow.
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The boundary conditions at z = *o together with
continuity of ¢ then imply solutions of the form

— (kN f Y2+ik-X
{Ae sf)kikex

Ae(kN,/f)z+ik~x’ 7 < O,

z>0,

= (3.5)

where k = |k| and A is a constant to be determined.
It is convenient to rescale ¢ by defining

Ooof
l//T — ZooJ ¢,
4
The potential temperature perturbation is given by
oyt
0 =—"—. .
% (3.6)

Equations (3.5)—(6) then imply a relation between
the potential temperature perturbation in the strato-
sphere [, = 6'(0,)] and troposphere [0, = 6'(0_)]:

N8, =—-N;0,. (3.7)

The potential temperature anomalies in (3.7) show
a change of sign across the tropopause. The total po-
tential temperature, on the other hand, must remain
continuous. These two properties are reconciled
through the vertical displacement of the tropopause. At
the displaced tropopause level there is a discontinuity
between the basic-state profiles of the stratosphere and
troposphere. These basic-state profiles are defined to
have constant lapse rates and intersect at z = 0. Thus,
00s(z) = Oop + I';z and 6y,(z) = by, + I,z in the strato-
sphere and troposphere, respectively, where

o _ b
dz g

N2

is the lapse rate. Hence, when the tropopause is dis-
placed vertically the anomaly with respect to the tro-
pospheric profile is no longer the same as that with
respect to the stratospheric profile. The anomaly 6,

with respect to the potential temperature at the undis- -

turbed position of the tropopause [y, = 60,(0)
= 6,(0)] is related to the tropospheric and strato-
spheric perturbations as follows:

91’ = 91;; - 6zrh
0, =8, — 6. (3.8)

Since I';, > T, > 0 it follows that when &z is positive
the stratospheric potential temperature anomaly 8, is
less than the corresponding tropospheric anomaly 6, .
Combining Egs. (3.7) and (3.8) to eliminate 6, and
8, gives

!
28

JIT,

This equation has been derived for a single wave-
number k, but because k does not appear in Eq. (3.9)
the result can trivially be summed over all wavenum-

6z =

(3.9)
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bers and applied to an arbitrary temperature distribu-
tion.

The relationships between 6/, 8, 8/, and 6z are
illustrated schematically in Fig. 3. The figure shows the
undisturbed profile 6, (solid line) and a disturbed pro-
file (dashed line). The dashed line is formed by adding
anomalies that decay exponentially away from the tro-
popause and displacing the profile vertically. In this
theory 6z(30'/9z) is neglected [cf. neglect of w(90'/
0z) in standard quasigeostrophic theory], so the per-
turbation temperatures can be evaluated at z = 0 or at
z = 6z. Simple scale analysis, assuming that the hori-
zontal and vertical scales of the disturbance (L, and L,,
respectively) are related by L,/L, = f/N and that the
temperature and velocity perturbations scale in accor-
dance with the gradient wind relation, yields éz/L,
= O(U/fL,), where U is the velocity scale. This means
that the linearization with respect to 6z is valid when-
ever quasigeostrophic theory is valid. In the figure, 6z
has been exaggerated to illustrate the exponential na-
ture of the disturbed profiles.

Using (3.5), (3.6), (3.8), and (3.9) we can derive
the amplitude of the streamfunction

_ 9rpg(Ns - Nl)

= .10
A 8ok NN, (3.10)

The relationships expressed in Egs. (3.9) and (3.10)
are found in the edgewave solutions calculated by Ri-
vest et al. (1992) for linear disturbances on the tropo-
pause [there is, however, a minor error in the relevant
equation, bottom of p. 2113, of their paper: their pre-
vious equations imply, as here, 6z = Ak/(N, — N,).
This error does not affect the conclusions of their pa-
per]. Unlike their calculation the present result, though
more limited in other respects, does not rely on linear-
ization of the quasigeostrophic equations.
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FIG. 3. Schematic plot of potential temperature against height il-
lustrating the displacement of the profile, which accompanies a po-
tential temperature anomaly at the tropopause. Plotted are the undis-
turbed profile (solid) and the perturbed profile (short dashes). See
text for discussion.
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Following Bretherton (1966), the potential temper-
ature distribution can be expressed as an equivalent po-
tential vorticity distribution,

NI - N?\ g6,
q——f( NN ) b 6(z).

(3.11)

Equation (3.11) can be used to estimate the strength
of tropopause € anomalies relative to tropospheric PV
anomalies. The typical magnitude of 8, in the UGCM
is 10 K, slightly larger in the Southern Hemisphere
(Fig. 2) than in the Northern Hemisphere (Fig. 1).
Taking N2=4N? =4 X 107*s™%, g = 10m s, and
8y = 300 K in Eq. (3.11) and integrating vertically
across the tropopause gives | gdz = 2.5f km. The
anomalies in Ertel’s potential vorticity shown in Figs.
1 and 2, with values =~ 0.4 in the troposphere, can be
related to anomalies in quasigeostrophic potential vor-
ticity through g ~ g ~'PV dp/d8,. Taking dp/df, = 25
mb K ' and an anomaly depth of 5 km gives a strength
of =~ 0.5 f km. This implies that the neglect of tropo-
spheric potential vorticity will give an error of the order
of 20%, the error being slightly smaller in the Southern
Hemisphere. These figures are only presented here to
give a crude estimate of the approximations made in
the theory; other months and latitudes may give slightly
different answers.

4. Comparison with data and GCM results

The local relation between the height and tempera-
ture of the tropopause is an attractively simple result
and provides a good basis to test the applicability of
the above theory to real data or GCM results. This is a
test of the hypothesis that the PV anomalies within the
troposphere are, in some sense, less important than
those associated with perturbations of the tropopause.
A caveat is needed because the smallness of one mea-
sure of the influence of internal PV anomalies does not
necessarily imply that their influence on the evolution
of the flow is small (cf. the ageostrophic velocity field,
which plays an essential role in the development of
weather systems despite being considerably smaller
than the geostrophic velocity).

The relationship given in Eq. (3.9) may appear to be
an obvious consequence of the general increase of
with height in the atmosphere. A high tropopause is
generally warm, as seen from observations, but the
question is why. A simple thought experiment shows
that it need not always be the case. Suppose we start
with a flow at rest, so that the tropopause has uniform
potential temperature. If potential vorticity anomalies
are created in the troposphere, then corresponding wind
and height anomalies will appear at the tropopause. In
the absence of local diabatic forcing, however, the po-
tential temperature of the tropopause remains un-
changed. Thus, for a general potential vorticity distri-
bution, the height and potential temperature of the tro-
popause are not necessarily correlated.

JUCKES

2761

The idealized model discussed in the previous sec-
tion has a discontinuity in potential vorticity. In the
GCM the tropopause is less well defined. Following
Hoskins et al. (1985), the PV = *2 surface is used
here, where PV is in units of 107 Km? kg ™' s !, Fig-
ure 4 shows the potential temperature and height of
this surface in the UGCM. The two fields show many
common features. Between 20° and 40°S they are in
close agreement. At these latitudes the smallness of f
and the relatively high tropopause both tend to reduce
the contribution to 6z from temperature anomalies at
the ground. A similar high correlation between height
and potential temperature of the PV = 2 surface is
seen in analyses from the U.K. Meteorological Office
forecast system (T. Hewson 1993, personal commu-
nication).

Figure 5 shows a scatterplot made from 42 days of
data on the same surface between 15° and 60°S, sam-
pled at 6-day intervals. The quantity contoured is the
number of grid points falling in a 1 K by 1 km box.
Figure 5a is constructed from the total fields, and Fig.
5b from the eddy components. Both show a linear re-
lationship. The above theory applies in principle to
both the eddy and the zonal-mean components of the
flow, but the neglect of the lower boundary condition
will be inaccurate for large scales. In Fig. 5b the zonal
mean has been removed to get rid of the largest scales.
The resulting slope is about 6 K km™', consistent with
Eq. (3.9) when the lapse rates are given values of I,
=3Kkm'and T, = 12 Kkm™'. When the zonal
mean is included (Fig. 5a) the slope is slightly differ-
ent, about 9 K km™'. This difference must be due in
part to the influence of the lower boundary. The effect
of the lower boundary is studied in the following two
sections.

Of course, interactions between the tropopause and
the lower boundary play a fundamental role in the dy-
namics of the storm tracks, leading to the conversion
of potential to kinetic energy. This process is often
modeled through linear normal-mode calculations, al-
though Farrell (1984) has shown that other mecha-
nisms may also be important in reality. For mathe-
matical simplicity we consider here the Eady mode of
linear instability, as discussed by Rivest et al. (1992).
As mentioned in the introduction, they consider nor-
mal modes on a linear shear with a discontinuity of
static stability at the tropopause. The ratio of §,, to éz
is then a complex function of wavenumber and the
ratio of static stabilities. If we take, for simplicity, N
= 2N, and the wavenumber of the fastest-growing
mode (in a channel of width 2000 km), then their
results give 8, = 6z X (5.7 + 1.0i) Kkm™', com-
pared with 6z X 6 K km™' derived above. This diag-
nostic does not, therefore, distinguish clearly between
linear interactions between the tropopause and ground
on the one hand and nonlinear dynamics of the tro-
popause on the other hand. Both theories depend on
the neglect of potential vorticity anomalies within the
troposphere.
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FiG. 4. (a) Potential temperature (contour interval 5 K, shaded between 310 and 330 K) and
winds on the PV = —2 surface. Polar stereographic projection, outer limit 15°S. The Greenwich
meridian is to the right. (b) Geopotential height of the PV = —2 surface (contour interval 500
m; heavy contour is 10 000 m). The shading is the same as in (a).
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FIiG. 5. Contoured scatterplot of potential temperature versus geopotential height on the PV
= -2 surface, between 15° and 60°S. The data are taken from the start of June through to mid-
July at 6-day intervals. (a) Total fields and (b) departures from the zonal mean. In both cases the
number of points falling in a 1 K X 1 ki box is contoured; contour interval 10 (solid) and 2
(dashed, up to 8).
5. Streamfunction associated with temperature - _, 0 pof? O —0 5.1
anomalies on both tropopause and lower q=Vip+ po o9z N* 9z 5.1

boundary

On larger scales the tropopause cannot be treated in
isolation. Temperature anomalies at the ground must
also be taken into account. We also include here the
density stratification and potential temperature scale
height (e.g., Bannon 1989). The potential vorticity
anomaly is now

where py = poo exp(—2z/H,). The potential temperature
is related to the streamfunction by

ot W _
8z H,
We will take the density scale height H, to be uniform

0. : (5.2)
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and the potential temperature scale height to have dis-
tinct values, Hy, and Hy,, in the stratosphere and tro-
posphere, respectively. Instead of ' — 0 as z = —
the lower boundary condition becomes
ot y'
A, T Ir & 9 ,’ = _—Hy
0z H, s> £
where H is the depth of the troposphere and the sub-
script g stands for ground.
The solution now takes the following form:

. Aem,'z+ik-x, 7> 0
y'= - ‘
[Be™ * + Ce™]e®'*, 7 <0,

(5.3)

(54)

where
. 1 1 s/tk2 172
St () 5
"= o, <4Hf, 72 (3)

Applying the boundary conditions leads to the rela-
tions

A=B+C, (5.6)

(m7 — H;DA = 8, — 62, (5.7)

(m;y — H;")B + (m} — H;")C =8, — 62T, (5.8)
(m; — Hg')Be™ " + (m} — Hz")Ce ™" = 8,

(5.9)

where the tilde denotes a Fourier coefficient, as in Eq.
(3.4). These equations define the four unknowns, A,

B, C, and 8z, as functions of ground and tropopause
potentlal temperature anomalies.

For convenience we define a = (ms HzH, b

= (m; — Hg"), and c = (m;} — H3'). The solution
1S
LA = —8,(T, = T,)(ce™™H — pe~mH)

+8,T(c —b), (5.10)
LB = —0,(T, = T))ce ™" + 8,(cT, — aT’,), (5.11)
LC =8,(T,—T)be ™" —9,(bT, —al,), (512)
L6z = B,(b(c — a)e™ " — c(b — a)e ™™ H)

+ B,a(b—c), (5.13)
where g = (al, — bl)ce™H" — (aI, — cT},)
X be™™H

Figure 6 shows the sensitivity of ¢z to variations in
6,, and —8, as a function of horizontal scale L, with all
other parameters in Eq. (5.13) held constant at the val-
ues given in Eq. (6.6). As expected, the link between
6z and 6, is weak at small scales and increasingly strong
at larger scales. The larger-scale flow includes the zo-
nal-mean jets. The constraints expressed by (5.10)~-
(13) provide some information about the zonal-mean
jet structure, insofar as that structure is geostrophic and
dominated by the tropopause. This topic is investigated
further in the next section.
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FiG. 6. Coefficients from Eq. (5.13), normalized by the tropo-
spheric lapse rate, showing sensitivity of tropopause height (8z) to
variations in #,, (solid line) and ~ 6, (dashed line) as a functlon of
horizontal scale; that is, I',L~ l[b(c —a)e ™ H — (b — a)emH)
and —T,L™'a(b — c), respectively.

6. Zonal-mean jets

This section uses the above result as a basis for some
qualitative remarks concerning the time-mean flow of
the troposphere. The results of the previous section
were derived for an f plane, so they are only strictly
valid for scales much less than the planetary scale. Nev-
ertheless, much work has been done using the f-plane
approximation to study larger scales in a qualitative
manner; the same approach is adopted here.

The large-scale time-mean wind at the lower bound-
ary is constrained by friction to be near zero. Using
Eqgs. (5.11) and (5.12), the streamfunction at the lower
boundary is given by

- [Be—m,_H + Ce—m,"“H]eik'x
= L_l[arp(rs - F,)(b - C)e—H/Hp
+ B, (al (e ™™"H — i H)

+ T (ce™™

— e
— be ™ H))]e™ X, (6.1)

Setting ¢} = O gives an identity relating 0,,, and 0
Since the wind is not precisely zero at the ground n/; :
is retained as a parameter. Rearranging (6.1) gives

9g[al",(e"”'+” — e ™ H) N
+ T(ce™ H — be ™™ ™H)] — 1L
élp(rs - F,)(C - b)e—h{/H“7

The constraint on the wind at the ground applies to the
zonal-mean flow, so the horizontal wavenumber k must
now be interpreted as representative of the meridional
wavenumber of the zonal-mean flow. The constraint
can be considered as a parametrization of the effects of
baroclinic eddies because it is a consequence of the
uniformity of tropospheric PV, which in turn results
from mixing associated with baroclinic eddies.

Here H and T, appear as independent parameters, but

F =

=1. (6.2)

this is not necessarily the most appropriate approach.
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Let the mean temperature at the ground be 6, and the
stratospheric profile be 8y,(z) = 0,, + T';(z + H), where
f,s is a constant. Continuity of the basic state at the
tropopause implies

fo, + T.H =06, +T,H. (6.3)

Following Held (1982) 6y, 6,,, and I'; can be consid-
ered as radiatively determined, while the dynamics of
the troposphere determines I'; and H (through diabatic
processes associated with baroclinic waves ). From this
point of view the latter two variables are not indepen-
dent. Using (6.3) I'; can be eliminated from (6.2), so
that we have

F= F(Hv Lyy 903» 0rs’ F.n ég, érp» Hg,, Hﬁ.ﬁ Hpa {/};)
=1. (6.4)

If ten parameters are specified, the remaining parameter
can be predicted by Eq. (6.4). For instance, taking

(H’ Lyv 90g7 9rs9 Fsv éga 9!p> Hapa HG.\-’ Hp9 (/J;)
= (10 km, 3000 km, 280 K, 190 K, 12 K km™!',
30K, 6,,, 8 km, 100 km, 28 km, 0), (6.5)

for which values the corresponding tropospheric
lapse rate, from Eq. (6.3), is I, = 3 K km™', gives
a prediction §,, = 150 K and 6z = 16 km. These pre-
dictions are somewhat larger than observed. In the
UGCM, for instance, the variation in tropopause tem-
perature between 30° and 60°S is of the order of 60
K and the variation in height is around 7 km. A de-
crease in I';, which might be considered an effect of
moisture, reduces the predictions but is not sufficient
to account for the discrepancy. For instance, setting
#,, = 160 K (and hence I', = 0) gives 0,,, = 100 K
and 6z = 12 km.

The choice of L, used above is equivalent to a half
wavelength of 90° latitude. Because the theory uses
the fplane it is not possible to make a uniquely well
defined identification between L, and atmospheric
parameters. The predicted values of 8,, and 8z are
sensitive to the choice of L, (6z is the most sensitive,
taking values 18 and 15 km at L, = 2000 and 4000
km, respectively), so, not surprisingly, the theory has
little predictive power. On the other hand, the un-
derlying dynamics that lead to Eq. (6.4) do resemble
those of the atmosphere, so it is likely that a similar
constraint will remain when a more realistic model
is used.

Since F is a constant, any change in one of the above
parameters must be balanced by changes in the others
SO as to maintain that constant value. Thus,

OF Ap, OF
i=1,|oalnpi Pi al/fg

where {p;: i = 1, 10} are the first ten arguments in
(6.4). The logarithmic derivatives of these 10 evalu-

Ay =0, (6.6)
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ated at the parameter values given above [Eq. (6.5)]
are

(2.7, -0.1, —-4.3,29, 1.4, 1.0,

—1.0, 0.05, —0.05, —1.2), (6.7)

and the derivative with respect to } normalized by the
tropopause streamfunction is

OF
ol

For expected climate changes the changes in density
and potential temperature scale heights can be ne-
glected. Changes in 6, and 0, are likely to be of the
order of 1%, so can be neglected relative to changes in
8, . In the context of CO,-induced warming, changes in
F are also expected to be small. The remaining five
parameters are then related by

Ad, A8, AH AL,

~ e —-01——=+04
0, 0, t 27 H L,

Wi =04 (6.8)

Aqftg

lp

~ 0.
(6.9)

Since ¢ [/}, is small (~0.1 for a realistic zonal flow)
the last term is likely to be small.

Equation (6.9) constrains the way in which the
mean tropopause height (H) and the slope { 6z, related
to 8,, and 8, through Eq. (5.13)] can change in re-
sponse to a change in pole to equator temperature gra-
dients.

These equations give a diagnostic link between the
parameters, but do not establish any causal link. If, for
instance, the static stability of the troposphere N, is de-
termined by the moist-adiabatic lapse rate or by details
of baroclinic instability (Held 1982), then the varia-
tions in tropopause height (6z) and 9, are predicted as
functions of the lower boundary temperature gradient
8,. If, on the other hand, the stratospheric radiation bal-
ance constrains , in some way, then N, is given as a
function of 8,.

It should be noted, however, that @ here is the tem-
perature field associated with ground and tropopause
temperature anomalies. At the ground this might be a
reasonable approximation to the total flow, but the
same is not true in the stratosphere. The total temper-
ature field in the stratosphere will contain large contri-
butions from local PV anomalies. Thus, 8, represents
only one component of the stratospheric field, so it is
not easy to estimate how it will vary in different climate
scenarios.

Most studies of the Eady model use a basic state with
no meridional variation, corresponding to k = 0 in the
results of this section, and also neglect effects of the
density and potential temperature scale heights. The
structure of the streamfunction in the limit k — 0 is then
linear in the troposphere and constant in the strato-
sphere. This limit is singular in that the upper boundary
condition, ¢ = 0 as z = o, is no longer satisfied. A
slightly weaker form of the boundary condition, that
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remains bounded, is satisfied. In this limit F becomes
independent of H and the upper boundary condition on
¢ can only be satisfied if §,; = 0.

7. Nonlinear dynamics

The storm tracks in the atmosphere are character-
ized by strongly nonlinear dynamics. Some general
properties of the flow can be deduced from scaling
arguments and the global conservation properties of
the dynamical system. This approach depends on an
assumption that the dynamics over a significant range
of scales is independent of any externally imposed
length scales. Charney (1971) used such methods to
analyze the properties of quasigeostrophic turbulence
with a three-dimensionally isotropic (with rescaled
vertical coordinate) and homogeneous streamfunc-
tion. In spite of the neglect of both the lower boundary
and the strong vertical inhomogeneity associated with
the tropopause, Charney’s analysis does capture im-
portant features of the large-scale nonlinear dynamics
(e.g., Boer and Shepherd 1983). The ideas developed
in the previous sections suggest an alternative ideali-
zation—namely, horizontally homogeneous turbu-
lence confined to a vertical discontinuity in the static
stability.

We consider here the system analyzed in section 3,
neglecting the ground. Setting * = (1 — N,/N,)8,,, the
evolution is precisely equivalent to that of a potential
temperature distribution 8* on a solid boundary. The
latter problem has been analyzed by Blumen (1978)
and Hoyer and Sadourney (1982). The main results are
that the nonlinear cascade to small scales is governed
by a k%7 energy spectrum and that the Rossby number
increases as k*’*. The application of the theory to the
tropopause, with the finite static stability of the strato-
sphere taken fully into account, provides an important
new view of nonlinear atmospheric dynamics. The tro-
popause is less influenced by frictional effects than air
immediately above the ground, implying that scaling
arguments based on inviscid nonlinear dynamics will
have greater relevance. With this in mind, the deriva-
tion of the spectral slopes for ‘@ turbulence’’ is sum-
marized below.

The derivation below uses only dimensional analy-
sis. This approach emphasizes that these results depend
only on the assumption that nonlinear interactions are
local in wavenumber space and that they do not depend
on any of the additional assumptions and approxima-
tions that go into the closure theories used by the au-
thors cited above.

There are two global conserved quantities that con-
strain the nonlinear dynamics: the energy, E = J13?
+ v2) + 3(g0’'/Nby)?1dV, and the variance of the po-
tential temperature on the tropopause, ® = [ 6,%dA.
The latter is conserved as a consequence of the material
. conservation of potential temperature following trajec-
tories on the tropopause and the nondivergence of the
geostrophic velocity field. These global constants are

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 51, No. 19

related to the Fourier coefficients of the streamfunction
through the results of section 3 as follows:

E= f E(k)dk,
0

(7.1)

1 1 27
E(k) =f(1—v” + 1\7)/(2_,.0 [¥(k)|*ddp,

0= f O(k)dk,
0

BoolVs N,

2 27
3 2
g(Ns—N,)) k fo lp(k)|2dg, (7.2)

BO(k) = (

where ¢ is the orientation of the horizontal wave vector
k. The energy is partitioned between the troposphere
and stratosphere in proportion to the inverse of the
Brunt-Viisild frequency—that is, with more energy
in the troposphere. The energy is equipartitioned be-
tween kinetic and potential.

The first step is to determine which constraint dom-
inates in an inertial range. Fjertoft’s (1953) theorem
shows that in two-dimensional vortex dynamics the
cascade to small scales is controlled by the conserva-
tion of enstrophy, while that to large scales is controlled
by conservation of energy. Similar results are obtained
by the same method below.

If variance initially concentrated at wavenumber k,,
is transferred to k, and k,, then conservation of ® and
E, respectively, implies

O(k) + O(ky) = O(ko) (7.3)
and

k) , Blks) _ Olko)
k| kz k() ’

(7.4)

Eliminating @(k,) gives

kl - k()
ki

ko = ko Ok,) =0. (7.5)
k>

OCk) +

Similar equations are given by Blumen (1978) for the
more general flow including two solid boundaries. The
results given here correspond to Blumen’s when the
limit kH — o is taken in the latter, where H is the ver-
tical separation of the two boundaries. From Eq. (7.5)
it can be deduced that either k;, < ko < k, or ky, < kg
< k;. In other words, the variance must be divided
between one wavenumber greater than k, and another
less than k. The evolution of the energy or temperature
variance spectra can be illustrated by the respective
mean wavenumbers,

ka(k)dk

= k(), (76)

<k)5 =
fE(k)dk
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f kO(k)dk

_ ki + (ky — ko) (ko — ky) -

(k>® = ko

k().
f Ok)dk
(7.7)

Similarly, weighted means of Ink can be calculated,
giving
(Ink)g < Ink,,
(Ink)g > Ink,.

(7.8)
(7.9)

These relations imply that spreading of variance in
wavenumber space is accompanied by a general trans-
fer of energy to large scales and temperature variance
to small scales. It is worth noting, however, that al-
though (Ink); decreases (k); remains constant, imply-
ing that the energy transfer is relatively weak.

The scaling laws that govern the energy and tem-
perature variance cascades can be derived using di-
mensional analysis. This technique has been applied to
a general class of two-dimensional equations, including
both vortex dynamics and potential temperature dy-
namics, by Pierrehumbert et al. (1994 ). Under the as-
sumption that eddy interactions are localized in wave-
number space the timescale of the interactions must be
related to the local vorticity, giving

(k) =~ (K*@(k))~""2. (7.10)

This timescale is based on vorticity values at the tro-
popause, which scale as k*E(k), as opposed to the
three-dimensional vorticity distribution, which scales
as k2E (k). On this timescale it is assumed that the rel-
evant conserved quantity is moved a fixed distance in
Ink, so that the flux of, for instance, temperature vari-
ance is given by

_ kO(k)
T k)

For a steady cascade the flux Fg must be independent
of k. Using Eq. (7.10) for 7 then gives

@(k) o k—-5/3, E(k) o k—8/3,

(7.11)

(7.12)

for the cascade to small scales. Similarly the scaling
law for the energy cascade is determined by setting F
= kET ™' = const, giving

Ok) < k™', E(k)xk™>. (7.13)

For the downscale cascade the slope is only slightly
different from the k> deduced by Charney. The —8/3
slope has also been predicted by Andrews and Hoskins
(1978), based on a semigeostrophic model of frontal
collapse. There does not appear to be any direct rela-
tionship between the latter model, which was time de-
pendent and semigeostrophic, and the current quasi-
geostrophic prediction. There are, however, some in-
teresting parallels. In both cases enstrophy is cascaded
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to infinite wavenumber in a finite time. In the present
case this can be seen by combining (7.10) and (7.12)
to give

(k) o« k=23, (7.14)

The decrease in 7 with increasing wavenumber leads
to an ever accelerating transfer to smaller scales. The
increasing intensity at small scales justifies the as-
sumption made above that interactions are local, since
the small scales are predicted to evolve too rapidly to
be affected by large-scale motions. This is in marked
contrast to the Charney theory, which predicts a con-
stant 7. With a constant timescale the assumption of
local interactions cannot be fully justified. In numerical
simulations of two-dimensional barotropic turbulence,
which is closely analogous to the three-dimensional
quasigeostrophic turbulence studied by Charney, it has
been found that the nonlocal interactions prevent the
predicted k ~* inertial cascade from emerging (e.g., Le-
gras et al. 1988). The wavenumber dependence of
Rossby number at the tropopause might provide a
means of distinguishing between this theory and that
of Charney (1971) in observed data. Associated with
the decrease in 7 there is an increase in Rossby number
as k increases, so that at some stage the quasigeo-
strophic approximation must break down.

The relative strength of the tropopause anomalies
compared with internal troposphere anomalies, as dis-
played in Figs. 1 and 2, suggest that Blumen’s theory
is of more relevance to tropospheric dynamics than
Charney’s. The implication is that the large-scale flow
has a greater role in driving ageostrophic small-scale
motion than implied by the latter theory. The scaling
arguments given above, however, only hint at the pos-
sibilities: further research is required to gain a true un-
derstanding of the nature of this cascade to small scales.

8. Discussion

The dynamics of the tropopause has been analyzed
with the idealization of uniform potential vorticity in
the troposphere and stratosphere. Elementary quasi-
geostrophic theory yields a simple local relation be-
tween the height and potential temperature of the tro-
popause. This relation provides an important link be-
tween two fundamental dynamical properties. It is
interesting that, compared with the elliptical operator
relevant to three-dimensional PV anomalies, the inver-
sion operator here takes such a simple form.

There are two caveats to be made. First, on the large
scale, the f-plane approximation is suspect. This res-
ervation- applies particularly to section 6, where it is
shown that, insofar as the f-plane approximation pro-
vides a qualitative model of midlatitude synoptic dy-
namics, the tendency of baroclinic eddies to homoge-
nize potential vorticity within the troposphere leads to
a constraint on the structure of the zonal-mean jet. The
details of this constraint will certainly be affected by
spherical geometry, variation in the Coriolis parameter,
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and ageostrophic terms. Nevertheless, the large-scale
flow is balanced and as such should be determined from
the potential vorticity through an inversion operation
(Hoskins et al. 1985). So long as this inversion oper-
ator retains the elliptical nature of the quasigeostrophic
inversion the number of boundary conditions that can
be imposed will remain the same. If this is true a con-
straint of the nature discussed in section 6 might apply
to more realistic flow. Some evidence of such a con-
straint has been found in calculations using the full Er-
tel’s potential vorticity and spherical geometry (Sun
and Lindzen 1994).

The second caveat concerns the smaller scales. On
these scales much interest in the dynamics of the tro-
popause is focused on tropopause folding. The quasi-
geostrophic dynamics discussed here is not directly rel-
evant to such events, since ageostrophic effects must
become important.

The large-scale atmospheric flow is often treated as
being barotropic, or equivalent barotropic. Energy con-
verted to kinetic energy by baroclinic instability is
transferred by nonlinear dynamics to barotropic modes
(e.g., Hoyer and Sadourny 1982; Hoskins et al. 1985).
The structures discussed in this paper are, strictly
speaking, baroclinic, being associated with strong tem-
perature anomalies. Within the formulation of the Eady
model, for instance, there is no possibility of barotropic
flow, as all the dynamics is contained in temperature
anomalies. However, when the temperature anomalies
of the tropopause and ground are in phase the flow has
a structure usually associated with barotropic flow. For
instance, the sign of the vorticity anomaly is indepen-
dent of depth. .

Although potential temperature anomalies on the tro-
popause and lower boundary can be expressed as po-
tential vorticity anomalies with a é-function z depen-
dence, the dynamics of those anomalies is fundamen-
tally different from the dynamics of a homogeous PV
distribution. Section 7 shows that the cascade of 8 var-
iance to small scales leads to increasing Rossby num-
bers and the eventual breakdown of the quasigeo-
strophic approximation. The relation between the work
of Charney (1971) and that of Blumen (1978), re-
viewed in section 7, is similar to that between the two
well-known classic models of baroclinic instability de-
veloped by Charney (1947) and Eady (1949), respec-
tively. The first neglects the tropopause and models the
interaction of lower boundary temperature gradient
with internal meridional gradients of Ertel’s potential
vorticity (PV). The second, on the other hand, neglects
horizontal gradients of PV and models the interaction
of the lower boundary with the tropopause.
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