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A recent theoretical description of interactions between surface waves and currents 
in the ocean is extended to allow density stratification. The interaction leads to a con- 
vective instability even when the density stratification is statically stable. An un- 
specified random surface wave field is permitted provided that it is statistically 
stationary. 

The instability can be traced to torques produced by variations of a ‘vortex force’. 
Non-diffusive instabilities produced by this mechanism in water of infiaite depth are 
explored in detail for arbitrary distributions of the destabilizing force. Stability is 
determined by an eigenvalue problem formally identical to that determining normal 
modes of infinitesimal internal waves in fluid with a density profile that is not monotone 
and thereby has a statically unstable region. Some tentative remarks are offered about 
the problem when dissipation is allowed. 

Application of the present theory to Langmuir circulations is discussed. Also, 
according to the present theory, internal wave propagation should be modified by the 
vortex force arising from the interaction between the surface waves and the current. 

1. Introduction 
In  recent papers by Craik & Leibovich (1976, hereafter referred to as CL) and by 

Leibovich (1977, hereafter referred to as I) a set of equations was developed that 
describes the interaction of surface waves with a mean current driven ultimately by 
the wind stress. The equations are valid provided that the wave particle speeds are 
large compared with the mean current and provided that the time scale for formation 
of the current is long compared with the period of a typical surface wave. 

The procedure, most completely described in I, involves two-timing followed by 
averaging over a time span long compared with a wave period (the fast time) but 
short compared with the time scale of formation of the wind-drift current. The details 
of the surface wave motion are suppressed, and their rectified effect on the current 
formation appears through a term formally identical to the Stokes drift. 

A cellular roll motion in the upper water layers, resembling Langmuir circulations 
(see Pollard (1976) for the latest review of the Langmuir-circulation phenomenon), 
arises from the rectified equations when the Stokes drift possesses spanwise variability. 
This might, in principle at least, arise from a bimodal surface wave directional spec- 
trum. Langmuir-like motions, arising in this way as a direct wave-current interaction 
described by the rectified equations, were studied extensively for homogeneous bodies 
of water in CL, in I and in Leibovich & Radhakrishnan (1977). The existence of span- 
wise variability in the Stokes drift, even for a bimodal wave directional spectrum, 
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requires that the waves be locked in phase for many (perhaps 100 or more) wave 
periods. This, as pointed out by C. J. R. Garrett (private communication), is unlikely 
actually to occur except in restricted circumstances. Preliminary evidence obtained 
by 0. M. Phillips (private communication) supports Garrett’s view. 

On the other hand, Craik (1977) has pointed out that Langmuir-like motions are 
described by the rectified equations for a completely random surface wave field which 
is characterized by a wave drift uniform in the spanwise direction. As observed in I ,  
the rectified equations are mathematically nearly analogous to the equations of thermal 
convection: this remains true even if the wave drift is uniform in the spanwise direc- 
tion. Craik (1977) exploited this fact to show that an instability analogous to thermal 
convection occurs in homogeneous water, and has illustrated the point by examples. 

The present paper derives a generalized form of the rectified equations of I, based 
upon the Boussinesq approximation, that allows the water to be density stratified, 
and then employs these equations to treat the inviscid stability of a time-independent 
current to infinitesimal roll disturbances. Currents with sufficiently large shear are 
found to be unstable to such disturbances, even when the water is stably stratified. 

The joint effect of the Stokes drift and a sheared current is equivalent to an altera- 
tion of the density profile near the surface. Therefore, if no instability occurs, the 
effectively modified density profile will alter the propagation characteristics of internal 
waves. 

Let the speed of the Stokes drift depend upon depth alone, be denoted by U,(z),  and 
be parallel to the basic current V ( z ) .  Let the water be density stratified with density 
p(z ) .  Then our principal result states that inviscid instability occurs when the function 

dU,dU g d j i  
dz dz prdx 

A@)=--+-- 

is positive in some interval. Here - z is the depth below the mean free water surface 
and pp is a constant reference density. The condition A ( z )  > 0 is a criterion of 
Richardson-number type. Since the maximum of typically occurs at  the surface 
z = 0, this criterion may be stated in terms of a minimum wind stress rw required to 
cause instability: 

Substitution of typical values for the parameters appearing in this criterion indicates 
that the slightest breeze is destabilizing. In  practice, therefore, buoyancy is not 
effective at suppressing instability. On the other hand, a study of the behaviour of the 
eigenfunctions shows that buoyancy determines the effective depth of the destabilized 
layer. 

The maximum growth rate for an unstable configuration is 

Cmax = A ( 0 ) .  

Growth-rate estimates from this expression for conditions that typically occur in the 
ocean are consistent with observed time scales of formation of Langmuir circulations, 
and the possible application of this theory to the Langmuir-circulation phenomenon 
is discussed in the final section of the paper. 

The eigenvalue problem governing the stability problem is formally identical to 
that determining the normal modes of infinitesimal internal waves in water of infinite 
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depth. In  contrast to the usual considerations of internal wave propagation however, 
&(z) is not everywhere positive, and the usual proof of the variation of the discrete 
spectrum with the wavenumber k must be modified. General forms for A ( z )  are con- 
sidered, except that we require & to decrease with depth. We show that the growth 
rate a ( k )  increases monotonically, taking all values from cr = 0 at k = 0 to rmax as 
k - t  00. Furthermore the cr(k) curve is concave towards the k axis. When? is asymptoti- 
cally stable and linear as z+ -00, the problem possesses a continuous spectrum 
corresponding to internal waves propagating to or from great depths. 

If one is willing to assume a Stokes drift that is linear with depth (a bad assumption), 
then the linear stability problem, including diffusive effects, is formally analogous to 
the problem of thermal convection. This analogy is brought out in $5, where the 
physical basis of the destabilizing effect of the Stokes drift is also explained in terms 
of torques arising from a ‘ vortex force ’. By invoking the assumption of a linear Stokes 
drift, one is able to carry over known results from the Iiterature of thermal convection. 
The problem closest to the one in this paper is the cooling from above of a deep layer 
of fluid that is stably stratified. This problem has been treated by Whitehead & Chen 
(1970). We may therefore quote their results for the critical (effective, in this case) 
Rayleigh numbers and most unstable wavenumbers for steady convection of infini- 
tesimal amplitude, provided that we bear in mind the assumption that has been made. 
This is also carried out in $5. 

2. Equations for wind-driven convective mixing of stratified water 
The procedure described in I will be followed, but density stratification will be 

allowed for. The basic idea in I is to average the Navier-Stokes eqmtions over time 
intervals large compared with the period of the dominant surface waves but small 
compared with the time required for secondary currents to develop. The resulting 
equations can be used to study motions whose characteristic time scale is large com- 
pared with a surface wave period and whose characteristic velocities are small com- 
pared with the orbital speed of water particles in the dominant surface waves, although 
the applicability of further assumptions (e.g. use of a constant eddy viscosity) must 
be evaluated. 

In order to save space, the derivation here will lean heavily on I .  In  particular, we 
shall not make the problem explicitly dimensionless to identify the small parameters, 
but shall depend upon familiarity with the procedure in I ,  which underlies the present 
development. For example, although we shall not formally introduce two time scales, 
we are thinking of the same two-time analysis as was presented in I. 

The Boussinesq approximation will be made, the density being written as 

pr+P(z)+p(x,t), 

where pr is a constant reference density, p + p ( x ,  t )  represents the deviation of p from 
pr, and p is the density deviation at the initial time t = 0. The vorticity equations 
(ignoring the earth’s rotation) according to Phillips (1966, p. 18) are 

I DO 9 -- - o . V q  - - curlpk + v V 2 0 ,  
Dt Pr 

w = curlq, ! 
(1) 
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where k is a unit vector in the z direction (taken vertically upwards from the mean 
free water surface). 

Let the velocity field q be written as the superposition of an irrotational surface 
wave field u,, with wave slope proportional to the small parameter E ,  and a still smaller 
contribution v, proportional to B ~ C ,  where c is the phase speed of the surface waves 
and 6 is a second small parameter that accounts for all other motions: 

q = u,+v. (2) 

The parameter 6 is explicitly identified in terms of the applied wind stress and other 
given parameters of the problem in I. In  particular, €6 is a measure of the vorticity 
in the current field. 

If the resulting vorticity equations are ‘processed ’ (by perturbation and averaging 
in time) as in I, and if the buoyancy term (g/pr) curl (pk) is assumed not to be large 
compared with a . Vv, then the method of averaging used in I carries over directly 
and results in the (dimensional) vorticity equations 

(a) = curl(v), 

*)+ ((v) +us). V(o)  = (a). V((v) +us) -2 curl ((p)k) + vTV2(w), (3) 
at Pr 

where for any scalar or vector function f 

(f) _‘ST f a t .  
T -T 

Here T is an averaging time long compared with the surface wave period but short 
compared with the time required for the development of currents, and the vector u, 
is identical to the Stokes drift: 

us = ( J t u , d t . V u ,  ) (4) 

(Phillips 1966, p. 31). Also, v has been replaced by an eddy viscosity vT. 
An appropriate measure of (g/pr) curl (pk) is given in terms of the prescribed func- 

tion p by (SIPr) ap/az, so that the assumptions made about this term may be stated as 

-22 = O(~(a).V(v)~). 
Pr 

The smallest length scale that can be treated by the averaged equations is of order 
K - ~ ,  where K is the wavenumber of the dominant surface waves, so we must have 

where v is O(s 6c). The left-hand side of ( 5 )  is the square of the Brunt-Vaisalli frequency 
N ( z ) ,  so validity of the procedure requires that the dimensionless parameter 

(W2 (N/gs)2 (6) 

should not be large. Here gs is the frequency of the surface waves. A typical value for 
6e would be 0.01, so the equations should be valid for motions in which the ratio 
N/as  is not large compared with 0.01. For typical values of N ,  this is satisfied by all 
except fairly long surface waves. 
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Equation (3) can be integrated to give 

*) + (v) . V(v) = us x (w) - V n  - 2 (p)k + vTV2(v). 
at Pr 

(7) 

The term n includes the mean kinetic energy of the wave motion in addition to the 
averaged pressure. 

One of the principal questions of interest motivating this research is the mixing 
accomplished by organized convective motions. To treat this question, it is con- 
venient to adopt the customary step taken in thermal convection, and replace density 
by temperature in the Boussinesq approximation. Although we shall not treat any 
details of mixing here, we shall set forth the equations in a form suitable for that 
purpose. Thus, if ,8 is the coefficient of thermal expansion, we write 

i j  = - p m p r ,  p = -p,pe, 

!qx, t )  = q+T(z)+e(x, t ) .  
where the temperature is 

The temperature is governed by the energy equation, which is (with the usual approxi- 
mations of thermal convection) 

e t+q .ve+k .qTf (z )  = aTv28, (9) 

where the prime denotes d/dz and aT is the (turbulent) thermal diffusivity. It is con- 
venient for the moment to replace a, by vT/Pr,, where Pr, is a turbulent Prandtl 
number. If we decompose q into wave and current contributions as in (2), recall that 
u, = O ( E )  9 v, and assume that (as in I) the inverse Reynolds number K V ~ / E C  is 
sufficiently small (and Pr, is not too small) and that ~ , K / c  = O ( G )  then 8 may be 
expanded in a series in E ,  

and the first two coefficients are determined by the equations 

e = e,+Ee,+ ..., 

ae,/at = 0, a8,pt = -k.u,P(Z). 

The first equation asserts that 8, does not change on the fast time scale (comparable 
to a wave period), although it may vary on a longer time scale. The second equation 

where (8,) is the mean with respect to the fast time and may vary on the slow time 
scale. 

Divide the temperature disturbance 8 into its mean and fluctuating parts: 
8 = (8) + 8’. TO this order 

(8) = e, + (el), 8‘ = - P ( ~ )  k .  u,dt. st 
We substitute this decomposition into the energy equation and average over the fast 
time : 

*)+ at ((u, +v)) .  V(8) - ((u, +v) .  V(F’(z) S‘k.  u,dt)) 

+ ((k. v + k .  UU,)) T’(z) = +V2(8). 
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But, since (u,) = 0, 
(u, + V) . v(e) = (v) . v(e), 

(k . v + k . u,) F’(z) = k . (v) F’ ( Z) 
and 

((u, + v) . V (T’(z) /‘ k . u,dt)) = (u, . V (T’(z) 1‘ k . u,dt)) . 

The last term is the correlation between the fluctuating wave field and the wave- 
induced temperature fluctuations. It may be shown to vanish under fairly general 
circumstances. To see this, rewrite the term as 

(u, . OF’ s‘ k . u,dt} = (i { 8 T‘‘ ( f t  k . u,&) + p j‘ u@. V IF. u,dt)} 

- T’ (/‘u,dt. V( k . u,) . ) 
The term in the curly bracket is differentiated with respect tot, so that its time average 
vanishes, while the last term is [cf. ( 4 ) ]  -p‘(z)k.u,. The vertical component of the 
Stokes drift is assumed to vanish, so the entire expression on the left-hand side of 
(10) vanishes. This leaves the ‘ordinary’ energy equation (where (w) = k.(v)) 

a(e)/at + (v). v(e) + (w) P(z) = aTv2(e). 

a(v)/at + (v) . V(V) = u, x (0) - ~n - pg(B)k + vT VZ(V>, 

(11) 

( 1 2 4  

a(e) /a t+(~) .v(e)+(~)F(~)  = aTV2(8), (12b) 

V.(v) = 0. ( 12c) 

The full set of equations for the developing currents may now be collected: 

We note that the Stokes drift us (for waves in deep water) vanishes exponentially 
fast with depth, so the equations reduce to the unconditioned Boussinesq approxi- 
mation to the Navier-Stokes equations a t  depths of the order of the wavelength of 
the surface waves. For stably stratified waters, therefore, the set reduces to the one 
conventionally used to describe internal wave propagation when depths at which 
us < 1 are reached. 

At the mean free surface z = 0, the vertical current vanishes: 

(w(z, Y, 0,t)) = 0. ( 1 3 4  

As in I, the problem of motion developing under the action of an applied wind stress 
(in the x direction, say) may be treated by imposing the stress boundary conditions 

Y,(a(u) /aZ)  = u2, v,(a(v)/az) = 0, ( 1 3 h  c) 

where u* is the water friction velocity associated with the applied stress and use has 
been made of (13a). For water of infinite depth, all disturbances should decay as 

Finally, thermal boundary and initial conditions must also be imposed on the mean 
z+ -a. 

temperature (6). By virtue of the definition of T, a t  t = 0 

(e) (x, 0) = 0. (134 
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If we assume that the temperature a t  infinite depths is held fixed, then 

(e )+o as ~ 3 - m .  (13 e )  

At the free surface z = 0, any suitable boundary condition on 

T, + F(z)  + ( e )  

( 6 )  (2, Y ,  0, t )  = To@, Y, $1 - T,- W),  

may be imposed. For example, one may take a prescribed temperature To@, y ,  t ) ,  in 
which case 

or a prescribed heat flux Ti, in which case 

Here 

3. Linearized instability of a shear flow 

parallel shear flow 

and that surface waves have produced a Stokes drift current that varies with depth 
only : 

with dU1d.z > 0 and dU,/dz > 0 for all z. In  the absence of a stable density gradient, 
the situation represented by (14) and (15) may be expected to be unstable to infini- 
tesimal disturbances because of their close similarity to the equations of thermal 
convection (see $4) and this has been confirmed by Craik (1977). (Craik also applied 
the results of Foster (1965, 1968) to consider the stability of the problem above when 
viscosity is included and U evolves in time as a solution of the Rayleigh problem with 
an imposed surface stress.) 

We consider the inviscid linearized stability of (14) and (1 5) to roll disturbances in 
the presence of a stable density gradient 

We now assume that the action of the wind stress has produced a time-independent 

(v) = u(z)i (14) 

u, = U,(z)i, (15) 

appZ = -p,paTpz G 0. (16) 

If diffusion is ignored arbitrary functions U ,  F and U, satisfy (12). 

and 8, i.e. 

where (u, v, w) g U and 8 g !i', then the linearized forms of (12) may be reduced to 
the following three equations for u, w and 8 :  

If the state described by U ( z )  and F(z )  is disturbed by the perturbations (u, v, w) 

(v) = (u ( z )+u ,v ,w) ,  T - T ,  = p(z)+e, 

A[wt+(U+U,)w,] = A,(&@- U:u)+[wx(2U'+ U:)le+vTA2w, ( 1 7 4  

(17b) 

e,+ u e x + w F f  = aTAe,  ( 1 7 4  

A[ut + ( U  + U,) ux+ wU'] = -pge,+ [wx(2U' + U:)Ix + ( U:ux),+ vTA2u, 
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where 

If we consider only disturbance rolls aligned with the mean flow, then the motion 

(18a) 

U t + W u '  = vTAu, 8 , + W p  = UTA8. (W c) 

is independent of 2 and (1  7) simplifies to 

Awt = A1(/9@- U ~ U )  + VT A'w, 

From the form of (18) the roles of u and 8 are seen to be similar, and the analogy with 
thermal convection is apparent. 

If, on the other hand, x-dependent disturbances are allowed, but only non- 
conducting inviscid flows are considered, the equations may be reduced to a single 
second-order equation. If we assume the exponential behaviour 

w = #(z)exp[at+i(ky+mz)], 

u = (ka+m2)-l (imw,- k2wU'f-l), 

and assume aT = vT = 0, then #(z) satisfies the equation 

where 
N2(2) = /9gT"(z) 

is the Brunt-VaisiilB; frequency. In  the absence of surface wave motion, U, = 0 and 
(20) reduces to the equation governing the stability of inviscid density-stratified flows 
[cf. Drazin & Howard 1966, equation (3.12)]. 

In the present paper, we shall confine attention to perturbations consisting of rolls 
aligned with the mean flow (m = 0 ) ,  for which (20) takes the very simple form 

(21a) 

(21 b )  

a2(#" - k2#) + kZA(2)  4 = 0, 

A(z) = Uj U' - N2. 

$ ( O )  = +(-a) = 0. 

The boundary conditions on w require 

( 2 1 4  

We note that (I9 b,  d )  now imply that u and 8 also vanish at z = 0, and that this is a 
consequence of the non-diffusive approximation. In  applying the equations of 0 2 to 
Langmuir circulations therefore, where u is known to achieve its maximum a t  the 
surface, one must include the effects of viscosity (and probably heat conduction) to 
account properly for the observed surface behaviour. Nevertheless, the growing 
vertical motion will probably be adequately described by the inviscid problem for 
sufficiently small times. 
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FJQURE 1. Sketch of the form of M ( [ )  considered. 

The basic state ( U ,  F )  is unstable if g2 is positive and stable if u2 is negative. Notice 
that, if V, = 0 and ~9 is negative, the problem ( 2 1 )  is identical to that for infinitesimal 
amplitude internal waves. Thus (21) may also describe internal waves, and shows 
that the classical Brunt-Vaisiila frequency is modified near the surface where surface 
wave activity is significant. 

3.1. Assumptions about d ( z )  

Typically U i  and U' are positive and so is if the water is stably stratified by density. 
In addition, as 2 + - 00, U: and U' both vanish, and the decay of V, is exponential. 
We assume that, as z -f - 00, the density stratification is ultimately linear (although 
this assumption is not required for most of our results, it is convenient), so 

P g P -  y as z- f -00 ,  

where y is a non-negative constant. Either &(z) < 0 for all z (when is sufficiently 
large) or A ( z )  is positive for a region 0 > z > -go and negative for z < -go. For 
simplicity, we assume that there is a t  most one zero of the function A@), at z = - lo, 
and that 4 is monotonic decreasing. To avoid writing minus signs frequently, we let 

z = - g  9 4 4  = 4 - l )  = J f (5) .  
The typical form of M under consideration is therefore shown in figure 1, where M(0)  
may be either positive or negative. In  terms of the independent variable 5 the 
problem (21) becomes 

( 2 W  

# ( O )  = $(m) = 0, A = k20-2. (22b ,  c )  

4g + ( h d r f ( l )  - k2M = 0, 

Equations ( 2 2 )  pose a singular (because of the semi-inkite domain) Sturm- 
Liouville problem. The problem possesses both a, discrete spectrum ( A  > 0) and a 
continuous spectrum ( A  < 0 ) ,  which will be discussed below. The occurrence of a sign 
change in M ( c )  renders some standard results concerning the spectrum inapplicable, 
but, as will be shown, these results can be obtained by a modified proof. 

3.2. a2 is real 

The wavenumber k is specified, and 8 is determined as the eigenvalue of the system 
( 2 2 ) .  We may refer to Yih (1974) or to Ince (1956, $10.71) for a demonstration that 
the eigenvalues CT~ are real, even if M(g) has a change of sign. (Yih's proof is for 
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internal waves, but is directly applicable to this problem as well.) Thus a is either 
real, in which case the motion is unstable (since a positive root exists for a), or is 
purely imaginary, in which case the motion is oscillatory (a modified internal wave). 
Unstable motions therefore correspond to a2 > 0 and oscillatory motions to a2 < 0. 
Note that, since A is real, we may take the eigenfunctions q5 to be real. 

3.3. Necessary condition for instability: minimum wind stress for mixing 

Where M ( [ )  < 0, the solutions of (22a) have q5trs and q5 of the same sign, a condition 
described by Morse & Feshbach (1953, p. 723) as ‘exponential behavior’. When 
M ( [ )  > 0, q5 and q5gs have opposite signs, or ‘sinusoidal behavior’ according to Morse 
& Feshbach. It is clear that, if M ( [ )  < 0 for all 5, then there are no bounded solutions 
to (22) except q5 = 0 for h > 0. 

By hypothesis, the maximum value of M ( [ )  occurs at 6 = 0. Therefore a necessary 
condition for instability is 

M(0)  = UL(0) U‘(0)  -pgF(o) > 0. (23 ) 

It will be shown (53.7) that this is also a sufficient condition for instability. Since the 
applied wind stress is related to U’(0) by the condition 

pvrU’(0)  = pu: = TW 

7 w  > P ~ r P g ~ ’ ( o ) / U L ( o ) .  (24) 

condition (23) implies that the wind stress required to overturn a stable density 
structure is 

3.4. a2 increases with k2 at a decreasing rate 

This is the analogue of it standard result concerning the dispersion relation for ordinary 
internal waves. The proof given by Yih (1974, p. 274) is valid only for positive M(C). 
The following proof applies when M is allowed to change sign. 

We are interested in the variation of a2 with k2 for a particular mode in the discrete 
spectrum (i.e. a mode characterized by the number of zeros of its eigenfunction). 
Consider the eigenfunction q5(5; k2) corresponding to the eigenvalue A( k2) .  Differentiate 
(22a, b)  with respect to k2. If we use the notation 

x(5; k2) = afw;  k2)/8k2 

then the differentiation leads to the following problem for x: 
X g g  + (hM(<) - k2)  x = q5 - (dh/dk2) $ 9  (25a) 

(25b)  x (0 )  = x(m) = 0. 

Since h is the eigenvalue corresponding to k2, the problem (25) has no solution unless 
the solvability condition 

is satisfied. 
From the definition of A ( = k2/(r2) 

dh/dk2 = k-2(h - h2d(a2)/dk2).  
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t 

c 
0 k 

FIUURE 2. General shape of the behaviour of the growth rate as a function of wavenumber: u(k) 
is concave towards the k axis, zero a t  k = 0, and approaches [M(O)]* asymptotically as k -+a, 
for all monotonically decreasing M ( 5 )  having M ( 0 )  > 0. 

Therefore we may rearrange (26) to arrive at  the condition 

The signs of the integrals on either side of (27) are not immediately obvious. However, 
by multiplying (22a) by #, integrating over all 6 0 and using (22b), one sees that 

r m  r m  

J (hM(c ) -k2 )#2dc  = J (#')2dt; > 0. 
0 0 

Thus it follows that the integrals on both sides of (27)  are positive if h > 0. But the 
discrete spectrum for this problem corresponds to the range 

A >, k2/M(O) > 0. (29) 

Consequently, we have shown that 

for the discrete spectrum. Since we may take c and k both positive, (30) shows that 

daldk > 0, (31) 

so that u increases with increasing k.  By similar arguments, one can also show that h 
increases with increasing k, or 

&(;) > 0. 
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Coupled with (31), (32) implies that 

or 

at every value of k. Thus we also see that the a ( k )  curve is concave downwards a t  each 
point and has the general shape shown in figure 2. 

3.5. The maximum value of a2 = M ( 0 )  

Equation (22a) may be written as 

4 5 5  + h[M(5)  - g21 #J = 0. (34) 

In  intervals for which az > M(5)  the solution #J has exponential behaviour. If a2 
exceeds M(O), then #J has exponential behaviour for all 5, and no bounded solution is 
possible. Therefore, assuming that M(0)  > 0, the growth rate cannot exceed [M(0)]4, 
i.e. 

fJ < [M(O)]k (35) 

c+rmax = [ M ( o ) ] ~  as k+m. (36) 

We can also show that this is, in fact, attained asymptotically, i.e. g+[M(O)] t  as 
k-+oo, so that 

To see this, we note from (32) and (35) that h -+ 03 as k+ 03. We may therefore calculate 
the eigenfunction of (34) as k -+ 00 by exploiting the behaviour of h for large k by using 
the WBKJ approximation. Write 

so that (34) becomes 

The zero of g(6; c) occurs a t  6 = 5, where 5 = M-l(cr2) and 5-+ 0 as h+00. Near 6 = E, 

g ( 5 ;  4 = M(5)  - 8 

f#sc + h9(5; 4 9 = 0. 

s(C; 8 M‘(k) (5- 5) = - IM’(5) l(5- 5) 

#J = CAi(lM’(()J*X) (37 a )  

since, by hypothesis, M’(6) < 0. Let 5- E = h-*X. Then, for X fixed and of order one, 

as h+co, where Ai is the Airy function, while for fixed 6 > $, 

d D{lM‘(5)1(5-l)-*exP( - q E 5 1 M ( 5 ) - o P l t d 5  I * (37b) 

The asymptotic representations match, in the sense of matched asymptotic expan- 
sions, if C and D are chosen to satisfy, 

C = 2n8,4i%D. 

The boundary condition a t  5 = 00 is satisfied by (37b). The boundary condition a t  
6 = 0 corresponds to 

x = -hq .  
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Provided that 6 is O(h-*), (37a) is a valid asymptotic representation of q5 right up to 
the boundary 5 = 0. Assuming that f is so chosen, the boundary condition at  6 = 0 
is satisfied if 

where a, is the nth zero of the Airy function of negative argument. Thus the eigen- 
values of (34) are given by 

- f(hlM'(6) I )' = an,  

h = A, = -af / ( f3(H' ( f ) l ) ,  n = 1,2,3,  ..., (38) 

and the corresponding eigenfunctions are given approximately by (37) in appropriate 
5 intervals. 

For example, the first zero (cf. Abramowitz & Stegun 1964, p. 478) -a, = 2.338 
corresponds to the lowest eigenfunction and, since A, = k21ui, this consequently 
corresponds to the most unstable mode. Note that the eigenfunction q51(5) vanishes 
only a t  the end points 5 = 0 and 6 = 00, and has no other zeros. The eigenvalues A, 
can be ordered as 

and there are an infinite number of them, with no finite upper bound. The corre- 
spondence between the number of zeros in 5 > 0 and the indices of the eigenvalues 
follows from Sturm's oscillation theorems (Ince 1956, pp. 232-233) in the usual way. 

The analysis above therefore shows that a solution to the eigenvalue problem 
exists for all uz < M ( 0 )  and therefore cr-tumax as k+m. Thus M ( 0 )  > 0 is also a 
sufficient condition for instability (see also $3.7). 

A, < A, < A, < ... 

3.6. Asymptotic behaviour of the eigenvalues A, as n -t 00 

For fixed k, h,+00 as n-too, which implies that u,+O as n-t 00. This limit is not of 
central importance to the stability problem, but we nevertheless report the result. 
Since A,+ 00, we may again apply the WKBJ method. Now the turning point f is not 
near the left boundary 5 = 0, so we need an asymptotic representation for 4, for 
fixed 5 < f .  The WKBJ approximation for 5 < f satisfying the boundary condition 
at  5 = 0 is 

4 BIM'(E)I-f (C- 5)-fsin 1' 0 ( M 5 )  - cr34d5].  (39) 

This can be matched to the Airy function solution (see above) in the transition region 
provided that 

Since A,+oo, u,+O and can be neglected in the denominator of (40). (Then [+<,,, 
the zero of M(<).) 

3.7. Lim u,(k) = 0 for the discrete spectrum, unless y = 0 

Next we show that a solution to the eigenvalue problem exists with finite values of 
A, as k+O. Thus, in particular, a finite value of A, exists for k+O, which, since 
A, = k/cr,, implies that u1 + 0 as k -+ 0. If y > 0, this result holds for all M of the kind 

k+O 
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considered which have M ( 0 )  > 0. If y = 0, a solution to the eigenvalue problem may 
not exist for k = 0, as we shall see. We note that a consequence of this subsection is 
that M(O) > 0 is a sufficient condition for instability. 

To see the result when y > 0, formally set k = 0 in ( 2 2 a ) .  A turning point still exists, 
now a t  the zero Q of the function M(g).  Therefore the construction of $3.6 still applies 
for the higher eigenvalues (n+oo). Thus the eigenvalue problem continues to have a 
solution, and there is a least eigenvalue A, > 0. Thus for all modes un + 0 as k -+ 0 and 
therefore the u,(k) take all values from (and including) u = 0 up to (but not including) 
cr = umax as k ranges from k = 0 to k = 03. 

When y = 0, there is no finite zero of M(5) .  In  this case M([)+O as <+03, and if 

for some number c,, the only solution to the problem is the trivial solution q5 = 0 
(see Leibovich 1970, pp. 815-816). Condition (41) usually holds, since in this case 
M ( [ )  = UA U', and Ui (at least) vanishes exponentially fast. 

3.8.  Behaviour of the eigenfunctions of the discrete spectrum 

For [ > 6 > co, where 6 is the zero of M(C)-u2 and Q is the zero of M ,  the eigen- 
functions display exponential behaviour, while for [ < 6 they display sinusoidal 
behaviour. It can be shown that the last local maximum (or minimum) of q5,({) occurs 
at  a point Crn such that Crn < 6 < co. This may be seen by multiplying (34) by $g and 
integrating from 5 = Crn to 5 = 00. The result is 

"(Crn) - ~ Z I  +2(Crn) = - Igm ~ ' ( 5 )  +"c* (42) 
m 

By hypothesis M ' ( [ )  < 0, and for the discrete spectrum A, > 0. Therefore 

N(Crn) - u; > 0. 

Since M is a decreasing function and M(6)  - ui = 0, cm < 6. Therefore the magnitude 
of the eigenfunctions decreases exponentially for 5 > 6. In  particular, the eigen- 
function corresponding to the lowest mode ceases to be oscillatory and reaches its h a 1  
maximum value for < 6. 

Notice that for fixed U, and U this result shows that the effective depth of the 
unstable motion decreases with increasing y. Since M decreases as y increases, So 
decreases as y increases. Therefore the value of y controls the penetration depth of 
the instability 

The asymptotic behaviour of the eigenfunctions is given by 

$,(Q - constant x expf- (Any+ k2)&g] as g+03. (43) 

3.9. The continuous spectrum 

If h = k2/u2 = -p2 < 0, then ( 2 2 a )  becomes 

4 g g  - lu2M(5) + k21 + = 0. (44) 

If p 2 M ( < ) + k 2  > 0 everywhere, then (44) has no bounded solutions. If p2M+k2 
vanishes at C = 6, then the solutions of (44) will be of exponential type for 6 c 6 and 
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of sinusoidal type for c > 5. In  the latter case, q5 will be bounded as 5j-00, and will 
have the asymptotic behaviour 

q5 N constant x sin { (p2y - k2)t  5 + a) 

for some a. These eigenfunctions are improper (they are not square integrable and do 
not satisfy the boundary condition at 6 = co), and correspond to internal waves 
propagating to infinite depths. The spectrum is continuous for all p2 > k2/y. 

4. Examples 
Two simple examples, similar to those of Craik (1977), illustrate the general 

results of $ 3. 
(a )  Let 

M(5)  = (.2: > 09 5 < L, 
-Y, 5 > L, 

where mi is a constant. This corresponds to a linear U and V,. The eigenfunctions are 

for 5 < L, 
A =  { A sin [L(h,m$ - k2)*] exp { - (5- L )  (LY + k2)4} for 5 > L, 

A sin[C;(hnmf-k2)*] 

and the eigenvalues are determined by the dispersion relation 

where 

mo P t anp  = -- 
Y t  (P2+P2P'  

p = L(h,mg - k2)i ,  p2 = k2 L2( 1 + mily). 

Let p ,  satisfy the equation 

or 

where 6 is a well-determined number that depends upon moly* and lies in the interval 
0 < 6 6 1. Denote the value of p corresponding to the nth mode by p,; then n = v + 1 
and 

tanp, = -mo/y4 

p ,  = g7r(1+6)+V7rIT, v = 0 , 1 , 2 ,  ..., 

P, < Pn 6 ( v +  1)T, 
Or 

1 + 6)  + v]2 + k2L2 ( v  + 1)2n2 + k2 L2 
mi L2 < A, < mi L2 

All features described in $ 3  may be easily verified. For example, as k + 00, p-+ 
and therefore tan p +- 0 for any mode with n < 00; hence 6-t 1 and 

or 
A, = k2/cri N k2 mi2( 1 + O( v2/L2 k2)) , 

a; N mi = M(o) ,  

as k+co in agreement with $3.5.  Similarly, as k-+ 0, p-+ 0, and therefore 

p = Lm,Ai = p ,  = constant 

pm 7r(2n+6-1) 

so 
L m k  2Lm, 

C n N L =  k ,  
in agreement with Q 3.7. 
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2 ku- '  

FIGURE 3. Construction leading to u(k) for example (b) of $4. The parameter v, is given by the 
intersection of the B(v) curve with f;). The growth rate u, of the nth eigenmode may be found 
from v,. 

(b )  As a second example, take the more realistic case 

M(C) = JGP2 exp ( -PO - 7% 

This corresponds to a situation in which the product UL U' decays exponentially, as 
might be expected, and the water density is linearly stratified. 

The change of variable y = e-pc transforms the eigenvalue equation into a Bessel 
equation, and the solution satisfying the boundary conditions is 

4 = cJ,(PeXP[-*PCl), 

where J,, is the Bessel function of order v > 0 and 

/r3 = 2M0A! =j?), v = (2/p)[k2+yA,]*.  (45) 

Here j(:) is the nth zero of J,,. 

1964, 55.22, p. 371) 

where b, depends upon n. From the definitions of /3 and v ,  we see that, on eliminating 
A,, P can be expressed as a function of v alone, 

We note that the asymptotic behaviour of j, as v - + m  is (Abramowitz & Stegun 

j(;) N v + b,v+ + O(v-f),  

P ( v )  = (pJf,/y*) (v2 - 4k2PU-2)*, 

and that the asymptotic slope of the P(v)  curve as v- tco  is pM,/y*. The schematic 
construction in figure 3 then shows how the dispersion relation (45) may be solved. 

If p M ,  > y i ,  then the P(v )  curve will intersect all thej(,") curves at points v = v,(k) 
that depend upon the value of k/p .  Note that this slope condition is equivalent to the 
condition M ( 0 )  > 0, which is the necessary and sufficient condition for instability. 
From (45), the eigenvalues are 

a, = 2M0k/v,(k).  
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FIGURE 4. Sketch explaining the physical origin of the instability in terms of torques produced 
by variations of the vortex force. Only the vortex-force component (F,) arising from the 
x-independent velocity perturbation u(y ,  z, 0) is shown. 

Notice that the value of u,(O) is well determined and finite, so that as k+ 0 

o;, = 2Jf,k/vn(O), 
in conformity with the general results in $3.7. Similarly, as k+m, v,+m (since 
v, > 2k/p) .  Since j(:) N v as v-too, (45) has the solution 

V: - 4k Mi/(p2  M i  - y) ,  

which gives fl: N p 2 M i - y  = M(O), 
which is in conformity with $3.5. 

5. Physical explanation of the instability: analogy with thermal convection 
Craik (1977) has given an explanation of the instability (in constant density water) 

in terms of the vorticity. Here we prefer to base our discussion on the ‘vortex force’ 
us x (0) imposed on the mean flow by the simultaneous presence of waves (hence us) 
and currents (hence (w) # 0). 

Suppose that a parallel shear flow has developed, so that (v) = U i ,  with aU/az # 0, 
and that surface waves impose a Stokes drift u, = U,(z)i, with Ui(z)  > 0. Also, let 
(0)  = 0. This is a possible state of motion, and satisfies (12) (if vT # 0, then U must 
be time dependent, and U ,  = vT Uzs).  The vorticity associated with the motion is 

(w) = (-aU/az)j 

(where j is a unit vector in the y direction) and is perpendicular to us, so the vortex 
force is vertically upward and uniform in horizontal planes. This force is felt as a 
pressure, balanced by n, and induces no accelerations. 

Now suppose that the velocity profile is slightly disturbed a t  time t = 0 by an 
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amount u(y, z, 0 )  as shown in figure 4. Then the perturbation is y dependent, and is 
associated with a vertical vorticity component - a(u)/ay. In  the disturbance illus- 
trated in figure 4, the vertical component of vorticity w, is negative for y < 0 and 
positive for y > 0. The displacement does not affect u,(z), so a vortex force acts on 
either side in the direction of the plane y = 0,  where u(y,  z ,  0 )  has its maximum. Since 
u, decreases with depth, a similar but weaker set of vortex forces will act a t  greater 
depth. The vortex-force distribution with depth on a plane y = yo = constant there- 
fore produces a net moment T in the direction of x increasing if yo > 0 or in the 
opposite direction if yo < 0. The directions of the couples, shown in figure 4, are such 
as to produce a circulation with a convergence at the plane y = 0, where u(y,  z, 0)  has 
its maximum. Therefore the vertical velocity component is negative at y = 0, and 
the non-diffusive form of (12) requires that the perturbation u satisfies 

aulat = - (w) aulaz 

at a plane of downwelling (since (v) = 0 there and U u) in an x-independent motion. 
Since (w) < 0 and aUl8.z > 0 at y = 0, au/at > 0. Therefore the initial perturbation 
u( y, z, 0) grows with time. 

The discussion so far has ignored density effects in order to focus on the destabilizing 
forces. The tendency for downwelling to form leads to a zone of light fluid near y = 0 
and heavier fluid on either side. Thus the gravity forces, which are vertical, are greater 
away from the plane y = 0 than they are on that plane. Consequently, the gravity 
force on a plane z = constant produces a torque on the fluid that always opposes the 
torque T described above. Therefore stable stratification opposes the tendency to 
overturn the fluid, and stability or instability results from the net action of these 
opposing forces. 

The driving mechanism in CL and I may be explained in a similar way, but it is 
the imposed spanwise variation of us that produces a net torque (even without an 
initial perturbation of the vortex lines). 

Next observe that for x-independent motion (18) show that, if U i  = constant, the 
effect of the vortex force is completely analogous to that of the buoyancy force, and 
the x component of the velocity is analogous to temperature. Although (18) have 
been linearized, their nonlinear counterparts share this characteristic. Now U: = 

constant is not usually a justifiable approximation. Nevertheless, if one makes this 
assumption, results in the thermal-convection literature may, when suitably inter- 
preted, be applied to the present problem. 

Consider the question of the infinitesimal steady convection, with heat conduction 
and viscosity accounted for but with UL(z) taken to be a constant. From (18), this 
problem is governed by (after suitable reduction) 

(where PrT = vT/ctT).  Let us choose K - ~  to be our length scale, where K is a wavenumber 
characterizing the surface waves. If a typical amplitude of the surface waves is E/K 

and the corresponding frequency is a,, then the Stokes-drift gradient has a scale 
2s2u,. At the surface, the stress condition requires that U' = U $ / v T ,  where u* is the 
water friction velocity, so we take u$/vT as a scale for U' and set 

U'U.; = (2E2g ,  u$/VT)G(c) ,  

V f  A3 w = ( u: u' - /?gF'PrT) AIW 

where c1 is a dimensionless function of g = - KZ.  
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Set 

Then 
S = J? Ra, f(6) = a([)  - r. 

A2w = Raf(c)A,w. 
This equation is of the form treated by Whitehead & Chen (1970) and we have intro- 
duced the same symbol as they employ for the parameter Ra (their Rayleigh number). 
We note that, in the notation of I, 

Ra = 2La-2, 

where La is the Langmuir number. Whitehead & Chen treat several examples of 
functions f (6). In  particular, they consider the example 

with I? = constant, which is considered in $4. For a stress-free isothermal top boundary 
(w = w,, = 0 = 0 a t  z = 0 ) ,  they found that the critical Rayleigh number Ra and 
critical wavenumber kc varied with the parameter S as shown in figure 5 (adapted 
from their figure 4). 

For the example illustrated, the critical Rayleigh (or Langmuir) number is in- 
sensitive to the stabilizing gradient S and to a lesser extent the same is true for the 
critical wavenumber. For other examples calculated by Whitehead & Chen the critical 
wavenumber (in particular) showed a greater dependence on S. 

Although the critical Rayleigh number and wavenumber depend only weakly upon 
S, the plots of eigenfunctions in Whitehead & Chen's figure 5 show that the effective 
depth of penetration (and hence the cell aspect ratio) does depend strongly on S. The 
effective depth of the unstable layer decreases with increasing stabilizing gradient S, 
which is a behaviour that is apparent from the inviscid analysis of $3.8. 
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6. Discussion : application to Langmuir circulations 
The inviscid stability analysis tells us that growth rates are a fraction of 

c m a x  = (u20) u'(0) -P@'(o))' 
and that the most unstable wave is that of vanishingly small wavelength. The Brunt- 
Vaisala frequency N(z )  = (pgP(z))*, and Ui(0)  and U ' ( 0 )  can be characterized as in 
the last section, so we may write emax as 

e m a x  (2E2csuz/vT-N2(0))*. (46) 

N 2  is usually very small, particularly near the surface, and can be neglected. One way 
to estimate umax is to refer to I [equation (14)], which, shows that u$/vTrs is of the 
order of the wind-drift current (with a scale measured in I by E, = u$/vT cs). Since the 
wind-drift current is of the order of 3 yo of the wind speed, we estimate (46) to be 

cmax N ~c~(0*06)* = 0 . 2 ~ ~ ~ .  

A typical value for E is i, so we may estimate 

emax = o(0.025 us). 

The frequency u, is typically of the order of 1 s-l, which gives an e-folding time of 40 s. 
A growth factor of lo4, say, requires a growth time of 6 min for the most unstable 

waves on the basis of the estimates of the previous paratgraph. However, the effects 
of viscosity are certainly not ignorable for waves with wavenumbers as large as, or 
larger than, (umax/vT)a. The high wavenumbers, which are most unstable on inviscid 
grounds, are certainly damped by the dissipative effects that we have left out of the 
analysis. (For the value of urnax found above and vT = 10cm2/s, the viscous cut-off 
wavenumber is (&) cm-l, corresponding to a disturbance wavelength of 1.26 m.) 
Consequently a somewhat smaller growth rate, and thus a longer growth time, is 
indicated. Nevertheless, one expects a growth time that is a modest multiple of the 
estimate above, which would then be in accord with observed Langmuir-circulation 
growth times. 

As indicated above, there is no preferred wavelength in the non-dissipative prob- 
lem. When viscosity and heat conduction are allowed, however, as in the (imperfect) 
analogy in the previous section, a preferred wavelength does emerge. For the example 
described in $ 5 ,  the preferred wavenumber depends upon the strength of the stable 
density gradient, but varies from small values up to about Ic = 2 ~ .  (We note that we 
may write S = N2Pr K - ~ V > ~ .  For K - 1 m-l, N - 6 x 10-39-1 and vT = 20cm2/s, 
S - 6.25Pr. For Pr - 7, S = 44, where, from $ 5 ,  k , / K  = 1.  Reducing vT by half or 
more raises 8 to a range where k , / K  is level and approximately equal to 2.) Thus the 
wavelength of the preferred mode is of the order of the wavelength of the dominant 
surface waves. The critical Rayleigh number for the example cited is about 300. 
Since Ra = ~ L u - ~ ,  and values of La are, according to I ($7) ,  typically of the order of 

The example above should be viewed with caution, since the neglected effects of 
the curvature of the Stokes-drift profile will certainly alter the quantitative details. 
Consequently, one must not place much weight on the values of the critical wave- 
number or Rayleigh number. Nevertheless, it is unlikely that a proper analysis would 

in the oceans, we expect oceanic conditions to be far above critical. 



Convective instability of stably strati$ed water 581 

lead to a critical Rayleigh number several orders of magnitude larger than the one 
cited in $5. 

Thus we interpret the ‘analogy’ and the non-dissipative stability analysis as both 
suggesting that a wide range of typical conditions in the ocean are highly unstable on 
linear grounds as a result of the rectified effects of surface wave activity. It would, 
in my view, be unwise to offer a theoretical mechanism as an ‘explanation ’ of Lang- 
muir circulations until the fully nonlinear problem has been carefully explored and 
compared with observation. The instability mechanism has interesting possibilities 
as an ultimate explanation, and we have therefore undertaken a numerical study of 
finite amplitude unstable motions that we hope to report in due course. 

I am grateful to Dr A. D. D. Craik for showing me his work on the instability 
mechanism for generating Langmuir circulations in water of constant density. 
This work was supported by the National Science Foundation under Grant 
DES 74-13057AOl. 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I. A. (eds) 1964 Handbook of Mathematical Functions. Washington : 

CRAIK, A. D. D. 1977 The generation of Langmuir circulations by an instability mechanism. 

CRAIK, A. D. D. & LEIBOVICH, S. 1976 A rational model for Langmuir circulations. J .  Fluid 

DRAZJN, P. G. & HOWARD, L. N. 1966 Hydrodynamic stability of parallel flow of inviscid fluid. 

FOSTER, T. D. 1965 Stability of a homogeneous fluid cooled uniformly from above. Phys. Fluids 

FOSTER, T. D. 1968 Effect of boundary conditions on the onset of convection. Phys. Fluids 11, 

INCE, E .  L. 1956 Ordinary Differential Equations. Dover. 
LEIBOVICH, S. 1970 Weakly nonlinear waves in rotating fluids. J .  Fluid Mech. 42, 803-822. 
LEIBOVICH, S. 1977 On the evolution of the system of wind drift currents and Langmuir circu- 

lations in the ocean. Part 1. Theory and the averaged current. J .  Fluid Mech. 79, 715-743. 
LEIBOVICH, S. & RADHAKRIBHNAN, K. 1977 On the evolution of the system of wind drift currents 

and Langmuir circulations in the ocean. Part 2. Structure of the Langmuir vortices. J .  Fluid 
Mech. 80, 481-507. 

Nat. Bur. Stand. 

J .  Fluid Mech. 81, 209-223. 

Mech. 73, 401-426. 

Adv. in Appl. Mech. 9, 1-89. 

8,  1249-1257. 

1257-1262. 

MORSE, P. M. & FESHBACH, H. 1953 Methods of Theoretical Physics, vol. 1. McGraw-Hill. 
PHILLIPS, 0. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press. 
POLLARD, R. T. 1976 Observations and theories of Langmuir circulations and their role in near- 

WHITEHEAD, J. A. & CHEN, M. M. 1970 Thermal instability and convection of a thin fluid layer 

YIH, C.-S. 1974 Wave motion in stratified fluids. In  Nonlinear Waves (ed. S .  Leibovich & 

surface mixing. Deep-sea Res. Sir George Deacon Anniversary Suppl. 

bounded by a stably stratified region. J .  Fluid Mech. 40, 549-576. 

A. R. Seebass), chap. 10. Cornell University Press, Ithaca, New York. 


