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Executive Summary

This is the Final Report for Minerals Management Service Contract 14—
35-0001-30612.

The Minerals Management Service is responsible for assessing environ-
mental risks associated with shipping and offshore production of oil. A basic
tool in the risk assessment procedure is a computer model that simulates
the motion of oil on the sea surface. The research carried out under this
contract treats near-surface physical behavior not included in existing oil
tracking procedures, but which has the potential to significantly affect oil
trajectories.

Existing oil spill models do not account for energetic wind-driven convec-
tive motions, known as Langmuir circulation, that can affect surface trans-
port. Nearly thirty years of observations of oil spill events at sea clearly
shows that this phenomenon alters the surface distribution of oil.

Langmuir circulation is the three-dimensional current system driven by
the wind. The surface drift current created by Langmuir circulation has
downwind and crosswind components. The crosswind component sweeps
floating surface material into bands parallel to the wind. Field observa-
tions of this banded structure appear in all detailed reports of oil spills at
sea. Crosswind sweeping affects downwind transport rates because of the
crosswind variability of the downwind surface drift velocity in the Langmuir
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circulation system. In particular, the downwind surface speeds are larger in
the surface convergence zones, where flotsam collects, than elsewhere on the
surface. The vertical motions in Langmuir circulation systems are compara-
ble to the surface sweeping component. As a consequence, in addition to the
surface organization of oil, Langmuir circulation promotes the suspension of
oil into the water column. To the extent that this subsurface suspension is
significant, it should affect the fate of spilled oil, as well as prospects and
strategies for oil-spill cleanup.

All of these consequences of Langmuir circulation are considered here.

This report is divided into two parts. In Part I, the physics of the in-
teraction of floating oil with the wind driven Langmuir current system is
reviewed and extended as needed to provide reasonable estimates of the ef-
fects on oil transport. In Part II, this information is assembled in a computer
code for the surface and subsurface transport of oil. Part II can be read in-
dependently and used to experiment with the effects Langmuir circulation
may have on oil spill transport. .

The models introduced in Part I are aimed at estimating transport from
commonly available environmental data. The bulk of Part I was written over
the five year span of the contract. During the course of the effort, some of
the initial strategies tried were abandoned in favor of others, and the written
accounts of these preliminary avenues of investigation submitted earlier to
the MMS are omitted from Part I. For example, hindcasts of the Pacific
Ocean field experiments known as MILDEX were carried out using direct
numerical simulation of the nonlinear partial differential equations thought
to govern Langmuir circulation. These were reported to MMS in extensive
detail in 1992 and 1993, but are excluded from Part I.

Those portions which are retained contribute to the final transport model
proposed. For the most part, the report carries over portions originally sub-
mitted to MMS as preliminary reports. As a consequence, references to
research on Langmuir circulation published in the interim have not been
systematically incorporated. Some of the elements included describe efforts
that are important to oil spill transport and fate, but are not implemented
in the final transport model because it is believed that further research is
advisable. For example, the chapter devoted to modelling the breakup of
floating oil into fragments that can be drawn into suspension in the water col-
umn requires data and hypotheses concerning turbulence right at the ocean
surface. The results of the model indicate that the assumptions concerning
turbulent intensities in this region may need further examination.

Part II of the report is intended to bring the physical models for near sur-
face oil transport developed in Part I into concrete form by construction of
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a computer code for oil spill trajectory simulation embodying these models.
This has been implemented in MATLAB! in a code dubbed OILTRACK.

Environmental data of only a limited nature is available, and gaps in
available data make it necessary to adopt or develop mathematical models
for characteristics of the ocean environment needed to determine near surface
motions and oil transport. The development of such models has been an
important part of this research program.

Input data to OILTRACK consists of wind speed and direction at a
prescribed sampling rate; background surface current (not locally wind gen-
erated), provided from an external program, historical data, or observation;
mixed layer depth as determined from on-scene measurements, or historical
data at the given time of year at nearby locations (if no data on mixed
layer depth is available, an Ekman layer depth is substituted, requiring the
latitude to be provided); water temperature and salinity; oil density and
its interfacial tension against seawater (this may include an algorithm to
account for changes in properties with weathering).

From this input data, the computational model produces the sea state,
which is required for the existing theory of Langmuir circulation, and a set of
oil transport “attributes” that extend or improve the information provided
by past oil spill prediction technology. These attributes include Lagrangian
oil surface transport velocity, accounting for surface velocity structure; col-
lection rates of oil into windrows, or “oil lanes”; oil lane separation; the
fraction of open surface water and oil lanes. In addition to these attributes,
the modelling of Part I permits additional attributes — the percentage of
subsurface oil; percentage of oil in oil lanes; oil resurfacing time; and the
depth of subsurface oil concentrations ~ to be calculated. The models for
these attributes depend directly on the breakup of floating oil, and their
implementation in OILTRACK has consequently been deferred.

'MATLAB is a trademark of The MathWorks, Inc..
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Chapter 1

Introduction to Langmuir
Circulation and its effects on

Surface Drift

1.1 Introduction

Irving Langmuir carried out the first scientific investigation of the phe-
nomenon now called Langmuir circulations, and reported the results in 1938
([44]). This physical phenomenon became known to him as a consequence
of the spatial aggregation of biological material that it caused, and which he
observed as rows of Sargassum on the ocean surface during a cross-Atlantic
voyage by ship. Had the patchiness in the Sargassum distribution been less
apparent, it is very likely that the dlscovery of the physical phenomenon
would have taken a much longer time.

The rows were essentially parallel to the direction of the surface wind,
and are called windrows. Earlier published references to rows aligned with
the wind on natural bodies of water can be found (see the review in [52]), but
the underlying causes had not been considered. Langmuir, in the subsequent
series of experiments on Lake George in New York State reported in his 1938
paper, showed that the collection of surface material into rows was due to
convective motions, and inferred that the phenomenon owed its existence to
the action of the wind through some unknown mechanism.

The potential biological significance of Langmuir circulations was quickly
appreciated, being first pointed out by Woodcock [92] in 1944. The relevance
to marine biology is now commonly recognized (see, for example, the reviews
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by Fasham [20] and by Denman & Powell [19]). In an important short paper,
Stommel [82] recognized that Langmuir circulations, as well as other con-
vective motions, can lead to a suspension of particulate matter well removed
from the surface at which, by virtue of their weight, they would normally be
imagined to congregate. This observation enlarges the scope of spatial ag-
gregation from a surface phenomenon situated at locations of surface water
convergence to a three—dimensional question. The vertical transport in con-
vective motion apparently is of greater biological import than the horizontal
sweeping that creates the most readily observed patterns. This conclusion
is likely to apply with equal force to the motion of oil spills.

Patterning of the sea surface by convective processes clearly has a poten-
tial impact in creating patterns, both in the horizontal and in the vertical,
of any buoyant material introduced into the ocean, whether living or not.
Here the interest is in the distribution of oil spilled at sea. In this context,
the known features of Langmuir circulations suggest that the interaction of
spilled oil with this physical phenomenon should affect the net rate of move-
ment of the oil, as well as its distribution both on and below the sea surface.
These known features will be surveyed in the next section. It can be stated
with confidence, however, that Langmuir circulations do affect the distribu-
tion of spilled oil, since there are a number of observations confirming this
effect (see, for example [5], [30]).

Convective processes such as Langmuir circulation are not the only phys-
ical phenomena leading to the formation of patterned arrangements in the
upper layers of the ocean. These arrangements commonly appear in the
form of rows, and reports of such patterns may be traced back hundreds of
years [6], although mostly without recognition that the material making the
patterns visible was living. In [70], zooplankton OQikopleura longicauda were
observed collected into rows by thermal convecttion, which occurs when
there is cooling of the water at the air-sea interface). Other mechanisms
such as thermohaline convection, which is due to very disparate rates of the
molecular diffusivities of salt and heat, internal wave activity, and fronts
separating water masses with different properties, and a number of other
possible causes, may lead to patterning. :

§1.2 discusses the occurences of Langmuir circulations and the impli-
cations the phenomenon has on physical oceanography and on pollution
questions. In order to introduce the central theme of convective instabil-
ity in the simplest terms, the physical mechanisms responsible for thermal
convection, the prototypical convective activity, will be discussed in a non-
mathematical fashion in §1.3. The relevant scales for these processes are
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extracted heuristically, with the aim of developing an understanding of the
prospects for interaction with floating material, such as oil, in the ocean.

The discussion of Craik-Leibovich (CL) theory of Langmuir circulations
starts in §1.4 with a review of the basic fluid mechanical concept of vor-
ticity, which comprises the first element needed for Langmuir circulations
to exist. The second element needed, according to the CL theory, is prop-
agating surface waves. Propagating fluctuations create a slow mass drift,
known as Stokes drift, and §1.5 discusses this Lagrangian drift current. The
formal derivation of the CL theory follows in §1.6. In §1.7, a heuristic and
nonmathematical discussion is presented arriving at the relevant scales for
the convective motion in Langmuir circulations. The approach here follows
the method used for thermal convection. To calculate many Langmuir cir-
culation fields from the full CL theory is a formidable task, and a method
of reduction of the complexity is outlined in §1.8. This will be explained in
some detail in subsequent chapters.

1.2 Occurences and Implications of Langmuir Cir-
culations

A survey of observations of Langmuir circulations prior to 1982 may be found
in the review [52]. In this chapter, a distillation of the features reported in
these observations will be given, together with a synopsis of the more recent
field observations. The early observations are often confined to the visual
appearance of surface patterns. Even when subsurface measurements were
also included, the data on water motions was fragmentary, and reports of
surface wind speeds and sea state were not given concurrently. As attempts
at theoretical description suggested the need, and as improvements in mea-
surement technology became available, field experiments have become more
comprehensive and complete. In a subsequent section, the important data
recorded by Weller and Price [88] will be analyzed.

1.2.1 General Description of Langmuir Circulation

Langmuir circulations are generally agreed to be generated by the wind,
as Langmuir himself originally concluded [44], and to take the form of a
series of counterrotating vortices with axes closely parallel to the wind di-
rection. The vortices lie in the upper layers, extending from the surface to
some depth that cannot be considered to be definitively established. An
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Figure 1.1: Sketch of the general features of Langmuir circulations, taken
from Pollard.

immediate consequence of the vortices is the production of lines of surface
convergence, which, though coexisting with a wind—generated surface wave
field that produces substantially larger water particle speeds, nevertheless
is persistent, and sweeps floating material into rows, known as “windrows”.
Figure 1.2.1 illustrates the general features of Langmuir circulations (which
will often be abbreviated in these reports as LC). The particular values cited
on the sketch, which is taken from Pollard [73], may be regarded as more
or less “typical”. The values for the windward and vertical velocities, for
example, must scale with the surface wind speed. Furthermore, the more de-
tailed “modern” measurements suggest that the intensity of the circulations
is greater than that suggested in the sketch.

The surface streaks are readily visible when the wind speed exceeds 3m/s,
provided surface tracer material, such as seaweed, foam, or other flotsam is
abundant. Even in the absence of flotsam, naturally occuring organic film
is swept into the windrows, and, because capillary waves are damped by
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the presence of the film, windrows may be visible as slicks where the water
surface is relatively smooth. The surface streaks are often quite regularly
spaced; at other times, they are somewhat less regular, but they are always
aligned close to the wind.

This direct association of the vortical structures with the wind may be
taken to define Langmuir waves to interact with a current, and still produce
surface rows. As a consequence, surface rows may, at least in theory, result
from swell originating at some distant source of wind forcing, provided the
current structure is suitable. Thus local wind forcing may not be necessary
to the existence of wave—current generated set of surface rows. With this
in mind, it is reasonable to assume that the primary role of the wind in
Langmuir circulations is to generate both surface waves and current which
have the relationships appropriate to each other to result in the characteristic
vortical structures.

Although many of the reports of Langmuir circulations suggest a min-
imum wind speed of 3m s™!, this condition is not required. Because the
circulations have been observed for lower wind speeds, it appears that the
minimum wind speed, assuming that one exists, does not have a univer-
sal threshhold value, but instead depends on the situation in a potentially
complicated way.

Windrows form within a few minutes of the onset of a sufficiently strong
wind. Since windrows lie above convergence zones, the spaceing between
two neighboring rows describes the horizontal width of a pair of counter-
rotating cells. The rapidity of formation suggests that the circulations are
initially shallow and of small scale. Observational evidence indicates that
the convective cells produced by the Langmuir vortices may extend to the
base of the mixed layer, typically several tens of meters. This indicates that
the cells, though initially affecting only a shallow layer, grow in scale and
penetrate deeper with time. The spacing of windrow ranges from lengths
on the order of a meter to hundreds of meters. A hierarchy of scales is often
reported, suggesting that the small scales are continuously produced, and
cascade to larger scales with the largest scales limited by the depth of the
existing mixed layer.

The downwelling flow, under the lines of surface convergence, and the up-
welling flow, under lines of surface divergence, are not symmetrical. Indeed,
the downwelling takes place in a relatively concentrated “jet” occupying only
a minor fraction of the spacing between rows, and therefore the downwelling
is substantially more intense than the upwelling, which is spatially more
diffuse, and presumably occupies the balance of the space outside of the jet.
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The windward surface currents are also stronger in surface convergences
than they are outside of the downwelling jets. This surface current anomaly
is almost always reported, usually without concurrent reporting of the wind
speed or further details of the current structure.

1.2.2 Data from FLIP

While visual observations of LC in the ocean are numerous, detailed mea-
surements are extremely difficult. The measurements reported in Weller et
al. [89], and in particular in Weller & Price [88] and Smith et al. [80] are
unique and extremely valuable. These papers describe data taken during
a series of three cruises (the third as part of the MILDEX - Mixed Layer
Dynamics Experiment), in 1982 and 1983. The measurements were made
from the Research Platform FLIP of the Scripps Institute of Oceanography
as it drifted from 200 to 850 km off the coast of California. The experi-
ments are unique, because they provide accurate three-dimensional velocity
and temperature data from the surface to the thermocline, together with
simultaneous records of wind speed and direction, sea surface temperature,
surface visualizations of windrows which could be correlated with velocity
features, and finally, a rough indication of sea state.

This experiment confirmed the following characteristics of LC, which
had previously emerged as a composite picture of many earlier and more
fragmentary studies.

e LC cause convergences, or windrows, approximately parallel to the
surface wind direction.

o The penetration depth is a significant fraction of the mixed layer depth,
which during their experiments was on the order of 50 m. They found
strong effects of LC down to about half (20-35 m) the mixed layer
depth. Reports from other studies indicate penetration throughout
the mixed layer.

e Convergences were found in a hierarchy of spacings, ranging from sev-
eral meters up to 100 m.

e Vertical downwelling speeds below surface convergences in excess of
25 cm/s were measured, amounting to as much as 2% of the wind
speed. Downwelling zones are narrow compared to a broad and diffuse
upwelling that occurs between convergences. This narrow “jet” has
been reported by virtually all observers.
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Figure 1.2: Measured data in Langmuir circulations, from Weller & Price.

o Associated with the downwelling jet is an increase of speed in the
downwind direction of a comparable amount. Thus, the jet is ori-
ented roughly 45° to the horizontal. Furthermore, this downwind
speed anomaly is greatest a few meters below the surface. That this
might happen was predicted ten years earlier in calculations from the
CL theory (see [50], [54]).

Figure 1.2.2 is from the Weller & Price paper. This figure graphically
presents their data and concisely captures the general structure of Langmuir
circulations.

A number of ambitious field experiments have been carried out since the
MILDEX project discussed above, but the features outlined have not been

altered. A large body of recent data is discussed by Plueddemann et al.
(1993).

1.2.3 Implications of Langmuir Circulations: Physics of the
Mixed Layer

The mixed layer connects the atmosphere to the ocean. Most of the solar
radiation is absorbed in the waters of the mixed layer, and the heat stored
here is later redistributed. The momentum transferred from air to sea, like
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the heat transfers, are communicated through the mixed layer.

The distribution of heat, buoyancy, and gas exchanges modulated by the
mixed layer are important to the general circulation of the ocean, to climate
modelling, to an understanding of the CO5 budget, to marine biology, and
to naval operations.

Langmuir circulation constitute one of the mechanisms that maintains
the mixed layer in its mixed condition. The stirring needed to keep the prop-
erties of temperature, salt, momentum, and passive additives like dissolved
gases nearly uniform in the mixed layer is accomplished by small scale turbu-
lence generated by shear instabilities and by breaking waves, and convective
motions arising from thermal instability and from Langmuir circulations.
The latter do not require surface cooling needed for thermal instability, and
are commonly present when there is at least a modest wind. Furthermore, in
a modest wind, the Langmuir circulation mechanism is more powerful than
thermal instabilities arising from typical surface cooling. In contrast to in-
coherent turbulence, Langmuir circulations are large scale, and penetrate
most of the water in the mixed layer. In this way, the large scale stirring
actively ties together the entire mixed layer, and thereby serves as efficient
means of homogenizing the bulk properties of the mixed layer.

It is worth noting that, when both thermal instability and Langmuir
circulations are simultaneously possible, the resulting motion appears like
Langmuir circulations, but with added vigor. When there is surface heating,
thermal effects are stabilizing. Nevertheless, Langmuir circulations are still
possible and continue to be effective in mixing the upper layers, although
the stabilizing thermal effects may weaken the mixing effect. Both the en-
hancement effect of thermal instability and the restraining effect of thermal
stability on Langmuir circulations have been documented (see the survey [52]
for references). More recently, Li and Garrett [60] have used the CL the-
ory to assess the relative importance of thermal instability and Langmuir
circulation, and conclude that under reasonable values of surface cooling,
Langmuir circulation dominates even under relatively low wind conditions.

where Prr is a turbulent Prandtl number. Assuming prescribed stress
and waves, they determine the value of the H They conclude that under
typical conditions of surface heat flux and wind generated waves

1.2.4 Implications of Langmuir Circulations: Oil Spills

The role of Langmuir circulations (LC) in the formation of surface oil into
bands has been discussed (see, for example, [30], [5]) in reports of the phys-
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ical surveys of oil spill occurences at sea.

A common rule of thumb used to estimate the surface drift of floating
material under wind action is to assume that it moves at a speed proportional
to the wind speed. The constant of proportionality is often fixed at 3% to
4% of the wind speed.

It has been known, at least since the Santa Barbara Channel blow—out
in 1969, that oil tends to collect in bands on the sea surface. This is the
origin of the formation of bands of oil that subsequently form “ropes” of
“chocolate mousse” as the oil incorporates water in a water—in—oil emulsion.
In fact, the organization of floating material into streaks aligned within a
few degrees of the wind direction has been known for much longer, the first
scientific documentation of windrows being due to Langmuir in 1938 [44],
and rapidly being documented to be of ecological importance by marine
biologists. Among the documentations of banded structure in the context
of oil spill events may be found in the accounts given in [5] concerning the
IXTOC I oil spill in June, 1979. Color photographs included in that report
and in an earlier NOAA report on the AMOCO CADIZ accident ([30])
show banded oil structures similar in all main respects to bands of marine
organisms.

It is known that water in windrows moves faster than water between
windrows. A survey of the main characteristics of Langmuir circulations
(LC), the general origin of windrows, will be given in §8. For the purposes
of this section, it suffices to say that it is known that surface convergences
marked by windrows contain narrow “jets” of fluid moving at speeds that
can be more than twice the speeds between convergences. Furthermore,
these jets have a vertical component, and carry water down, as well as
downwind, at an angle of roughly 45° to the horizontal (see measurements
made from R.P. Flip by Weller and Price [88]), and the maximum in the
downwind velocity occurs below the water surface. Data indicates that the
downwind velocity anomoly is comparable to the vertical velocity anomaly
in LC. Weller & Price, for example, found maximum vertical velocities in
their LC data that exceeded 2% of the wind velocity.

Since floating material is gathered in convergence zones, it is affected
more by the underlying water motion in these regions than it is by the
average water motion. The implications for oil movement prediction are
obvious and significant. For example, if the wind is steady in direction and
speed at 10m/s, and if all of the oil were concentrated in windrows and
moved with the underlying water, then in a 24 hour period the oil would
move 17.3 km further than would the horizontally averaged surface water.
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This is likely to exaggerate the effect of windrows, but also illustrates their
potential relevance to surface transport. Another way to look at the effect
is this: if the “rule” adopted is to estimate the wind induced current at
3.5% of the windspeed, then oil concentrated in windrows can move at up
to 5.5% of the windspeed. This may well be an important contributor to
the notorious variability of the parameterization of drift with wind speed.

1.3 Thermal convection: Mechanism and scales

Convective processes are mainly up-down water motion set up by vertical
gradients. They tend to equalize the vertical property variations in the water
column responsible for the convection. This means that they are inherently
self-limiting, since they act to erase the agency that gives rise to them. The
prototype of convective processes is thermal convection, and we start by
looking at this phenomenon in an entirely heuristic and physical way.

The standard idealized model for thermal convection, upon which more
realistic problems are based, contemplates a horizontal layer of fluid (liquid
or gas) of finite depth, say d. Its top surface (coinciding with the plane
z = d) is maintained at one fixed temperature, T},p, and the bottom surface
(at the plane z = 0) is held at a another fixed temperature, Thortom >
Tiop- Under most circumstances, fluids expand when heated and thereby
become less dense, or lighter per unit volume, and contract and become
more dense, hence heavier per unit volume, when cooled. Heavier fluid lying
above lighter fluid will, as common sense would tell us, tend to sink. “Tend”
is the operative word, because if the fluid temperature and hence its density
were stratified in perfectly horizontal layers, the temperature and density
varying only in the vertical direction, z, it would be in equilibrium and could
maintain this (unnatural) state of affairs forever if left unperturbed. The
equilibrium is one with no motion, and a temperature variation

z
T = Toottom — AT+

d’ AT = Tbottom - Ttop-

It is impossible to prevent very small disturbances to this (Platonic)
situation, however, and so one must suppose that any equilibrium will be
disturbed so that there are (at least very small) variations of the density
in the horizontal as well as the vertical direction, and the equilibrium force
balance will be disrupted, causing motion. Still, the motion that results
could either further disrupt the equilibrium, leading to an increase in the
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disturbance or it could decrease, returning the system to its original condi-
tion. The first possibility is the hallmark of an unstable equilibrium, and
the second of a stable one.

It is an empirical fact that disturbances do tend to damp out, implying a
stable situation, when the temperature difference across the layer is smaller
than some clearly defined amount that depends on the depth of the layer,
say d, and the properties of the fluid involved. Why doesn’t the heavy
fluid always continue to sink and the light fluid always rise, even when the
temperature difference is small? The answer is that the cold fluid gains heat
from the warmer surroundings it falls through, and the rising hot fluid cools
down as it loses heat to the colder surroundings it traverses during its rise.
If the temperature anomaly of a falling or rising blob starts out being too
small, it can be dissipated before the blob has had a chance to move any
significant distance. This can be seen from the following simplified analysis.

Suppose our static equilibrium state is slightly disturbed so as to produce
a small blob of fluid hotter than the surrounding fluid, with a temperature
excess 6T'. Suppose the blob has volume V/, so its characteristic length scale
is a = V1/3. Because the blob is hotter, it is lighter than the surround-
ings, with a density difference 6p = —pB(6T), where 3 is the coefficient of
thermal expansion of the fluid. Since it is lighter, the blob experiences an
Archimedian buoyancy force, B = —gépV, where g is the acceleration due
to gravity. The buoyancy force causes the blob to rise (slowly, because |§p]
is small). If the upward speed of rise is U, the frictional drag, F, with which
the surrounding fluid resists the motion of the blob is proportional to U, to
the coefficient of viscosity, x, and to the length scale of the blob, a, or

F = O1Ia/1U,

where C} is a dimensionless number that depends only on the shape of the
blob. For example, if blob were a rigid sphere of radius R, F = 67 RuU, so
in this case C; = 2(97/2)%/3,

The blob loses heat to the colder surroundings. If this were not the case,
the higher the blob would rise, the greater its temperature excess relative to
the fluid it encountered, causing the buoyancy force to become larger, and
its upward speed larger, and so on. The heat transfer between the blob and
its surroundings takes place on a time scale 7 proportional to the surface
area, a2, and inversely proportional to the thermal diffusivity, k, of the fluid,

so
T = CgaQ/m,
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for some dimensionless constant Cy. In the absence of heat transfer, a fluid
blob displaced vertically upward a distance £ will keep the temperature of
the background fluid at the location from which it started. Its temperature
excess relative to its new location is therefore (AT /d)¢. But heat transfer
does occur, and the temperature tends to equalize in a time interval of order
7. For the purpose of estimating a sustainable temperature excess of a blob
moving vertically upward, we therefore may suppose that ¢ is of order of the
distance the blob may move in a time of order =. This estimate indicates a
temperature excess of

AT
6T = 'd—U T,
and a corresponding buoyancy force of
B = M pVU Csa?.

Kkd

Newton’s second law applied to the vertical direction gives

dUu
Vg = B-F
BgATa®

= pVU{Cg ed

Cla_2}.

The blob will accelerate upwards when the term in {} > 0, causing the
departure from equilibrium to be accentuated, or the system to be unstable.
If this quantity is negative, then the force on the blob is a restoring force, so
the system is stable. Now the term in {} is greatest when a is as large as it
possibly can be, or a = C3d (where Cj is a number no larger than 1/2, which
would correspond to a spherical blob), and this will be connected with the
smallest AT for which the bracket is positive, so instability can occur. This

B
d a
4N
F

Figure 1.3: Sketch of forces on a blob of light fluid surrounded by heavy
fluid.
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smallest AT for which the bracket is positive, so instability can occur. This
smallest AT may be found from the relation

BgATd® G
> )
KV Cy Cg‘

where v = p/p is the so-called kinematic viscosity. The left hand side of this
expression is a dimensionless quantity, called the “Rayleigh number,” Ra,
and the right hand side is the “critical value” of the Rayleigh number, de-
noted Ra.. Our estimate of Ra. depends on the constants of proportionality
that appeared in our parameterization of the fundamental physical processes
that are involved. In a more complete mathematical treatment, Ra, is found
to depend on the boundary conditions imposed on thermal and mechanical
processes. For example, if the top and bottom boundaries support no shear
stresses and are held at constant temperature (i.e., isothermal boundaries),
Ra, = 657.5. The important point to make here is that stability depends
on the parameter

R Archimedean buoyancy force
a = ; : :
Diffusive “resistances”

exceeding a threshold value, Ra..

When instability sets in, it does so in the form of cells having a charac-
teristic horizontal length scale. The only geometrical length scale involved
in the setting up of this stability issue is the depth of the layer, d. It is
not surprising then, that according to linear stability theory, the preferred
horizontal length scale is proportional to d. The constant of proportionality
depends on the boundary conditions. When the boundaries are isothermal,
for example, the cells are nearly square, with roughly equal horizontal and
vertical extents, the cell shape depending only weakly on the mechanical
boundary conditions. With this in mind, the natural choice for the prevail-
ing horizontal length scale is d.

To find the expected velocity scale for the vertical motions that take
place in an unstable layer, we note that the driving force for convection is
buoyancy, and so the maximum work per unit mass of fluid that can be
obtained is the maximum buoyancy force times the maximum distance over
which the buoyancy force can act, or BgAT x d. The kinetic energy/mass
must be smaller than this maximum work, so the greatest possible kinetic
energy/mass derivable from the temperature difference across the layer is
BgdAT, implying the maximum possible speed of the convecting fluid layer
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Figure 1.4: Sketch of a counter-rotating pair of convection cells with isother-
mal boundaries.

is Umaz = v289dAT, or

Unaz = g ocRa, where o = ;l;— is the “Prandtl number”.
This is a suitable scale for the convection, and in fact is an upper bound.
It ignores dissipation entirely. For example, we know that for Ra < Ra,
there is no motion induced by instability. With this in mind, an improved
estimate would be .
Umaz ~ p o(Ra — Ra,).

1.4 Elements of Vorticity Dynamics

The principal physical mechanism underlying Langmuir circulations is an
inertial one. The diffusive effects of viscosity, although important, serve to
set the scene rather than to play the lead role in it.

One time-honored way to arrive at an understanding of fluid phenomena
dominated by inertial effects is to focus attention on the wvorticity of the
flow. Vorticity is a vector, denoted by the symbol w, defined to be the curl
of the velocity vector. It has a direct and fundamental physical meaning:
the vorticity vector is exactly twice the instantaneous angular velocity of a
fluid particle. Thus, if one were to (conceptually only, of course) isolate a
small fluid mass and instantaneously freeze it without otherwise changing
the state of its motion, it would be a rigid body translating and rotating
through space, and its angular velocity would be half the vorticity.

There is a sizeable body of knowledge about the behavior of vorticity
that is often referred to as “vorticity dynamics”. We need a few key results
only, and these are derived here.
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1.4.1 Navier—Stokes equations

The motion of a Newtonian fluid is determined by the Navier—Stokes equa-
tions, which express conservation of momentum. Written in an inertial
coordinate system, these are,

Du
p—=~-Vp+ V. T, + pf, (1.1)
Dt
where p is the fluid density, p the pressure, f the body force per unit mass,
T, is the part of the stress tensor that is proportional to the fluid viscosity,
L, and

D o
b—i—é—i+u-\7u

is the “material derivative”. The latter expresses the rates of change as
measured by an observer moving with a fluid particle. An important special
case is the material derivative of the velocity vector, which is the acceleration
of a fluid point.

These equations must be supplemented by a specification of the body
force, the thermodynamic equation of state and thermodynamic constitutive
equations giving coefficients of expansion, specific heats and related thermo-
dynamic properties, and the equations for conservation of energy and mass.
The latter equation, the equation of continuity, is

Dp
E+pV°U—O. (1.2)

In (1.1), the viscous part of the stress tensor

- %(V-u) I (1.3)

T, = p{[Vu + (Vu)7]
when the bulk viscosity is neglected (which is always permissible for liquids
and nearly always so for gases). In this equation, (Vu)7 is the transpose of
the velocity gradient tensor, and I is the identity tensor.

When a fluid motion may be regarded as incompressible, which by def-
inition means that V-u = 0, then the equations simplify. This is an ap-
proximation appropriate to oceanographic flows. Furthermore, if the flow is
dominated by inertial effects, we can ignore the viscous part of the stress.
We will always assume incompressibility, and in this section, we shall assume
inertially dominated motion.
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Figure 1.5: The net flux of vorticity out of any closed volume vanishes
identically.

1.4.2 Vortex lines and tubes, and circulation

Since
w=V xu,

where u(z,t) is the velocity vector defined everywhere in some prescribed
volume in space,
Vew =0. (1.4)

Here the position vector, = (z, y, z) describes the position of each point oc-
cupied by fluid, and ¢ is the time. Since its definition leads to its divergence—
free character, the divergence theorem guarantees that the surface integral
over the bounding surface, S, of any subvolume, V, containing only fluid, of
the normal component of the vorticity vector must vanish, or

/ n-wdsS = 0, (15)
S

where n is the unit outward normal to S (see sketch).

A “vortex line” is defined to be a line everywhere tangent to the vorticity
vector. It is analogous to a fluid streamline, which is defined to be a line
everywhere parallel to the velocity vector. A “vortex tube” is a bundle of
vortex lines, generated by the set of vortex lines passing through the points
on a closed curve, as shown in Figure 1.4.2.

Choose a volume V' coinciding with a segment of a vortex tube between
cross—sectional areas A; and Ay, and apply (1.5). The integral over the part
of S made up of vortex lines automatically vanishes, since n-w = 0 there.
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@en = O on sides

Figure 1.6: A vortex tube is a bundle of vortex lines. Here a section of finite
length between cross—sectional areas A; and As is shown.

This leaves the contributions over the part of S made up of A; and Aj over
which there is a nonzero component of n-w. Over these two areas, the unit
normal is nearly parallel or antiparallel to the vorticity vector. Suppose at
area 2, the normal is approximately aligned with the vorticity direction, then
at area 1 it will be essentially antiparallel to the vorticity. Let the normal
over area 2 be ny = vs and that over area 1 be n; = —v;. Then

/ viwdS = [ vywds, (1.6)
Al A2

which says that the amount of vorticity “fowing” into the tube across area
A1 leaves the tube across area As. ‘

By passing to the limit in which the cross-sectional area of the tube
shrinks to zero, the result above is interpreted as proving that vortex lines
do not “begin” or “end” in the interior of the fluid. Thus, vortex lines
are either closed curves (including the possibility of closing at infinity if the
region of space is infinite), or that vortex lines begin and end on the physical
boundaries of the fluid.

The “circulation” is defined for any closed path, say C, that can be drawn
in the fluid. Usually denoted by the symbol gamma, the circulation is

e = f u-ds, (1.7)
c

where u is the fluid velocity and ds is the differential of the directed arclength
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Figure 1.7: Possible and impossible arrangements for vortex lines.

on the curve. The circulation measures the average degree by which the fluid
rotates about a point located inside the defining curve.
By Stokes theorem, the circulation can be written in an alternative way,

Te = / n-wds, (1.8)
S

where S is any open surface having C as its edge, and n is the unit normal
vector on S defined so that it is oriented via the right-hand rule by the
orientation of the path about S.

Now consider a closed path C; drawn around a vortex tube, as in Figure
1.4.2, and a second path C; drawn about the same tube. Then (1.8) and
(1.6) together show that I'c, = I'c,. Since the two paths are arbitrarily
chosen and have only the common feature that they both link the same
vortex tube, this shows that the circulation around all paths linking a given
vortex tube have the same value.

1.4.3 Kelvin’s theorem: “Permanence” of vortex lines

Consider a closed path marked in the fluid at some instant of time, and then
follow this collection of fluid particles as time proceeds. This collection of
fluid particles will always mark a closed curve in space, so we may designate
this material curve for all time by C(t). At each instant, the circulation about
the material curve can be calculated, and the result is a scalar function of
time. Kelvin’s theorem says that this function is in fact a constant provided
the body force is conservative, and provided the motion is barotropic, which
means that the density is a function of the pressure alone. Both assumptions
are often good ones.
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To derive this result, it is easiest to write the line integral in (1.7) as an
ordinary integral by describing the curve C(t) in parametric form. Consider
one fluid point on the curve, and suppose that it was located at X at the
initial time. Then at all subsequent times, its position vector will occupy
positions on the trajectory of the fluid point, x(X,t). The argument ¢ of
course indicates time, and the argument X identifies which fluid particle
is under consideration and is called the Lagrangian label, or Lagrangian
coordinate.

A parametric representation of the initial closed curve will be a descrip-
tion of the form X = X(o), where ¢ is the parameter selected, and can
always be chosen to vary from zero to one as the closed curve is traversed.
Thus 0 = 0 and ¢ = 1 correspond to the same point in space. With this
representation, we can say that each fluid point on the closed curve is given
by

x = xX(o,t)

for some specific value of o less than one, and as o varies, the tip of the vector
%(o,t) traces out the curve C(t) at the corresponding time. Furthermore,

1 dx(o,t)
Loy = X ——do. :
cw = [ ukio),9- =2 Ddo (19)
The time rate of change of (1.9) is
dle(s) _ 1 Du dx(o,t) 1 du
o A E'———‘da +/0 u-a—;da, (1.10)

since the time rate of change of u(%(o,t),t) holding o constant is just the
material derivative. The quantity appearing under the second integral sign
is a perfect differential of half the square of the speed, |u|?, and so can be
intergrated to give half the difference in the square speed at ¢ = 0 and
o = 1. Since this is the same fluid point the difference is zero. Furthermore,
the remaining integral can be rewritten as a line integral, so that

dlc ]{ Du
— = —-———--d . .
dt ety Dt S (1.11)

This is the integral of the fluid acceleration around the closed path.
The acceleration can be replaced by the forces, using the momentum
equation. If viscosity is ignored the Navier-Stokes equations (1.1) reduce to

the Euler equations

D 1
Du _ —;Vp-i—f (1.12)
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on dividing by density.
Substituting for the acceleratlon in (1.11),

dr
S f{——Vp+f}ds

The contribution from the body force vanishes when it is conservative, be-
cause the line integral around a closed path of any gradient dotted with the
directed arclength is identically zero. Assuming a conservative body force,
only the integral involving the pressure remains, and using Stokes theorem
to write the contour integral as a surface integral,

drc(t) _ 1
o j{sn v (p) x Vp]dsS. (1.13)

This shows that circulation can be generated when the surfaces of constant
density and those constant pressure do not coincide, and the result is known
as Bjerknes theorem.

If the motion is barotropic, then the surfaces of constant pressure co-
incide with surfaces of constant pressure, and the integrand in (1.13) is
identically zero. In this case, Kelvin’s theorem

dPC(t)
dt

=0 (1.14)

results.

Now consider a “vortex surface” defined to be a surface comprised of
vortex lines. Such a surface passes through every point of space. If the
conditions of Kelvin’s theorem hold, the theorem can be used to show that
vortex surfaces are material surfaces; that is, if a vortex surface is identified
at some initial time, and the fluid particles lying on the surface are followed
as they move, at a later time the same particles form a surface that continues
to be a vortex surface. To see this, consider a closed contour drawn in a
vortex surface, as illustrated in Figure 1.4.3. Since the normal component
of vorticity vanishes on the vortex surface by definition, (1.8) shows that
the circulation around the contour vanishes. Following the progress of this
material circuit as time progresses, its circulation continues to be zero, by
virtue of Kelvin’s theorem. This is true for all contours that one can draw
in the original vortex surface. Therefore the material surface that coincided
with the original vortex surface has zero normal component of vorticity at
all points, and therefore this material surface is also a vortex surface.
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Figure 1.8: Vortex surface.
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Figure 1.9: Vortex surfaces intersect in a vortex line, which moves with the
fluid.

If two vortex surfaces intersect, they do so in a line which must be
parallel to the vorticity vector, and therefore is a vortex line. Since each
of two intersecting vortex surfaces are material surfaces a vortex line must
be a material line. Therefore each individual vortex line coincides with a
material line. It is this that is meant by the phrase “vortex lines move with
the fluid”.

1.4.4 Vorticity intensification by vortex line stretching

The area averaged vorticity in a vortex tube at a cross—section with area X
is

w| = i/ nwds = L (1.15)
Yz
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where I' is the circulation for the vortex tube. Since the circulation is an
invariant for the tube, the average vorticity is inversely proportional to the
tube cross—sectional area.

But a vortex tube is a material tube. Consider a segment of a vortex
tube of initially small cross-sectional area, ¥y, and initially small length,
£p. If the two cross-sections marking the boundaries of the tube segment
are taken to move with the fluid (i.e., be material surfaces themselves), then
the mass within the tube segment is a constant, and the tube segment is
a material volume. Since mass is constant, at later time £, when the tube
segment has length £ and cross—sectional area X, the mass will be pf¥ and
will be the same as the initial mass, pofoZo. This, together with (1.15)
shows that

— —p £
w| = |wo|——, 1.16
ol = Tl £ (1.16)

where W is the initial magnitude of the vorticity in the tube.

The result (1.16) shows that if a tube stretches its length, its vorticity
intensifies, as a skater’s angular speed increases when she stretches. When
the fluid density is constant, or very nearly so, as in the ocean, then the
density ratio in (1.16) is unity, and the only factor changing the level of
vorticity is then the stretching (or contraction) of vortex lines. While this
is limited in validity to the circumstances in which Kelvin's theorem holds
(conservative body force, barotropic motion, negligible viscous force), it is
a simple, powerful, and highly geometric way to understand the vorticity in
the flow. Its magnitude is given by (1.16) and its direction coincides with
the material line initially coinciding with its initial vortex line.

1.5 Water Waves and Stokes Drift

Many wave motions, including waves on the surface of natural bodies of
water have small amplitudes in the sense that the particle speeds induced
by the wave are small compared to the speed of propagation of the waveform.
Furthermore, in these cases, the particle motion associated with the wave is
oscillatory in time if measured at a fixed point in space, and the time average
of any velocity component will vanish if there is no other agency causing the
motion. An average at a fixed point in space is called an Eulerian mean.
An average following a fluid particle is called a Lagrangian mean. Even
when the Eulerian mean velocity is precisely zero, the Lagrangian mean
velocity may be, and usually is, nonzero. Thus, there generally is a persistent
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net drift of mass connected with progressive water waves, and this drift, first
explained by Stokes [81], is called the Stokes drift.

This can be most easily explained for progressive plane waves having a
single frequency (monochromatic), and this will be done in the next subsec-
tion. Fortunately, since the assumption of small amplitude waves is often
suitably accurate, an arbitrary (small amplitude) wave field may be con-
structed, by Fourier synthesis, from a collection of plane waves, and the
resulting drift calculated. The drift arising from such a continuous spec-
trum of plane waves will be described in the second subsection.

1.5.1 Stokes drift of plane monochromatic gravity waves

Water waves are irrotational to a good approximation, and the velocity
vector of the water at any point x = (z,y, z) is

u, = Real{ac[Fk —ikF'(kz)es]exp(i©)} (1.17)
k = kiei + koes (1.18)

= K2+ k2, (1.19)

where ‘Real’ indicates the real part of the complex quantity, a prime repre-
sents differentiation with respect to the argument, k is the wavenumber, or
27 /A, with A being the length of the the wave, k is the wave number vector
with ej 23 being the unit vectors in the z,y, and z directions respectively.
Furthermore, the phase function © and the phase speed, ¢, are defined by

O = ki1z + koy — ot, CE%. (1.20)
Here we have taken the mean—free surface to be located at the plane z = 0,
the water in z < 0, and c is the phase speed of the wave. The vertical

position of the instantaneous free-surface above the mean—free surface is

((z,y,t) = Real{ae®}. (1.21)
Assuming the undisturbed water depth is constant, so the bottom is
located at z = —d, the amplitude function F' and the frequency o are
h k
F(kz) = %ﬁ, o = /gktanh kd, (1.22)

and the function F’ in (1.17) is the derivative of F' with respect to its
argument (not z alone). When kd is large, the water is said to be deep, and
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(1.22) is accurately replaced by

F(kz) =€, o =+/gk. (1.23)

Mathematically, (1.23) is the limiting form of (1.22) when d/A — oco. In
fact, the water depth does not have to be large compared to the wavelength
in order for the deep water forms to be good approximations to the finite
depth forms (1.22). In fact, the frequency is given to an accuracy of better
than one percent when d > %A, and the velocity field is accurate to about
four percent.

The small amplitude assumption which leads to the description above
requires that the parameter

e = ka,

a measure of the maximum slope of the wave, be small.

The Lagrangian motion is that experienced by a fluid particle. Suppose,
as in §1.4, we assign a Lagrangian label X to each fluid particle. Then the
trajectory of a fluid particle is described by

x = x(X, t). (1.24)

Specifying the motion completely in terms of X and ¢ rather than in terms
of x and ¢ is an option. The first method is called a Lagrangian description,
and X the Lagrangian coordinates, and the second approach, where the
interest is focussed not on a fixed fluid particle (X) but on a fixed position
in space (x), is called an Eulerian description with x being the Eulerian
coordinates. Given one description, we can in principle move to the other.
For example, given (1.24), we can invert the vector function x holding t
fixed to give ’

X =x7(x,1) V (1.25)

The velocity on the trajectory is defined in terms of the Eulerian velocity
field, u(x,t) by
X = u(x(X,1), t). (1.26)
The Lagrangian displacement, £(X, t) is the vector displacement of the par-
ticle at time ¢ from its original position, X, or

£(X, 1) = x(X, ) — X. (1.27)

Let ul(X, t) be defined to be X, then this is the velocity history as measured
by the particle having Lagrangian label X, and so we can call this the
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Lagrangian velocity. The current particle position is then
t t
x = X+£(X, t) =X+/ ul(X,t) dt:X-i—/ u(X +£(X,t),t)dt. (1.28)
0 0

If u is small, so is u”, and therefore & will be small at least for a long
time interval. This is the case for water waves, so to a good approximation

uf(X,t) = u(X,t) + £(X,)-Vu = u(X, t) + (/Otu(X,t) dt) Vu. (1.29)

Wherever X appears, it can be replaced using (1.25), returning the relevant
quantity to Eulerian coordinates. Supposing this is done in (1.29), and the
result averaged in some suitable way. If averaging is done over time or phase
(for example), the mean Lagrangian velocity is given by

t
al—w+ / u(x, t) dt-Vu(x, t) = T + us. (1.30)
0

This shows that the mean Lagrangian velocity is equal to the mean Eule-
rian velocity plus an additional velocity vector, us, which may be called the
Stokes drift velocity. In the ocean, the largest component of the instanta-
neous velocity field near the surface is that due to the orbital velocity, u,,
in the surface gravity waves. This means that

7
usz/ Uy (X, 1) dt-Vuy(x,t). (1.31)
0

The small amplitude water wave velocity field in Eulerian coodinates,
uy(x,t), quoted above has a zero time average. There will be, in general, a
small nonzero Eulerian mean velocity, but this will typically be comparable
to the Stokes drift, which is of second order with respect to the wave slope.

If (1.17,1.22) are substituted into (1.30),

2
aQUCOSh k(z +d)

Us = 2 sinh? kd

(1.32)
(1.33)

In elementary textbooks, it is shown that particle orbits in deep water
waves are circles to lowest order, with radii decreasing exponentially with
the depth. However, if one allows for the very small variation of velocity
with depth encountered by a given fluid particle as it executes its orbit, it
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is seen that the particle moves slightly faster over the top part of its orbit
than it does over the bottom part. This leads to a slight breaking of the
circle, and to a very small advance in the direction of wave propagation over
each period of the the wave motion. A similar net drift is also experienced
by particles moving under the influence of extremely shallow water waves,
where there is no detectable difference in speeds from the “top” to the
“bottom” of the orbit. This drift can easily be explained as due to the
fact that, in a progressive wave, the particle moves in the direction of wave
propagation for a longer fraction of the period than it moves in the opposite
direction. Therefore, even though the “forward” and “backward” speeds
may be identical, the particle manages a net move forward over each cycle
here too. In point of fact, one can show that the drift in deep water waves
is due to both effects, the difference in speed from top to bottom, and the
difference in time moving with the wave on the forward and back portions
of the cycle, with each contributing in equal measure.

1.5.2 Stokes drift arising from a continuous spectrum

The surface wave field is not monochromatic. If it can be supposed to be
the linear superposition of a finite number of waves with distinct ampli-
tudes, aj, j = 1,2,..., and wavenumber vectors, k;,j = 1,2,..., (with
corresponding frequencies), then we can write the small amplitude approxi-
mation to the velocity and surface displacement field by a sum over of terms
of the form given by (1.17, 1.21).

It is easy then to show that the Stokes drift for this collection of waves

is
ug = Z o'(kj)af- exp(2k;z) k; (1.34)
J
for deep water.

When the wavefield is random (but horizontally homogeneous and sta-
tionary in time) and contains a continuum of wavenumbers, we still can use
the formula (1.32) to calculate the drift. This leads to the result (see, for
example [33, 34])

s = / / 20 (k)kW (k) exp( 2kz) dkydks, (1.35)
where the integral is over all relevant wavenumbers in the spectrum. The

function W(k) is the directional wavenumber spectrum, which is the Fourier
transform of the spatial covariance of the sea surface displacement (see
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Phillips [71], for a full description). The qualifier ‘relevant’ is included here
because it is apparent that very short waves ought not included, since sur-
face tension has been neglected. Furthermore, in dealing with problems
requiring computation, scales below the resolution of the calculation ought
not to be included.

1.6 Derivation of Langmuir Circulation Theory

The theory of Langmuir circulations that originated with Craik & Leibovich
[14] can be derived in more than one way. The original derivation, which
is in its most complete form in [50] and [48], is a systematic perturbation
approach that centers on the vorticity dynamics. Another derivation begins
with the generalized Lagrangian mean formalism of Andrews & Mclntyre
(3], and may be found in [51].

In this section, we proceed to derive the full theory in stages.

We will first show, in the next subsection, how the main result for an
incompressible, inviscid fluid may be found by a new and simple vorticity
argument that essentially amounts to a combination of the two methods
mentioned. The subsection to follow gives a formal derivation through the
generalized Lagrangian mean formalism, allowing for weak effects of viscos-
ity. The final subsection introduces the density stratification by means of
the Boussinesq approximation.

1.6.1 Mean vorticity

Suppose we consider the detailed motion of an inviscid, incompressible fluid.
The Eulerian velocity field is assumed to consist of an oscillatory part and
a mean part _

u=1d+u, (1.36)

where an overbar indicates an average and a prime a fluctuating quantity
with zero mean. We may think of averages such as an average over time,
an average over the phase of the oscillation, or more generally as an average
over an ensemble of realizations of the fluctuating system.

According to §1.4, the circulation about any closed path is a constant in
time. Now consider a particular closed path C(t) with circulation I"

r'= jgu(x, t)-dx. (1.37)
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If we take the average of this quantity, then the average is also independent
of time. Furthermore the average will be

T T
' _ [ wdx= 4 & 1.
- jiu dx i_u dx, (1.38)

where C is the mean closed circuit. To justify replacing the integrand by 1,
we may use (1.36) and then argue, for example, that the net contribution to
the line integral at any instant made by the fluctuating velocity field van-
ishes. This is not precisely correct in general, but the replacement is exactly
correct for any motion in which the fluctuating velocity is irrotational, since
the contribution of the fluctuation then vanishes exactly before averaging is
done. In the event that the fluctuation is not irrotational, a slightly dif-
ferent result emerges, exactly, and this is described in the next subsection.
For fluctuations arising from ocean waves, however, the assumption of ir-
rotationality is defensible and the results to be found here do not require
alteration.

We now invoke a general mathematical rule for the time rate of change
of a contour integral of an arbitrary differential vector field, say A(x,t),
on a contour that moves at an arbitrarily prescribed velocity, say v(x,t).
Suppose

I(t) = A(x,t)-dx. (1.39)
c(t)

Then

dr 94
7. 7{0 . { S+ vVA+ (Vv)-A} dx, (1.40)

where the result is written in terms of the second-rank tensor (Vv). Rewrit-
ing the integrand as

oA _ v x curl A + V(v-A),
ot
we have
dI A
pri fc(t) {%—t— -V X curlA} dx = /S(z) n. <8C3?A — curl[v x curlA]) as,

(1.41)
where we use the fact that the line integral of a gradient over a closed path
is identically zero, and then invoke Stokes theorem, where S(t) is the (open)
surface with C(t) as boundary. If dI/dt = 0 for all such contours, then we

must have
OcurlA

ot

— curl(v x curlA) = 0. (1.42)
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Now apply this rule to (1.38), to find that
x @) = 0. (1.43)

Here
@ = curly, (1.44)

is the mean vorticity. The velocity G’ appears here for v because the circuit
C moves with the Lagrangian mean velocity (since the instantaneous path
moves with the instantaneous fluid velocity).

This establishes an equation for the mean vorticity vector, which we may
now express as a single curl operation,

Curl{%—:——ﬁl’ X G)} = 0.

This can be integrated, to give

where 71 is some scalar field. Rewriting this, using (1.30), we have our final
result for this section,

oa  _ __ _

:9—{+u-\7u=—§77r+us X @+f, (1.45)
where 7 is a pressure-like scalar function, and f is the mean body force per
unit mass, assuming that the body force is conservative.

This equation is the appropriate one to describe Langmuir circulations
that are either laminar and inviscid or the large scale motion when turbulent
but inertially dominated. The important observation is that the equations
for the mean momentum derived here are the same as for the instantaneous
momentum, except for the appearance of an apparent body force term that
we call the “vortex force”,

F,=us X @. (1.46)

It is the appearance of the vortex force that characterizes the Craik-Leibovich
theory of Langmuir circulation.
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1.6.2 Derivation by the Generalized Lagrangian Mean

Atmospheric motions are strongly affected by wave activity, and the waves
generate a rectified effect leading to mean atmospheric motions. The search
for a rational way to separate “waves” from “mean flow”, and to define
wave-mean flow interaction, was a long one culminating in the generalized
Lagrangian mean theory of Andrews and McIntyre [3] (which will be abbre-
viated here as A & M). ,

The latter paper gives both the history of the search and a comprehensive
exposition of the GLM theory. Here the structure of this theory is reviewed
in the context of a constant density fluid and is contrasted to Eulerian-mean,
or Reynolds, averaging.

Basic formulation

Assume the Eulerian velocity field u(x, t) is known. Then we may construct
the trajectory,

x = x(X,t), where
dx

of a particle which, at some reference time such as t = 0 is located at position
x = X. The choice made here for the Lagrangian label, X, is natural but
not the only one.

Suppose now we choose to shift to an alternative Lagrangian label in
the following way. Consider an observer moving with a different “reference”
flow (at the moment, quite arbitrarily), described by the velocity field i,
then, a particle with Lagrangian coordinate X follows the trajectory

-~

x = x(X,t), where

dx e

E - u(X, t)'
Both trajectories begin at the same place, X, but the first follows the path
of a fluid particle, and the second follows the arbitrarily prescribed reference
path.

Now we choose to describe the position of the fluid particle from the
perspective of the observer following the “hatted” trajectory, and write

x = x(X,t) = x(X,1) + £(X,?) (1.47)
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so & is the particle vector displacement measured from the observer’s current
position. Since % = x(X,t), we can invert to get X = x~}(%,t), so (1.47)
may be reexpressed in terms of X instead of X. This replacement of the
particle label then describes the actual particle position in the form

x = x(& 1) = %+ £(&, ) (1.48)

which produces the mapping from the observer’s position to the particle’s
position
X=X+ E(X ).

The meaning of (X, ¢) is therefore the following: at any position % and
time t in the fluid, £(%X,t) is the position of the fluid particle, relative to
X, which at ¢ = 0 was at the position found by tracing the reference flow
trajectory backwards through a time interval ¢t from %.

The total derivative of (1.48) yields

o¢

ot +1h- v)"cg = u(X7 t) - ﬁ(fc’ t) (149)

= u(®+£(& 1)) — 4%, ). (1.50)

This gives a field description of particle positions, since the % coordinates
are just Eulerian in character. If we define

2% = —8%) + 1 Vg(), (1.51)
and, for any field ¢(x)
¢t = o(X +E(%,1), 1), (1.52)
then A
B’@Z(ﬁe - (%?)5' (1.53)
Here DO_00,, o,
t = o

is the usual material derivative as it is expressed in an Eulerian framework.
The left-hand side is the rate of change following the reference path of a
particle quantity, and the right-hand side is the material rate of change of
the fluid particle with displacement &.
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Up to this point, the reference trajectory is entirely arbitrary. Now
invoke any averaging operation that commutes with time or space differen-
tiation (like the customary ones of time, space, or ensemble averages). Let
the average be denoted by an overbar, and require

£=0. (1.54)

This defines a particular reference trajectory, one for which the average
displacement from this reference path of any quantity evaluated at the true
Lagrangian position of a fluid particle is zero. This would seem to be a
natural definition of “mean Lagrangian” motion, and is the one adopted by
A & M. Accordingly, for any quantity, f, related to the fluid motion, set

fF=r,

which defines the (generalized) Lagrangian mean, or “GLM?”. In particular,
in view of (1.50) and (1.54) the Lagrangian mean velocity field is u¢ = @t =
4, and

D _ a0

Dt ot
which I'shall call the “pseudomaterial derivative”. With this definition (1.50)
becomes

_ DL
+uL‘ng—I§,

:DL
D7é = WX+ 0),1) - al(x,t). (1.55)

The equations governing the generalized Lagrangian mean velocity field
are found (see A & M) by premultiplying the instantaneous momentum
equations by the tensor Vzx and averaging, and by calculating the pseudo-
material derivative of the Jacobian, J, of the tranformation & — x(%,t) =
X+ £(%,1), so

J = det(Vix) = det(I + Vz€) (1.56)

(where I is the identity matrix) followed by enforcement of mass conserva-
tion (we will assume here that the fluid is incompressible, but the general
theory of A & M is not restricted by this assumption). The first gives GLM
momentum equations, and the second expresses GLM mass conservation.
These steps yield the GLM momentum equations (and from here on, we
drop the hat on x),
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NL(xL _
—D—(';)—t—”l +val. (@ —p) = —Vr + F, (1.57)
where -
D™
e . 1.58
(Ve =2), (1.58)
is called the “pseudomomentum”,
F=vVyx-V3ut (1.59)
is the contribution of the viscous force, and
..‘L 1_—__
7= Qp- + 5P,
is a modified pressure head. The equation for mass conservation is
DllogJ L
[ -a” =0. 1.
D +V-a 0 (1.60)

A&M show that J = J, so J, although formed from instantaneous variables,
is automatically a mean quantity.

It is also important to relate Gl to the usual Eulerian mean velocity
vector, and this is done through the “Stokes drift” velocity, G, defined to
be

i’ =al - (1.61)

This definition reduces, for small perterbations of a fluid at rest, to the
classical definition of mass drift (1.30) discussed in §1.5.

Equations (1.57) and (1.60), together with the definitions for F, p, and
J, govern the generalized Lagrangian mean variables for a constant density
fluid, in the form given by A&M. Notice that the generalized Lagrangian—
mean velocity, @%, is not solenoidal, so the GLM motion is rather like the
flow of a compressible fluid with “density” J determined by the fluctuating
field. Furthermore, the equations clearly are not closed. To form the quan-
tities F, p, and J, one needs to know the behavior of fluctuations about the
mean, which are given by £. As we will show, these very general equations
simplify considerably when the fluctuations are due to (nearly) irrotational
surface waves.

Now return to (1.57), and let

v
I

I
B [ ]
[
|
N
o
e
no
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then (1.57), expressed in terms of v, becomes

%‘t:—i-v-Vv:—VH—%pxw-{—f (1.64)

where
w=Vxv (1.65)

is like a mean vorticity, which might be called the “pseudovorticity”. The
GLM equations in the form (1.65) might be called “Langmuir circulation
form”, because this is precisely the same as the equations derived for the
Craik-Leibovich theory of Langmuir circulations (Leibovich, 1977), with p
replaced by @, and v replaced by the Eulerian-mean velocity, . '
When working with the Langmuir circulation form of the GLM equa-
tions, the continuity equation is conveniently expressed in terms of v as

Vv = % (1.66)

5 = —(_})(%+V.VJ+V-(,>J)). (1.67)

There is an alternative form for £, obtained from (1.61) and the fact that
1 is solenoidal. This is
r=V-(a’-p), (1.68)

which shows that there is no need to deal with both 4% and with J, and
since we must have information about the former, as previously explained,
this alternative representation of ¥ in (1.67) is preferable.

There also is another form of (1.57), rather similar to (1.65) but written
in terms of @’ rather than v. This is

DLal s L op
D~ = —-VII+a xcur1p+7§z+}" (1.69)
where

I = 7_1'+-21~|(ﬁL)2]——p-ﬁL, (1.70)

but this seems less convenient than (1.65).

Application to Langmuir circulation

In Langmuir circulations, the source of the fluctuations is the motion in-
duced by surface gravity waves, if incoherent turbulence is set aside and
parameterized separately. The water wave motion is irrotational to good
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accuracy. When the Eulerian flucuations are irrotational, the Stokes drift
is identical to the pseudomomentum vector, @S = p. (See A & M for this,
which follows directly from the definitions.) Furthermore, since v = af —p,
v = @l — 4%, which by definition of the Stokes drift is the Eulerian mean
velocity. Therefore equation (1.64) is an equation for the Eulerian mean
velocity vector, 11, and the continuity equation is simply

Vi = 0. (1.71)

To close the equations in the present circumstances, we need to be given
the surface wave field, or, more precisely, the Stokes drift they generate,
and we must model the viscous or net force due to incoherent turbulence.
In [51], it is shown that if a constant eddy viscosity, vr, is appropriate in
the absence of waves, then it is also appropriate when waves are present,
and we may then set

F =vrV2a, (1.72)

and so the completed set of equations, in the absence of nonconservative
body forces, can be written as

@- +@Vi = =VI+us x @ +vpV3a, (1.73)

ot
Ve = 0, (1.74)

where any conservative body force is absorbed into the “modified mean
pressure”, II.

1.6.3 The Coriolis Acceleration and Stratification

The equations of the previous section assume a description in an inertial
reference frame, and also assume a fluid of uniform density. These sim-
plifications are relaxed here by incorporating the possibility of a uniformly
rotating reference frame, as is convenient in geophysical fluid dynamics, and
density stratification.

Acceleration of the reference frame affects only the momentum equation;
and balance equations required for all scalar quantities, like fluid tempera-
ture, have the same form in inertial and accelerated frames. If the frame is
noninertial due only to rotation of the frame with constant angular veloc-
ity €2, then the direct transformation of (1.73) to coordinates fixed in the
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rotating frame is
adr
ot

1
+ Vi, +2Q X 1, = =V (H -5 ]Q|2r2) +us X (@y +29) +v7 V24,

(1.75)
where the subscript “r” indicates that the quantity is measured relative to
the rotating frame. Thus, &, = curld, is the mean vorticity seen in the
rotating frame.

We may allow for density stratification arising from either thermal ex-
pansion or by solute concentration, or both. The main effects in the near
surface layer more often are due to thermal causes, and in any event, the
equations that result are of the same form with either of the stratification
agencies. Consequently, we focus on thermal expansion only.

The Boussinesq (or Oberbeck-Boussinesq) approximation allows for buoy-
ancy force, which depends on density variations, without the need to deal
with the additional nonlinearities and physical complications that arise when
the fluid is regarded as compressible. In this approximation, which is usu-
ally acceptable in geophysical fluid dynamics, three simplifications are in-
troduced. First, the motion is regarded as incompressible, in fact constant
density, with the exception of the body force term due to gravity. Second,
the variation of density (or the buoyancy, which is the fractional density
decrement times the acceleration of gravity) is specified as a linear func-
tion of the temperature anomaly. If salinity variations cause the density to
change then the buoyancy is specified as a linear function of the salt concen-
tration anomaly. Third, the thermal energy equation assumes heat transfer
by conduction only, and that the rate of dissipation of mechanical energy is
small compared to the rate of change of stored heat. These conditions lead
to an approximate equation of state relating the density variations from a
reference state (denoted by the subscript ‘ref’) arising from temperature
variations from the reference, or :

P Prel — _B(T — Trey). (1.76)
Pref

The density variations impose a buoyancy force per unit volume of fluid of
Fp = Bg(T — Trey)es, (L.77)

where 3 is the coefficient of volume expansion, T is the temperature, and
es is the unit normal vector in the vertical direction (opposing gravity). In
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the Boussinesq approximation, the density is regarded as constant with the
exception of its effect in creating the buoyancy force.

To close the equation set, an equation for temperature (and salinity, if
contributions of salt variations to buoyancy are included) is needed. The
Boussinesq approximation takes this to be

% +u-T = kV?T, (1.78)

where « is the thermal diffusivity (thermal conductivity divided by heat
capacity of the fluid), and u is the instantaneous fluid velocity vector (which
may be prescribed in either an inertial or accelerating frame). This equation
is the differential expression of the conservation law which says that the
thermal energy content of a fixed mass of fluid may increase only due to
conduction of heat across its boundaries.

We now need to average to remove the fluctuations associated with the
surfaces waves. The generalized Lagrangian mean formalism accomplishes
this immediately for any conserved scalar, with simple results. The GLM
formalism of § 1.6.2 produces the average,

) — ZL

Qcé + u.¢ = i.._
ot ot
Consequently, if ¢ is a conserved scalar (so D¢/Dt = 0) then the generalized
Lagrangian mean implies that the averaged ¢, ¢ is conserved following the
generalized Lagrangian mean velocity vector, il = G+us. If we now restore
the heat conductivity, and identify ¢ with the temperature, we have

+ ul-Vgr.

Tt+ (G+us) VT = kr V2T, (1.79)

where, kr the eddy thermal diffusity accounting for unresolved turbulent
motions as well as the molecular diffusity of heat.

As with the momentum equations, the equation for mean temperature
can be derived directly by perturbation analysis.!

The enlargement of the problem described by (1.73) to include buoyancy
under the Boussinesq approximation and rotation of the reference frame can
now be summarized in the following equation set.

au

o7 TOVAH22 X (itus) = —Vr+ugx@+vrVia+ fe(T - T{1¢30)

"This was done in [48], but an error exists in that paper, so that the Stokes drift
contribution to the advection velocity was omitted. The correction of the error is
straightforward.
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Tt+{@+us) VT = koVT (1.81)
Vv = 0, (1.82)

where all quantities are referenced with respect to the rotating frame, and =
is a modified pressure that includes the centripetal “force potential” of (1.75)
in addition to the terms appearing in II in set (1.73) and the hydrostatic
pressure contribution due to pre.

1.7 Langmuir Circulation: Scales

The final result of the derivation given in §1.6 is this: the form of the equa-
tions for the mean motion are the same as they would be prior to filtering
out the gravity waves, but with an extra force appearing representing their
rectified effects. This apparent force has been called the “vortex force”, and
is given (per unit volume) by

F,=pus X w.

The classical Stokes drift (Stokes [81]) decays with depth on a length scale
comparable to the wavelength (A) of the most energetic waves. Given the
characteristics of the surface waves, then u; can be calculated provided the
wave slopes are not large. For the monochromatic deep water wave train
discussed in §1.5 with a waveheight H (twice the wave amplitude), the Stokes

drift speed is
H\? [g\
us| = (Wy) \| 5 expldm(z/A)]-

For example, if the wave height were 1.5 m and the wave length were 24 m,
this formula would give 24 cm/s for the surface value of the Stokes drift.
Typically, u, is a decreasing function of depth only, and if the waves are
generated by the local wind, it is reasonable to suppose that uy is parallel
to the wind direction.

It is possible to have “equilibrium flows” with us and u parallel to each
other and to the wind direction. In such cases, the vortex force tends to
destabilize this equilibrium, much like a destabilizing temperature distribu-
tion. When this tendency is sufficiently large to cause instability, vertical
convective motions ensue, disturbing the “structureless” equilibrium.

Since the driving force behind Langmuir circulations is the vortex force
(at least according to the CL theory), we can estimate the intensity of con-
vection due to this phenomenon. The maximum possible vortex force oc-
curs when ug and w are at right angles. Now suppose a layer of depth d
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is considered (see sketch) in which Langmuir circulation takes place. Let
max|w| = Q¢ be the maximum of the vorticity vector in the current. Then
the work done by the vortex force over a distance equal to the depth of the
layer does not exceed

0 0
ch/ usdz < pQC/ usdz = Q| M|, (1.83)
—d —0o0

where | M| is the total momentum carried by the surface waves in the layer,
per unit area of the water surface. The maximum convective kinetic energy
obtainable by work done by the vortex force is therefore Q.| M|, so an upper
bound for the vertical speed in the Langmuir circulation is estimated to be

Use = ,/2'-’1;—'96. (1.84)

Again taking the case of a monochromatic train of deep water waves for
illustration, (1.84) leads to the

/ A
ULC = 22/{3 4—90’
m

where U, is the surface value of the Stokes drift. If we have a direct means
of estimating the current shear, then we can substitute it and ¢, into this
expression. In the absence of an observed value for the shear, we can suppose
that the vorticity in the current is derived only from the local applied wind
stress. In this case, the maximum vorticity tends to occur at the surface. The
surface value of |w| = Tying/n, Where Tying is the stress applied by the wind
to the water surface, and p is the viscosity (in natural circumstances, the
water is more often than not turbulent, in which case x4 must be interpreted
as an eddy viscosity). This leads to

_ A Twind _ A
UL = | 2Us 1~ w2 (1.85)

The last replacement is a bow to the convention of defining a “friction ve-
locity”, u«, by the relation

Twind
p )
where p, as before, is the water density.

i

uf
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We can give an estimate of Ur¢, based, for example, on (1.85). Suppose
the wind speed is 10m/s, then we can estimate (very crudely) that u., =
1.5cm/s. The wave characteristics used above to illustrate rough magnitudes
for Stokes drift are reasonable for the so-called “significant waves” generated
by a wind speed of this level, so we can take U to be 24cm/s and A ~ 24 m.
The price we pay for using the wind stress as our method of estimating
the current shear is the introduction of a semi—empirical eddy viscosity, to
which it is difficult to assign a value. From standard ways to guess at an
appropriate value for this parameter when the wind speed is 10m /s, the value
v & 23cm?/s is plausible (see [55], pg. 504), which leads to Urc = 29cm/s
as an estimate for the upper bound.

1.8 Reduction of Complexity

The equations (1.80) governing Langmuir circulations must be supplemented
by boundary conditions appropriate to the physical circumstances under
study. Since they are evolution equations, initial conditions must also be
specified. Typically, the specification of a Stokes drift velocity that is con-
stant in time, and dependent only on the vertical coordinate is reasonable
as a model of a random, wind-driven sea. In addition to the initial condi-
tions which specify the density and current structure of the upper layers,
the stress imposed by the wind and bottom conditions must be specified.
It is apparent that the CL model (1.80) is no less complex than the
full Navier-Stokes equations under the Boussinesq approximation (except,
of course, that surface waves are incorporated by the model). For oil spill
problems, it is important to know the spatial variation in the windward
current caused by Langmuir circulations, the lateral sweeping speeds, and
the downwelling speeds. Practical ways to capture this information under
a wide range of circumstances dictates a need for a simpler approach than
direct simulation. Possible approaches to this question are outlined here.

1.8.1 Structureless equilibria

Under plausible initial and boundary conditions, the equations admit solu-
tions that are simple nonconvective solutions, and depend only on the ver-
tical coodinate and time. The current is rectilinear and unaffected by the
vortex force. Since such solutions do not lead to vertical convective motion
and the associated patterns, they will be called “structureless” equilibria. If
the thermal conditions are destabilizing, then a structureless equilibrium will
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be unstable if the thermal Rayleigh number is above critical, and convection
will set in.

If the thermal conditions are stabilizing, as they frequently are, then the
structureless equilibrium will persist, unless the vortex force, which appears
in a role loosely analogous to the gravitational (buoyancy) force, can cause
instablity. Simple examples show this to be possible, and these examples and
the estimates of the previous section suggest that the instability is typically
(that is, under typical wind conditions) much more powerful than typical
thermal instability. As a consequence, when active, the Langmuir circu-
lation instability can overcome significant stabilizing density distributions,
thereby mixing the upper layers. Furthemore, it is important to note that
the CL model, as presented in (1.80) is capable of describing both Langmuir
circulation and thermal instability, the two active either separately.

1.8.2 Weak instability, amplitude equations, and patterns

Whenever Langmuir circulations or thermal convection cells are absent, the
state is by definition structureless, so structureless equilibria may be de-
termined either theoretically or experimentally. An increase of the vortex
force, caused by an increase of either wind speed or wave action, above a
critical value will lead to instability.

When the forcing only slightly above the critical value needed, the in-
stability is weak. Marginally unstable states may be described by relatively
simple computations. For example, for the vertical velocity component, w,
in the LC modified current, such a description takes the form

w(z,y, z,t) = Az, y, t)®(z) exp [ik-x] + c.c., (1.86)

where c.c. designates the complex conjugate of the preceeding term, ® gives
the vertical structure and is determined by a linear eigenvalue problem, and
the complex function A varies slowly with time and horizontal position. For
a wide set of physical problems, the amplitude function 4 is determined by
an “amplitude” (or “envelope”) equation. For example, in most cases the
amplitude equation for marginally unstable systems depending on one hor-
izontal coordinate only (say y) is the so—called Ginzburg-Landau equation,
2
%‘? = )\A+c1?)7’;1 + coA|AJ%, (1.87)
where A, c;, and co are all in general complex numbers that can be com-
puted from the original system. The coefficient A, for example, is just the
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(complex) linear growth rate (eigenvalue) and is proportional to /R — R,
where we have assumed that the destabilizing parameter is called R and its
critical value is R,.

The amplitude A modulates the plane wave that it multiplies in (1.86).
Other amplitude equations arise depending on circumstances. In particular,
while the Ginzburg-Landau is in some sense generic for problems restricted
to two space dimensions. The generic counterpart in three space dimensions
(where the modulation is required in two dimensions), requires the addition
of another variable, analogous to a pressure term, to enforce mass conserva-
tion (originating, it appears, in the work of Davey & Stewartson [16]).

In the simplest case, when A provides modulations in time only, (1.87)
reduces to the “Landau”, (also known as “Stuart-Landau”) equation,

94 _ 4 + o AJA|2. (1.88)
ot :

A description by means of the form (1.86) utilizing an amplitude equa-
tion is very much simpler and more flexible than the original set of partial
differential equations. Amplitude equations are the principal tool is the
study of pattern formation process, since the vertical structure is known at
this stage, and the patterns in the horizontal are determined by A.

1.8.3 Strong instability and patterns

When the instability is far above marginal, the motions are fully nonlinear.
In interesting developments, amplitude equations have been applied to study
horizontal patterns. The most rigorous of this recent work seems to be that
of Newell, Passot, and Souli [67], which considers thermal convection.

The basis of this kind of analysis is quite different. Instead of proceed-
ing by a perturbation about a simple known (equilibrium) state based on
small departures, the perturbation is based on slow horizontal and temporal
variations from ezact nonlinear states of simple (plane wave) spatial form.
Although the resulting description requires a great deal more computation
(since the “exact” nonlinear states are known only by first computing them
numerically), and is necessarily more complex in other ways, an amplitude
equation nevertheless emerges, and its study permits pattern formation to
be explored.
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1.8.4 Applications to Langmuir circulations

There are two ways in which amplitude equations can be used to study fully
nonlinear aspects of patterns in Langmuir circulations.

One such approach, much the more difficult of the two, is to carry out a
program analogous to that described in §1.8.3. The second assumes that the
form of the amplitude equation appropriate in the marginal instability pa-
rameter range remains valid, but the coeflients computed from the marginal
circumstances are altered when the disturbances are large. An attempt can
then be made to alter the coeffients by fitting the results obtained from
amplitude equation to flows found from full numerical simulation.

An alternative approach is described in Chapter 7 and used in an “op-
erational model” that forms the subject of Part II of this report. There we
assemble a catalog of nonlinear solutions for rolls. This catalog amounts
to the basis for the kind of approach outlined in § 1.8.3, but the roll solu-
tions are not permitted to interact, and empirical information is utilized to
constrain the number of entries in the catalog.




Chapter 2

Specification of the Sea State
and Boundary Conditions

The CL theory permits the prediction of Langmuir circulations for a speci-
fied oceanographic environment. To use the theory, one must provide infor-
mation concerning the wind forcing, sea state, initial thermal structure of
the mixed layer, and internal parameters modelling the effects of incoher-
ent turbulence in the mixed layer. The specification of surface wave related
quantities is discussed in this chapter. As described in Chapter 1, the devel-
opment of Langmuir circulations depends on the water wave field through
the Stokes drift produced by the water waves. Thus, given a sea state, we
need to calculate the Stokes drift associated with it. This leads to a two
part task, to decide on a method of specifying the sea state, and then to
calculate the relevant Stokes drift to be input to the theory.

The water depth is assumed infinite and of unlimited horizontal extent.
The deep water assumption is acceptable so far as orbital motions in water
waves are concerned whenever the water depth is greater than a fraction
(roughly one—fourth or larger) of the wavelength of the longest water wave
of interest.

2.1 Representation of the sea state

The sea surface is too complex for a detailed description. Lack of knowl-
edge of the precise details giving rise to the instantaneous sea state, and its
complexity, demands that a practical mathematical representation for the
sea state account for its apparently random nature by a statistical represen-

47




Environmental Sciences of Ithaca 48

tation. Having adopted such a representation, one must then address the
specific forms it should take. A standard reference for the representation of
a random sea is Phillips [71].

Suppose z and y are orthogonal coordinates in the plane of the mean sea
surface, and z is the vertical coordinate. We imagine a collection, or ensem-
ble, of identical experiments, in which the sea surface is disturbed leading
to waves.. Each (thought) experiment constitutes a realization leading to
a space—-time evolution of the surface displacement and associated velocity
field. Although the conditions imposed are identical as far as measureable
observables are concerned, we recognize that there are unobserved condi-
tions which will generally differ from one experiment to the next, leading to
a different outcome in, for example, the displacement of the air-sea inter-
face at a given time and place. Let the instantaneous displacement of the
sea surface for a given realization is (X, ¢;a), where X = ze; + ye; is the
projection of the position vector xonto the horizontal plane. Here « is a pa-
rameter that serves to distinguish the various realizations, and we suppose
a can take on any value in a set Q.

Assuming an underlying probability distribution with probability density
p(a), the mathematical expectation, or average over the ensemble, of any
quantity, f({(x,t; ), is defined to be

7= /Q f(x,;0)p(a)do

We suppose that displacements are measured from the mean sea surface, so
by definition,

((x,t) = /QC(x,t;a)p(a)da = 0.

The fluid is horizontally unbounded, and the Fourier transform over the
two horizontal directions and over time for the surface displacement of a
given realization is

1 3
Alk,n;a) = <-2—7-T-> ///C(x,t;a) exp{—kx — nt}dzdzodt, (2.1)
where A will be a complex-valued generalized function, and
k = kie1 + kqes.
We also have the inversion formula

((x,t;a) = A(k,n; a) exp{k - x — nt}dkdn. (2.2)
k,n
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The notation is meant to indicate that the integrals are taken over the
regions covered by the designated variable; for example

/x,t(')dth - / o:_oo / :O_oo /:_oo(')dwdy,

and the range of each (scalar) integration variable is (—o0, 00). The average

Ak, AR, ) = (2.3)

6 e e et
( ! ) / C(x,t)¢(x', ') exp{k - x — nt} exp{k’ - x' — nt'}dxdtdx'dt,
x,t Jx' t!

o

and the label a in the argument of random functions is suppressed. Let the
relative position vector x' — x = r, and the time difference ¢’ —t = 7. For a
statistically stationary random process, the two—point, two—time covariance

(O t)(,t) = C(x B)C(x + 1,2+ 7).

depends only on the time lag 7 and not on the time itself, and for a homo-
geneous random field, the covariance depends only on the relative position
vector of the two points on which it is based. With this assumption,

(xt)¢(x+rt+7)=2Z(r,7),

and (2.3) may be written

A*(k,n)Ak',n') =

—é; X,
The expression involving integrals over x and t is (2)3 times the delta func-
tion 6(k’ — k,n’ — n). Consequently, X (k/,n’), given by

XX ,n)=

A*(k,n)A(k!,n’)dkdn
k,n

1 3
= ( ) Z(r,7)exp{—X - r — n'r}drdr,
X/,t’

2

is the (multiple) Fourier transform of the covariance and is called the wave
spectrum. The notation used here is that of Phillips, [71]. In the event the

(2.4)

( : >6 /"’,t' Z(r,7)exp{—k - r — n7}drdr / texp{“(k’ —k) - x — (n' - n)t}dxdt.
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wavefield may be said to satisfy the deep-water linear dispersion relation,
the spectrum may be expressed in terms of either wavenumber alone, or
frequency alone. This will be assumed to be justified, and the notation to
be used (subsequently) for frequency spectrum is that of Hasselmann et al.
[29].

Wave fields are only approximately homogenous and stationary. In par-
ticular, as wind waves develop as functions of the time the wind has been
blowing (duration) and the distance over which it has been acting (fetch),
the wave spectrum evolves as a function of duration and fetch. The fetch and
duration leading to significant changes in the spectrum are large compared
to the typical wavelengths and periods, and this justifies the invocation of
approximate homogeneity and stationarity. Nevertheless, recognizing the
dependence on fetch and duration, we include these as arguments of the
spectrum X (k,n, x,t).

Data on surface wave fields is usually given in terms of the spectrum,
and therefore it is necessary to connect the wave-related information that
we need, the Stokes drift, to the wave spectrum.

2.1.1 Stokes drift for a random wave field

The Stokes drift is given by the expression (see (31) of Chapter 1)

us = / " o (%, )t Vg (x, 1), (2.5)

The velocity field due to irrotational water waves, u,,, may be written as a
Fourier transform in space and time,

up = | il(k)(k, n)et?e® dkdn. (2.6)
- Jkn
In this expression,
£(k)
where
1/2
Bo= (ReE)

k —ikes, and © = k-x — nt,

From (2.6), the velocity gradient tensor can be formed, giving

Vuy = — LLp(k, n)e* e dkdn, (2.7)
k,n
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and the water particle displacement vector,

t ,
£ = / ydt = — / —§¢(k, n)e*?ei®dkdn. (2.8)
kn

The surface value of the 3 component of £ is the surface displacement (.
Therefore, from (2.2) and (2.8),

¢= [ Ak n)e®dkdn = / £ 5k, n)e® dkan,
k

k,n nn
which relates A and ¢, with
ok, n) = —%A(k, n).
Since £ is real, the Stokes drift is

Ug = S*'vuw

us=

= / ﬁk_)gb*(k’ ’n)ekzeiedkdn-/ E(k’)e(k')(ﬁ(k',n')ek/zeie'dk’dn/
kn T k’,n/

/
- / [k, ;%A*(k, n)A(K, ') [€* (k)-£(K')Je(K)el* +¥)2=H0=O) gk’ dndn’,

(k’,n]

which simplifies to

ug = 2nl(k)X (k, n) exp(2kz)dkdn.
kn

The component in the vertical (z) direction clearly must vanish to be physi-
cally reasonable, and (because it is imaginary) to be mathematically correct
(since us must be real). It may be seen to vanish by virtue of the symmetry
relation

X(~k, —n) = X (k, n). (2.9)

That (2.9) holds arises by virtue of the fact that the covariance Z(r,7) is
real, and because spatial homogeneity and temporal stationarity require that
Z(-r,—1) = Z(r,T).
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Since its z—component vanishes, the Stokes drift is given by

us = | 2nkX(k,n)e**dkdn. (2.10)
k,n

For waves on deep water, n? = o2 = gk, and the wavenumber—frequency

spectrum may be simplified by use of this dispersion relation ([71]), leading

to
X(k,n) =¥(k)é(n - o), (2.11)

where ¥(k) is the wavenumber spectrum. With this substitution, we arrive
at a useful formula for the Stokes drift of a random sea,

s = /k 20 (k)k W (k) dk. (2.12)

The wavenumber spectrum is related to a more readily measured directional—
frequency spectrum, F(f,6). Here f is wave—frequency, related to the an-
gular frequency, o, used above by ¢ = 27 f. Change coordinates in the
wavenumber plane from (K1, k2) to the polar coordinates (k, #), where, to be
definite, the angle # is measured from the z—axis. Then the area element in
the (ky, k2) plane can be written as kdkdf = 32r%(f3/g°)dfdé, by use of the
dispersion relation. The surface displacement variance may be expressed
either in terms of the wavenumber spectrum or the frequency spectrum as
follows:

. 27 oo
a - /O d /0 U (k, 6)kdk (2.13)

_ /0 " 18 /O T F(£,0)df. (2.14)

Note that, assuming small the waves have small slope, the surface variance
is related to the total energy in the wave field: in particular pg(? is the wave
energy per unit surface area. Thus, except for a constant factor, F is also
an energy spectrum.

The identification in (2.13) relates F(f,6) to ¥(k,0), and in particular
allows us to write the Stokes drift in (2.12 in terms of F as

167

" = 93 | ” / ” F2F(f,8) exp[8n? f22/g)] (cos fey +sin fes)dfdo. (2.15)

If the spectrum F' is symmetric in 8, the 2-component of ug will be identically
zero, leading to a Stokes drift entirely in the 1-direction.
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For future reference, we note that the frequency spectrum, E(f) is the
integral over all possible angles of F', or

2m
B = [ F(£,6), (2.16)
0
so that one can write F' as a product

F(f,0) = E(f)S(f,0), where
(2.17)

/21r $(f,00d6 = 1,
0

and S(f,6) is sometimes called the “spreading function”.

At this stage, we have found an expression, (2.15), for the Stokes drift in
terms of the directional-frequency spectrum of the surface waves. In order
to fix the Stokes drift input to the Langmuir circulation theory, we must
adopt a suitable surface wave spectrum, and this is the subject we next
address.

2.1.2 Specification of the wave spectrum and its develop-
ment in space and time

Once a directional frequency (or a wavenumber) spectrum is specfied, the
Stokes drift is determined. The problem of predicting the gravity wave
spectrum of ocean waves is one of long standing and on which much ef-
fort has been devoted. The earliest attempt is that of Sverdrup and Munk
during World War II, and the importance of the problem to operations at
sea have led to a continuous refinement and improvement. The monograph
by Khandekar [40] briefly reviews the history of the subject, and provides
a useful survey of the problem. The current status of the prediction of
wind-generated seas is outlined in WAMDI [86].

While ocean waves may be generated by events such as seismic activity,
their most common cause is the instability of the air—sea interface caused by
wind forcing. The goal of wave prediction is then to determine the statistics
of the sea surface given the mean wind stress distribution on the sea surface.
Attention has been focussed on the development in space and time of the
wave spectrum, F(f,8;x,t). The spectrum changes due to several effects.
First, under the influence of atmospheric forcing, energy is fed into the
wave field, causing an increase of F. Second, given any wave field involving
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a superposition of many wavelengths and frequencies, interactions occur
between waves of differing wavenumbers, provided they are related by a
resonance condition. A consequence of this nonlinear coupling, the spectral
content of F' can change in time, with energy in a given wavenumber band
being both gained and lost to other wavenumbers, so that a “scattering”
of wave energy takes place due to (usually weak) nonlinear effects. Third,
energy can be lost to the wave field to turbulence by wave breaking, or
“whitecapping”. Fourth, energy may be transferred to or from existing
non-wave motions in the ocean, currents or turbulence for example. The
latter components of the motion are those for which the dispersion relation
associated to wave motion does not apply.

The most sophisticated spectral models contemplated to date [86] cal-
culate the rate of change of F' according to the Boltzmann-like transport

equation

%}; + v, VF =8. (2.18)

Here v, is the group velocity of the waves of frequency f, and S is a source
representing the possible gains and losses of energy. Generally, it is thought
adequate to model the source by a superposition of individual effects, and
only the effects of the first three mentioned in the previous paragraph are
modelled. In principal, all source terms are nonlinear and generally coupled,
and involve complex physical processes which must be modelled in some
suitable way. In the newer existing models [86], the contribution due to
atmospheric forcing is taken to be a linear function of F, and the energy
dissipation term due to wave breaking is taken to be a quasi-linear function
of F. The nonlinear source term due to wave interactions is based on the
weakly nonlinear resonance analyses (see [71]). The exact evaluation of the
interaction term so identified involves an eightfold multiple integral, and this
requires more computational work than is feasible for practical purpose, even
on modern supercomputers. Consequently, assumptions must be made to
simplify the numerical evaluation of this input.

Equation (2.18) relates the problem of wave prediction to the underlying
physical mechanisms more closely than had been possible heretofore, and it
is thought that by making continuing improvements in the source terms by
improved understanding of the physics involved in each, predictions made
on the basis of this equation should satisfy most requirements. Nevertheless,
the prediction of wind-driven seas must be done numerically, and when done
on the basis of (2.18) is a numerically intensive process. While it is important
to keep this kind of analysis firmly in mind, it is not currently practical to
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consider coupling the development of the wave spectrum as computed on
the fundamental basis of (2.18) to the development of Langmuir circulations
associated with the spectrum.

Instead, we turn to earlier wave prediction methods which postulate the
functional form of the spectrum, which depends on a small number of pa-
rameters. For example, the JONSWAP (“Joint North Sea Wave Project”)
spectrum seems to fit a wide range of experimental wave spectra, and su-
percedes earlier spectra such as the widely used Pierson—-Moscowitz spec-
trum (see [72]). Let the frequency at the peak of the spectrum be denoted
fm and let the dimensionless version of this frequency be denoted v, where

Ufm
g

v , (2.19)

where U is the wind speed at anemometer height (10 meters), and let the
frequency normalized by f,, be u, or

U= }f— (2.20)
The JONSWAP frequency spectrum is given by
_ B
E(p) = (2—’”)2-@8(#), where (2.21)
E(n) = pexp[-G(u)], and (2.22)
5 _
G = Zu™* =~ (Inm) exp[~(u—1)%/207)], (2.23)

with
_fo007 ifu<i,
o) = { 009 ifu> 1.

The parameter v is the “peak enhancement factor”, and Hasselmann et
al. [29] assert that the best fit to the JONSWAP data may be had by taking
v = 3.3. When v = 1, there is no “peak enhancement”, and the JONSWAP
spectrum reduces to the Pierson-Moscowitz spectrum.

Figure 2.1.2 shows the experimentally measured fetch-limited spectra
for which the JONSWAP spectral form was developed.

Hasselmann el al. [29] describe two models using the JONSWAP fre-
quency spectrum, applicable to developing seas. These models are based on
the observation that the shape of measured spectra remain self-similar to
a good approximation as the wave field grows under wind forcing, and is
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Figure 2.1: Development of the spectrum with increasing fetch (from 9.5 to
80 km, as found by JONSWAP.
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well fitted by the JONSWAP spectum. The general level of the spectrum
increases as energy is transferred into the wave field, and this may be ac-
counted for by allowing 3 to vary in space and time, and the location of the
spectral peak shifts to lower frequencies as the wave field develops, and this
may be accounted for by allowing v, the dimensionless peak frequency, to
vary in space and time. In the first model, two partial differential equations
are derived that permit these two parameters to evolve so as to permit the
JONSWAP spectrum to approximately satisfy the energy balance equation
(2.18). It is found that the solutions to this pair of equations very rapidly
is attracted to a functional relation

B = 0.0320%/3, (2.24)

which allows a further reduction to a second model entirely controlled by a
single parameter, which may be taken to be v. We adopt this model due to
its simplicity, and to the flexible range of conditions that it seems to cover
with reasonable reliablility. In both cases, the spreading function is taken

to be
2

ﬂﬁm={g

where 6 = 0 defines the local wind—direction.
According to [29], the single parameter v is to be determined from an
equation may be written as

U (ov a0v 3 g5 10U o, 0U
gu<8t+bUV 85)_“ Zav +g<-—(-9—t—+bUV —a—s> (2.26)

cos?8 for
for

0] < %,

<
<o) <,

0 (2.25)
2

where
a=0.00129, b=0.064, b =1.049,
and s is arclength of a path along the wind direction, so
0
-8—3 = ewind'v (2.27)
where
ewind = U(x,t)/U(x,1t)

is a unit vector tangent to the local wind velocity vector U. direction
We find it convenient to rewrite (2.26) in the alternative form

[0 (o0 2)32)

(2.28)
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Typically, the term involving b’ — b is small compared to ag, primarily
because |U(0U/ds) < g, and we therefore shall ignore it. This leads to a
very tractable equation, which in the general case can easily be integrated
along characteristics. For the simpler cases for which the waves are either
steady, but fetch-limited (so 8/t = 0, or acted upon by a wind field that
is independent of distance, so the waves are limited by the duration of the
wind only, the solution for v reduces to quadratures. For example, for the
steady fetch-limited case, v = v(x), where we write = for s. It is natural
here to suppose the wave energy density vanishes at zero fetch (implying
that v(0) = oo, so

U(z)
(252 i rass(syasr) ™

v(z) = (2.29)

If the wind is spatially uniform, this result gives

3/10
U2
=29 —
r=ns ()"
in acceptable agreement with (5.3) of Hasselmann et al. [29].
For a wind and wave field depending on duration but not fetch, the result
corresponding to (2.29) is
v(t) = vtt)
(a9 FU¥a)a8)

For a steady wind, the duration-limited (dimensionless) peak frequency de-
velops in time like

= (2.30)

U 3/7
t) =173 — .
vf) =173 (gt)
This may be compared to the two-parameter model of [29], which is the

same, but with the coefficient 17.3 replaced by 16.8.

2.1.3 Stokes drift specification

If the waves are defined in terms of a frequency spectrum and a spread
function, then our expression (2.15 may be written on use of (2.17), as

1’6; /ooo FPE(f) exp(8n*f22/g)df /0% S(f,0)lcos e1 + sin fes)do.

(2.31)

Ug =
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For waves that are generated locally by the wind, it is reasonable to
assume that the spread function is an even function of 4, in which case the
component of Stokes drift at right angles to the wind direction vanishes
when (2.31) is evaluated.

Sea state data required to obtain the Stokes drift is not routinely avail-
able. We therefore need to connect the most readily available observational
data, the local wind speed, to sea state. Even if the connection used were
exact, such a description would be incomplete. Wind at distant locations
and at earlier times may produce waves that can propagate to the area of
concern. This swell component of the wave field will be missed by predic-
tions based on local conditions. Nevertheless, the locally generated wind
waves frequently dominate the energy spectrum.

Here we adopt the JONSWAP spectrum (2.21) for E(f), and the cos?#
used by Hasselmann et al. [29]. In this case, the Stokes drift is simply

ug = 3—78T2—§—U611(2) where (2.32)
x>
_ —G(u) 23 AW
I = /0 e (“)e“z;ﬁ, (2.33)
where
5 =8r22 22

5’2"’
and G is given by (2.21).

The integral (2.33) cannot be given in explicit form, but may be readily
evaluated numerically.

Ocean wave spectral models do not predict the small wavelength com-
ponents, and the short wave components nominally predicted by parametric
spectral models are incorrect. The short waves are dissipated, and therefore
spectral models need to be adjusted if unrealistic consequences follow from
the formal extension of these spectra to all wavelengths.

The Pierson-Moscowitz spectrum and the JONSWAP spectrum built
upon it both predict that the angular frequency spectrum (where the angular
frequency, n, is related to the frequency, f by n = 27 f) of the short waves
goes like

E(n) ~ gn~5. (2.34)

Any spectrum with an algebraic behaviour at high frequency that falls
off like n =% or more slowly, like Pierson-Moscowitz or JON SWAP, or indeed
most suggested empirical fits to ocean wave data, will lead to infinite values
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at the mean water surface of the gradient of the Stokes drift.! The long
algebraic tails in these spectral forms arise from the neglect of scales below
which wave energy is heavily dissipated. The most significant dissipative
process is thought to be wave breaking. According to Phillips [71], the
presence of surface currents acts to enhance wave breaking. This is not
important for frequencies

n << nsc - 29/“*0,

where u., is the air friction velocity, but becomes important for frequencies
larger than about n. = ns/10. The energy spectrum therefore drops off
faster than ( 2.34) indicates, and is better written as

E(n) ~ ,Bn“Sf(nu*a/g). (2.35)

where f is a function that decays exponentially fast. Other factors, such as
capillary effects, also cause modification and ultimately dissipate the high
frequency components.

The net effect is that the wave spectrum should be cut off at values of
the frequency comparable to n.. We may estimate n. by taking u., ~ U/25,
giving n. ~ 5g/U, where U is the local wind speed. This is the assumption
we will make, and we will accomplish the cut-off by assuming the wave
energy is zero for frequencies larger than n..

This alters (2.32) for the Stokes drift profile by substituting n. for oo
in the upper limit of the integral required. This is unimportant for this
quantity, but is makes an essential difference to its gradient, which with this
substitution is

%s- = %%{:elj(é) where
(2.36)

5 .
j = \/C; e_G(“)eﬂzzd/J“

2.2 Exchange processes at the mixed layer bound-
aries

The part of the ocean with which we are concerned is the mixed layer.
To focus attention on this limited region, we need to isolate it from the

!The Stokes drift itself is finite everywhere under these circumstances.
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atmosphere above and the water body below. This implies a need to specify
boundary conditions which reflect the physical exchanges occuring at the
air-sea interface and at the base of the mixed layer. Since imposition of
conditions at these boundaries is a process of mathematical idealization,
it in itself amounts to and requires the modelling of physical mechanisms
which are not fully understood. Any choices of models is therefore at best
tentative, and it should be recognized that other choices may later be seen
to better reflect the physics.

In this section, we first specify a set of boundary conditions reflecting
the exchanges of momentum and heat to the mixed layer. We then give,
for the purposes of illustration, a simple steady state current and density
stratification field that could arise from this set of exchange processes in an
ocean in which the Coriolis acceleration is ignored. The section concludes
with an estimation of the parameters which appear in the boundary coupling
conditions.

2.2.1 a. Boundary conditions

To fix our problem, we suppose that the wind at some “anemometer” height
above the mean water surface is constant in speed and in direction, which
we take to coincide with the z—axis. A strong thermocline exists at a depth
d below the mean water surface, z = 0, and the water above it is either
of uniform density, or stratified with a modest density gradient. It is sup-
posed that the thermocline is strong enough to prevent the penetration of
any significant convective motion, so that the plane z = —d acts like an
impenetrable surface. The water below the thermocline may be moving. If
so, its horizontal speed, like that of the wind, is supposed constant in speed
and direction with z and y components of Upejow, Vbeiow, respectively.

A stress will be exerted on the water, some of which will provide the
momentum radiated away from the local water column by surface waves,
and the residual will increase the momentum of the local current system. We
suppose that the surface waves are statistically stationary and horizontally
homogeneous, and that the associated Stokes drift is rectilinear with speed
Us(z) in the wind direction. Furthermore, we suppose that the wind speed
U, has been discounted for any momentum transferred to the waves, so that
only the stress which transfers momentum to the current system is accounted
for. The mean surface water speeds are much smaller than the wind speed
at standard anemometer heights, typically by a factor of 30 or so, and so
the usual practice in estimating the stress applied to the water surface is to
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ignore the surface current speed. In this approach, a constant value of U,
implies a constant applied stress. This is a good approximation, but there
are clearly small departures from it when the surface current accelerates. It
is evident that the stress will be reduced, albeit by a small amount, as the
surface current increases.

Let the stress vector be 7. Assume a constant bulk momentum exchange
coefficient, C,,,, and fix the stress vector applied to the (mean) water surface
by the wind to be

7 = Cmpay/ (Us — us)? + 02 [(Ua — )i — vs], (2.37)

where u; and v; are the components of the mean surface water current in
the = (windward, unit vector i) and y (crosswind, unit vector j) directions,
respectively, and p, is the air density. The water current speed is small
compared to U,, so we can approximate (2.37) by

T~ Py [(1 - 2-5—) i— %"—J] , (2.38)
a a

where p,, is the water density, and u. is the water friction velocity defined
here by

pwf = CmPaUg-

This leads to the surface stress boundary conditions

T 2ug 1
Pt Ua ’
(2.39)
T Vs
— 0.
pwu? U,

Similar conditions may be applied, albeit more speculatively, to couple
the mixed layer to the water below it. Current speeds typically are much
smaller below the pycnocline than they are just above it. The higher ef-
fective viscosity in the turbulent (or simply the convective) motion in the
mixed layer is one way to think of the cause of the boundary-layer character
exhibited across the thermocline. The momentum flux from the mixed layer
to the water below is modelled here in a way that has been suggested for
integral models of the mixed layer (Niiler & Kraus [68]). The two trans-
fer mechanisms contemplated are due first to entrainment at the base of
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the mixed layer, with an entrainment velocity, we to be specified, and sec-
ond to downward radiation of momentum in internal waves (Pollard & Mil-
lard [74]). Niiler & Kraus suggest parameterization of this effect by means
of a constant drag coefficient. We note that if the mixed layer depth re-
mains constant, then any time-independent horizontally-averaged current
that may emerge must have the stress imposed at the surface balanced by
the stress imposed at the bottom, and with the mechanisms suggested here,
this implies that the stress is imposed by internal wave radiation. Accord-
ingly, we will take the contribution of the internal wave drag in the form
pw(mu2i + Cripus(Aui + Avj). Here we have taken Au = uUportom — Ubelow
and AU = Upottom — Ubelow t0 be the difference of the horizontal velocity
components at the bottom of the mixed layer (i.e., as z | —d), and the cor-
responding velocity components in the fixed current below the mixed layer;
the “extra” wave stress has been taken in the form of a linear friction.

The dimensionless parameter m is a measure of the fraction of the stress
attributable to internal waves. When the mixed layer has constant depth
and is in dynamical equilibrium, then all of the stress at the bottom is
accounted for by internal wave radiation and m approaches one.

The bottom stress boundary conditions, allowing for entrainment and
radiation, are

T w Au
5 = (—e + CIW) — +m,
Puwli U U
(2.40)
T°j w Av
J2 = (__6_ + CIW) Ty
PuwUy U Uy
at z = —d. In the next section, we shall estimate the entrainment velocity

based on the over-all Richardson number across the pycnocline using the
experimental data discussed by Phillips [71].

Whenever a nonzero entrainment velocity is invoked, we must allow the
mixed layer depth, d, to change with time (since d = We). In the stability
analysis to follow, we suppose that any such changes are much slower than
the time scales for Langmuir circulation instability to occur, so that the
depth variations may be treated quasistatically.

We adopt similar mixed boundary conditions on heat transfer at the
upper and lower boundaries to relate heat flux to temperature differences
across the interfaces. If Ty, Ts, Thottom, and Tpeio are the temperatures of
the air and water corresponding to Uy, s, Upottom, and Upejow, then Newton’s
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law of cooling gives
or

KT = how(Te —Ts) at z=0, (2.41)
and
oT
/‘CT‘é‘Z“ = Ry (Tbottom - Tbelow) at z = —d. (2~42)

Here Ay is the heat transfer coefficient across the thermocline (heat flux
divided by heat capacity, pyCpw, of a unit volume of water), hgq, is the heat
flux across the air layer divided by the heat capacity of a unit volume of
water, and st is the (eddy) thermal diffusivity of water.

2.2.2 b. Structureless equilibrium

The CL theory differs from the Navier—-Stokes or Reynolds—averaged Navier—
Stokes equations by a term representing the rectified effects of surface gravity
waves. These effects reside in a “vortex force”

Ug x curl v,

where v is the velocity vector of the complete (rectified) current system.
When Ug = Ug(#)i, the CL equations allow for a nonconvective, rectilinear
current and temperature field in which the vortex force does not play a role.

Applications of the theory to date assume constant eddy viscosity and
constant eddy thermal diffusivity. Although the theory is not restricted to
this representation of the incoherent turbulence, we continue to adopt this
parameterization.

Given these preliminary remarks, the problem for nonconvective or “struc-
tureless” states in the layer is (quasi)laminar and the vortex force term sim-
ply modifies the mean pressure distribution. If we seek steady structureless
equilibria, then the velocity vector lies in the horizontal plane, and must
be a linear function of z. Similarly, the temperature, 7'(z), must be a lin-
ear function. The boundary conditions are (2.39), (2.40), (2.41), (2.42),
supplemented by

L VT?—Y- at z =0, —d,

Pw 0z
where vr is the eddy viscosity and the appropriate expression is substituted
for 7 from (2.39) and (2.40).

Defining
Usd

R, = ,
vr




Environmental Sciences of Ithaca 65

the velocity field satisfying these conditions has x component

w=U(z) = Uls + U, (2.43)
where . R
Up = us ( —m+ ab) « T ab(ubelow/u*) (244)
ap + o + opo
and R
Uy = (ab + mo‘t) * atab(ubelow/u*) ’ (2'45)
ap + o + apoig
where 5 i
oy = —yiR*, and ap = We + Crw Ry (2.46)
Ua VT

are dimensionless parameters.
The y velocity component is
QpUpelow Z
v="V(z) = P Y <—ata + 2) . (2.47)
In the work to follow, we will assume that both a; and «; are positive
and that (Upeiow, Vbelow) = 0. (The latter assumption is always permissible,
though not necessarily convenient, since we can always adopt a coordinate
system moving with the fluid below at the expense of altering the specifica-
tion of the wind and surface wave fields.)
The corresponding temperature field is given by

T(z) =T (2 + eg) . (2.48)
In (2.48),
To — T
T, = a . below_l’ (2.49)
1+ Yt -+ )
and . .
To+v To+7 Theow
fy=22" t_Zbelow 2.50
: Ta - Tbelow ( )
where dh dh
Tt = awa and o = wwa (251)
R R

are Péclet numbers analogous to a;p. The structureless temperature field
may be statically stable or unstable. Density gradients are not necessary
to the Langmuir circulation instability mechanism: the motions are not
buoyancy driven. We shall think primarily of the situation in which the layer
is stably stratified, but the case of unstable stratification is not excluded from
the analysis we present.
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2.2.3 c. Typical parameter magnitudes

We estimate the parameters (a4 p,v;p) by parameterizing u, and vr in terms
of the wind speed, taking u./U, ~ 1073, consistent with an air-sea momen-
tum exchange coefficient Cp,, = O(1073), as is generally reported (e.g., see
Busch [10]) for typical values). This implies

i~ 2 x 1073 R,.

The question of the loss of momentum from the mixed layer to internal
waves is too difficult for us to address here. In many cases, we expect
that this momentum transfer will be small compared to the direct loss to
entrainment (see the discussions of this point by Niiler & Kraus [68], and
by Kantha [38]). In any event, for the present purposes, we take Criy = 0
in estimating the parameter q;.

According to the experiments of Kantha & Phillips [39] in a two-layer
stratified water body driven by an applied surface stress, the light turbulent
upper layer entrains nonturbulent heavy fluid with an entrainment velocity
given by

We = U*f(R@).
Here the over-all Richardson number is
Ri= g—‘jéﬁ,
ui p

Ap is the difference in density between the heavy and light fluid, and f is a
function that at present must be experimentally determined. The data from
the Kantha/Phillips experiment, as discussed by Phillips [71] suggests the
rough approximation to this function '

We 6

If (2.52) is used to estimate the entrainment velocity in ay,
op ~ —R,.
b R

Relating the friction velocity to the wind speed shows that

Ri = (Ua>2 9480 19592 Lp

u) UZp Uz o
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For purposes of estimating, we will take Ap/p ~ 1073 as a plausible value for
the fractional density “jump” across the pycnocline terminating the mixed
layer, then
2 u.d
oy ~ 6 x 10732 2
gd vr
From this, we arrive at the estimate a;/ay ~ (1/3)gd/U2. For a wind speed
of 25m/s and a mixed layer depth of 50m, the ratio is about 0.26.
Returning now to the estimation of oy, we assume a parameterization of

vr similar to that quoted in Leibovich & Radhakrishnan [56], vp ~ 2.5 x

10~5U2/g. Then
2
U gd
~ 105 x <—i) =,
o U.) U2
Again assuming u./U, = 1073, a mixed layer depth of 50m and a 25m/s
wind, we get oy ~ 0.06. Choosing the eddy viscosity to be proportional to
U3/g, as we have done here, makes o independent of the wind speed and
mixed layer depth. With the specific parameterization introduced above,
Qp ~ 0.24.
By comparing with the data on the transfer of sensible heat at the air-sea
interface given by Busch [10], we find our exchange coefficient to be

el
haw = _{p_Ji]ﬂZ_Uace,
[pcp]water

where the conventional bulk exchange coefficient for heat, Cy, is approxi-
mately the same as Cy,. Our dimensionless heat exchange coefficient at the
surface is

3Cy x 1074 u,d

Y~ WK_T— (2.53)

This shows that
0.1504 KT
Ay~ ,  where 7 = —,
T vr

The parameter 7 is an inverse Prandtl number. The molecular value of 7 is
about 0.15, but a more likely value when based on turbulent diffusivities of
heat and momentum would probably be around unity. In either event, if a;
is small, so is .

At the base of the mixed layer, it seems reasonable to set hyy, = wWe,
then

d
= e _ % (2.54)
KR T

SO vp is comparable to ap.




Chapter 3

Estimates for Turbulent
Exchange Coeflicients

In the theory as described in Chapter 1, the effects of turbulence are treated
by assuming that they may be represented by eddy diffusivities of momen-
tum (vr), and heat (k7). Our primary concern here will be to estimate
v, since our main objective the determination of the velocity in the mixed
layer, assuming the layer is itself essentially isothermal. In this case, kp will
be ignored (or, should a rough estimate be needed, we can take k7 = vr).

Of the parameters needed to specify the Langmuir circulation theory,
it is about the values of eddy viscosity that least is known. Any attempt
to assign values to this parameter requires many assumptions, and a heavy
dose of empiricism. There are deveral different avenues we may try.

3.1 Classical estimates

The same issues must be faced whenever an eddy viscosity assumption is
invoked in geophysical fluid dynamics. We note that, in the treatment of
large—scale oceanographic phenomena in which eddy diffusities are used,
one must assume that the eddy diffivities are anisotropic, with much larger
values for the “horizontal” diffusivity than the “vertical” diffusivity. This
is mainly due to the much larger horizontal length scales in such problems.
(See, for example, the review by Bowden [8]. If estimates of eddy viscosities
are to be borrowed from this literature, it is the vertical eddy viscosity that is
potentially comparable to the eddy viscosity that we need to invoke. In fact,
since the large scale phenomena used to assess the vertical eddy viscosity

68
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can reflect mixing accomplished by Langmuir circulations themselves, one
can anticipate that the values arrived at will be too large.

3.1.1 Ekman layer fit

An eddy viscosity may be extimated by assuming that surface currents may
be related to the simple Ekman layer, adusting the eddy viscosity to ac-
complish the fit between Ekman’s theory and observed currents (see Pond
and Pickard [75], and Bowden [9]). The fit indcates that vy oc U?, where
U is the wind speed as before. Such a relationship requires a dimensional
constant of proportionality (Bowden [9] cites the constant 1.37 if vp is to be
given in cm?/sec, and U in m/sec), and so is fundamentally incomplete. n
any event, if we denote this “Ekman—fitted” eddy viscosity by the subscript
E, we have
vg ~ 1.370°2,

with the understanding that the formula holds only when vg and U are
given in the special units cited.

3.1.2 Wave associated turbulence

Some empirical estimates for vy in the surface layer attempt to correlate
it with surface wave characteristics. One of the earliest attempts in this
direction is due to Bowden [7]. Another estimate (Ichiye [35]) is

vp = CTHIQ/3U,

where Cr is a numerical constant, o is the wave angular frequency at the
spectral peak, and Hjy/3 is the “significant” wave height, defined to be the
mean of the one-third highest waves in the record.
A form like this allows one to express vp in terms of the wind speed (see
§ 2 of this report) as
vie = CyU%/g. (3.1)

This form was also derived by Leibovich and Radharishnan [56] by
matching the results of their Langmuir circulation calculations to three ob-
servational “rules of thumb”: (i) the total surface mean drift current is
about 3.5% of the wind speed, (ii), the maximum downwelling speeds in
Langmuir circultations is about 0.85% of the wind speed (a “maximum”
which seeems to now to be superceded by the results of Weller and Price
(see Chapter 1); and (iii) adjusting the near—surface horizontally averaged




Environmental Sciences of Ithaca 70

Langmuir circulation current speed to measured logarithmic profiles. The
three evaluations of Cy done these ways were largely consistent, yielding
the values (2.3 x 107>, 2.8 x 1075, 6 x 1073, The average of the first two
values leads to an estimate

vre = 2.5 x 107°0U3 /g. (3.2)

Values obtained from (3.2) lead to eddy viscosities that are consistent with
estimates from other sources.

3.1.3 Estimates from shear flow turbulence

Breaking waves can inject turbulence very near the air-sea interface. The
breaking waves are the short waves in the spectrum, with phase speeds
typically exceeding 150u, (Phillips [71], pg. 290), where u, is the friction
velocity in the water caused by the stress applied by the wind. This turbu-
lence is injected in a water layer of depth comparable the wavelength of the
breaking waves, and will decay in the absence of a turbulence—production
mechanism, such as current shear or unstable density distributions.

If it is assumed that the turbulence is maintained by current shear in
a mixed layer of depth d, then we can provide an estimate for v on the
following grounds. On dimensional grounds (cf. Tennekes and Lumley [84]),
one expects the eddy viscosity to be proportional to the product of the rms
velocity fluctuations, v/, and a length scale, ¢ characteristic of the energy-
containing eddies (having velocity scales of order u/, a local scale more pre-
cisely defined this way is called the integral scale).

In wall-bounded turbulence, the length scale increases linearly away from
the wall, at least through the inertial sublayer. Furthermore, the mean
velocity gradient is ~

Uy

9z Kz
where here k represents von Kdrman’s constant, which has value 0.42. Let
us write £ = k|z|, near the wall, and is the length scale characterizing the
turbulence in this region. The production rate of turbulent kinetic energy
density is the Reynolds stress times the mean rate of strain U /0z, which
near the wall is precisely ul/f. Furthermore, production and dissipation
rates are nearly in balance near the wall (and throughout turbulent flows
near equilibrium conditions), so the dissipation rate

e~ ud/L. (3.3)
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Evidence shows [2] that this variation of dissipation rate holds in the ocean
mixed layer as well, except within a significant wave height of the mean free
surface The base of the mixed layer also acts much like a solid surface, and
the turbulent intensities become much smaller there. Imagining it to be a
solid surface would lead to the requirement that the integral length scale
must vanish at both z = 0 and at z = —d, and near each boundary to vary
like x times the distance from the boundary.

In wall turbulence, it is also known that the rms fluctuating velocity
increases with distance from the wall, reaching a maximum comparable to
the friction velocity. With this in mind, we expect the eddy viscosity to be

v O Uk,

with a constant of proportionality that is of order one (with respect to
the friction velocity and mixed layer depth). Standard k-e second-order
turbulence models fix the eddy viscosity to be

2

where here k represents the turbulent kinetic energy density, which is very
nearly (3/2)u?, and the usual value assigned to the constant C,, is 0.09. If
(3.4) is used to find the eddy viscosity, we have
9
The maximum value of £ in the layer, assuming it varies linearly inward
from each of the layer boundaries, is kd/2, leading to an eddy viscosity in
the layer center of
vr = 0.043u.d.

which gives an eddy viscosity estimate based on mixed layer scalings,
vpL ~ 02ud.

In the table below, we compare the values of eddy viscosity that are
found from the several estimates above. Values are given for several wind
speeds, and in the case of vy, for a few values of the mixed layer depth
also.
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U VE VLC VML
m/s | em?/s || em?/s em?/s
d (meters)
10 20 | 30 | 40 | 50
5 34 3 21| 42 | 64 | 8 | 106

10 137 25 42 | 128 | 191 | 170 | 212
15 308 86 64 | 60 | 90 | 255 | 318
20 548 204 | 85 | 170 | 255 | 340 | 425

Table 3.1: “Classical” eddy viscosity estimates.

3.2 Estimates from numerical experiments

Recently, three sets (Skyllingstad and Denbo [78]; McWilliams, Sullivan,
and Moeng [64]; and Leibovich and Yang [57]) of numerical experiments
have been carried out using large eddy simulation (LES) of turbulent Lang-
muir circulation. In each case, the vortex force model was used, but the
experiments used differing numerical methods and differing assumptions
concerning inclusion of the Coriolis acceleration, buoyancy, sub-grid scale
(SGS) turbulence models, and lower boundary conditions (the first two pa-
pers are very similar in these respects, while differing in initial conditions,
while the third differs in all respects).

Bulk eddy viscosity estimates can be made from these experiments, and
despite the differences between them, the eddy viscosity estimates (and other
measures of the flow states) are quite similar. For example, [78] displays

a vertical profile of bulk eddy viscosity based on a model introduced by
Deardorff [18],

vy = 0.1¢VE, (3.6)

where E is a turbulent kinetic energy and £ is a length scale. Deardorff had
proposed this as a SGS eddy viscosity for LES, in which case E is the SGS
turbulent kinetic energy and is computed by an auxillary evolution equation,
and £ is the computational grid spacing. Skyllingstad and Denbo [78] use
(3.6) to estimate a bulk eddy viscosity, interpreting £ to be an integral scale
for the turbulence and E to be the resolved turbulent kinetic energy. The
eddy viscosity calculated in this was is largest very near the surface, and
then varies about a (dimensional) mean of about .03 m?/s, which is more
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usefully expressed as vy = 0.06 u * d.

A bulk eddy viscosity is computed in [64] from the basic definition as the
ratio of Reynolds stress to vertical gradient of velocity. This was done with
and without the vortex force. With vortex force acting, the peak eddy vis-
cosity is about three times the value without vortex force, showing the large
contribution made to the Reynolds stresses by the coherent Langmuir circu-
lation. Presumably, in a constant eddy viscosity model aiming to compute
Langmuir circulation, the effects of the coherent motion on the Reynolds
stresses should be removed, which implies that the more relevant value to
consider is the one computed without vortex force. This again to a peak
value of vy & 0.06 u.d.

We can estimate an eddy viscosity based on the numerical experiments
[57] by forming vy ~ £,w’, where £, is a integral scale based on the ver-
tical fluctuating velocity component and w’ is the rms fluctuating velocity
component. The maximum of w’ and £, are approximately 2u, and 0.03d,
respectively, leading to a peak value of this product of vy ~ 0.06 u.d. A
direct computation of the volume averaged eddy viscosity from the SGS
model, in this case the Smagorinsky model, led to vy = 0.055 u.d.

Thus, the LES computations lead to remarkably consistent estimates for
the eddy viscosity, or alternatively, for the Reynolds number R, based on
Us, d, and vp, with values of 16 to 18.2. In all of these experiments, these
approximate values hold over most of the mixed layer. We choose here to
set

R, =18.2. (3.7)

It is important to point out that in none of the estimation methods
reviewed above is the effect of wave breaking accounted for.




Chapter 4

Collection of Surface Oil into
Windrows

4.1 Introduction

The fate of oil introduced into the sea raises questions of exquisite com-
plexity. The answers to these questions will never be known in detail, as
they depend on physical, chemical, and biological processes that are indi-
vidually complex and which operate interactively. The outcomes depend on
the chemical composition of the oil; on the evolution of physical properties
as the chemical composition changes by interaction with the environment;
on the rate of biological interactions, which depends strongly on the phys-
ical environment and especially the temperature; and on the unpredictable
nature of the air-sea interfacial region in which the oil is immersed.
Practical considerations of these questions have customarily identified
several stages and processes, not all disjoint. These are spread®, which refers
to the relative motion of an oil layer to that of the underlying water; weath-
ering, which refers to changes in physical properties of the oil phase arising
from several processes;evaporation of lighter fractions to the atmosphere and
the corresponding dissolution of soluble components into the water column;
the formation of water-in-oil emulsions (or “chocolate mousse”) and oil-in-
water emulsions; aerosol production, in which minute oil droplets are formed
by breaking waves and directly transferred to the atmosphere; dispersion,

!Spreading itself has been divided into a crude but useful chronological sequence of
events, each stage of which is controlled by the balance of a pair of forces driving and
resisting the reduction in film thickness.
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in which turbulence in the water causes vertical mixing into the water col-
umn and random horizontal migration of discrete patches of floating oil; and
biodegradation, in which oil is utilized by living things and transformed by
biological processes.

To study the disposition of oil in the sea resulting from physical pro-
cesses, we suppose that the history of the physical properties of the oil,
which will usually vary with time, is specified as a function of time and
perhaps of oil temperature and location. In particular, the problem of how
the properties of the oil encountered come to be is put aside.

In this report, the process of collection of floating oil into the windrows
created by surface convergences is considered in a preliminary way. We
begin in §4.2 by presenting equations appropriate for a thin layer of floating
oil. These require information about the underlying water motion. Physical
estimates of the water velocity are summarized in §4.3. This leads, in §4.4
to estimates of the time scales required to collect oil into windrows, and to
estimates of the effect this has on surface transport.

4.2 Thin films on water

The model to be used to estimate the collection of oil into windrows treats
the oil as a continuous thin layer, and is laid out below 2. In reality, such a
layer will be torn, and oil removed from it, when waves break, or when the
relative speed of the oil and underlying water exceeds a critical value deter-
mining the stability of the oil-water interface (see, for example, [47]). These
processes have little effect on the collection process, and will be ignored for
the present purposes.?

The model is cast in terms of the thickness, h(z,y,t), of the oil layer,
and the depth-averaged velocity of oil in the layer, (u(z,y,t),v(z,y,t). Here
u and v are the velocity components in the z and y directions. A precise
meaning for x and y should account for the fact that the mean (or central,
i.e., half-depth) surface of the oil layer is deformed by the deflections of
the underlying oil water boundary, and this can be accomplished to some
extent by interpreting x and y as local orthogonal coordinates tangent to
this central surface of the oil layer, and h is the thickness in the direction

This is the model used in [49].

3In point of fact, model described does not properly account for the acceleration of the
layer due to the wavy water “substrate”. This poses interesting questions that have yet
to be considered in the literature, but may well repay any attention given to it.
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(2) normal to the central surface. This, however, seldom causes practical
complications, since the orientations of these two coordinates usually differ
only slightly from the horizontal coordinate directions.

Suppose the oil-water interface is located at z = 21(z, y,t) and the oil-air
interface is at 2 = 29 = 21 +h(z,y,t). Let an overbar signify a depth average
over the oil layer, or for any function f,

1 zz(ac,y,t)
7 f(l"vy: Z,t)dZ. (41)
h Jar(@y.t)

f

If w is the z-component of velocity in the oil, the continuity equation, in
Cartesian coordinates (z,y, z), when averaged over the depth of the layer
and rearranged gives
oh ohu  OhU
— 4 | ==+ = =0, 4.2
ot [Bx + By] (4.2)
exactly.
If we do the same to the momentum equation, then again without ap-
proximation (assuming z is the vertical direction),

oM | g.hww = —hv (3 + gz) + g, (4.3)
ot Po Po
where u is the velocity vector in the oil, T is the stress tensor with the
pressure removed, and all quantities with overbars are functions only of
(x,y,t). The subscript “o” indicates properties evaluated for the oil, “w”
and “a” will have the corresponding meanings for water and air.

Now the thinness of the layer is invoked. This implies that

i =uu(l+O(h/L)),

where L is a typical length over which the layer has appreciable horizontal
variability, and

VT = e, [T(2,y, 22,t) — T(2,y, 21,8)] (1 + O(h/L)) .

Since continuity implies that w = O(hu) and similarly is of O(hv), the ver-
tical component of the Navier-Stokes equation implies that the oil is in
hydrostatic equilibrium in that direction, so

1—0—9+gz=H(:c,y,t).

Po
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Equating pressures at the air-oil interface and at the oil-water interface then
implies that
H(z,y,t) = xgh, where x = Puw " Po
Pw
The horizontal components of the depth-averaged Navier-Stokes equations
then take the form

ohu Ohuu  Ohuv oh 1
ohv | Ohuv | OhvT Oh 4

where (tz,t,) are the two horizontal components of t, which is the sum of
the stress vectors imposed on the oil at the air-oil and oil-water interfaces.
Using (4.2), we may rewrite this equation, if desired, as

o
—8—? +E-VE = xgVh + (poh) 7t (4.6)
The motion of the oil layer is then prescribed by (4.2) and (4.6), and the
specification of the stress vector t imposed by the fluids outside the layer.
This can be done by specifying “friction coefficients”, C, and ¢, for the
air-oil and oil-water interfaces, from which the stress vector is given by

t = Copalug — 0| (ug — ) + Cypulus + uy — T (us +uy —TW).  (4.7)

Here u, and u,, refer to the velocity vectors of the air and water at the
corresponding interfaces with the oil. The value of C\, depends on oil type
(see [61], [15]), but typically ranges from 1073 to 4 or 5 x 1073, Of course,
the values of C, and C), are nonzero only if there oil on the surface - in fact,
the oil must be thick enough to be treatable as a macroscopic layer for it to
be treated as we have here. On portions of the surface swept clean of oil,
these coefficients should be set to zero in our macroscopic model.

The filtered effect of the stress on the oil-water surface, undulating with
the waves, is accounted for in (4.7) in an ad hoc fashion by incorporating
the Stokes drift into the relative velocities that appear.

Now, C, relates to an average shear stress exerted by the air on the oil.
If its value was to be fixed by the momentum transport from the atmosphere
to the ocean, then it would be estimated by Cy,, ~ 1073 (as § 2.2 in Chapter
2 - also see [10], or Large and Pond [45]). The total momentum transport is
set both by pressure forces on waves and by skin friction, and quite plausibly
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mostly by the former. Consequently, we would expect C, < Cy,. Because of
this, and because here our analysis applies to an average over several wave
periods that is difficult to assess but which is here parameterized by the
dependence on ug, we will set C, = 0.

4.3 Estimates of surface water velocity

The purpose of this section is to estimate, based on earlier reports in this
series, a parametric dependence of the surface water velocity, especially the
sweeping component, with wind speed.

According Chapter 1 4, the maximum speed in Langmuir circulations is
not expected to exceed

2
uZ
Urc =4 |Us

For (4.8)
where U is the surface value of the Stokes drift speed, kj, is a characteristic
wavenumber of the surface waves, say the wavenumber of the spectral peak,
ux is the friction velocity of the applied wind stress, and vy is the eddy
viscosity. This can be expressed in terms of the Reynolds number, R, =
uxd /vy, where d is the mixed layer depth,

A

From Chapter 3, R, =~ 18.2 is a plausible value, so

Now introduce a correlation of the surface wave field with the wind,
which will allow U; and k, to be replaced by the wind speed (or wind
stress). This clearly cannot be universal, since the wave field depends not
only upon the wind, but also on the wind origin and history. Here we take
two examples, which we think should provide an acceptable idea of the ap-
propriate scales. The first example is the Pierson-Moskowitz wave spectrum
(or “PM”), which has an angular frequency at the spectral peak of

0.88¢g

wpyM = T‘? (4‘11)

“See equation (85).
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where U is the wind speed at anemometer height. The wavenumber corre-
sponding to angular frequency w in deep water waves is

k=w?/g
so for the PM spectrum,
ko — 0.774g
4 U2
The Stokes drift at the surface in the Pierson-Moskowitz spectrum is
Us = 0.013U, (4.12)

which gives an upper bound for the Langmuir circulation (vertical) velocity

of

Uy

gd
The second example is the JONSWAP-based parametric model (J) de-

scribed in Chapter 2. When wind duration (¢) limited, this model gives

3 —g- —g 3/7
wy = 10874 (gt> ,

Urcpym = 55U (4.13)

so that

6/7
_ 19 (U

The surface value of the Stokes drift for the J-model is

gt\ /7
U, = 0.0026 (—U—> U, (4.14)

so that our Langmuir circulation bound is

Uyl
R

In both of these examples, it is sufficiently accurate to take u, = .001U.

Therefore, if U = 10m/s and d = 40m, then the Pierson-Moskowitz estimate
gives

ULcy = .002U (4.15)

Urcpm = 0.086m/s

and the J-model gives

Urcy = 0.00032m/s4/t/s.

After one hour, Urcy = 0.019m/s, and builds up to the Pierson-Moscowitz
value when the wind duration in about 21 hours.
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4.4 QOil in windrows and its surface transport

First, an estimate is given for the process of collection of oil into windrows.
Second, the implications for downwind surface transport will be assessed.

Estimates for the maximum values of each component of the Langmuir
circulation Eulerian current are given by the speed estimates of the previous
section.

4.4.1 Sweeping of oil into windrows

. Suppose oil is initially uniformly distributed on the surface, in the form
of a layer of thickness hg, and is then subject to lateral sweeping by the
y component of a Langmuir circulation system. Let the component of the
water velocity in the y-direction be vz, and suppose it is time-independent,
and essentially independent of the coordinate in the wind or z-direction
(so the circulations are in the form of long rolls parallel to the wind. Let
the distance between surface convergence lines be 2L, so a single cell of
the convective system will have a width L, corresponding to the distance
between upwelling (below surface divergence lines) and downwelling (below
surface convergence lines). To be definite, suppose a surface divergence line
is located at y = O then the adjacent surface convergence lines will be at
y==+L.

Adopting the model in § 4.2, we can suppose the oil velocity is also
independent of z. In this case, the oil moves according to the equations
(4.4) and (4.2)

ohu Ohuv _ -1
ot + dy = +(po)” ta (4.16)
Oht  OhTT oh 1
Ty + 5y = Xgh-a-—g + (po) ty (4.17)
oh  Ohvu
Br + -8? = 0. (4.18)

This problem has a time-independent solution to which the initial value
problem will approach for sufficiently large time. In this case “large time”
corresponds to times large compared to the time scale characteristic of the
lateral sweeping, which is clearly

tsweep = L/ULC~ (419)
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This in turn can be estimated in terms of the wind speed U by adopting the
Pierson-Moscowitz form (4.13) for Uyc.

Lsweep = 57.55@. (4.20)
Choosing a typical ratio L/d = 3/2, d = 40m and U = 10m/s leads to the
estimate fgypeep ~ 11 minutes.

Now examine the asymptotic steady state. From (4.18), this asymptotic
solution requires that AT be a constant. At some point in the windrow ¥ = 0,
which implies that 7 = 0 for all values of y. This in turn implies, from (4.16)
that the net shear stress on the oil in the z-direction vanishes,

ty =0, (4.21)

and that the net shear stress in the y-direction is balanced by the hydrostatic
pressure variation,

oh _
xghg. + (o) 'ty = 0. (4.22)

Remembering that the friction coefficient C,, is zero for the oil-free por-
tions of the surface, the oil thickness variation in any given Langmuir cell
(0 <y < L) can be found from (4.22) to be

2 Yt
Ay) = | — / Y dy, 4.23
) 9X Jyo Po (4.23)

where the part of the surface 0 < yg is free of oil layer. The total volume of
oil is conserved. Since the unswept thickness is hg, the total oil volume per
unit length in the wind direction is hgL. Consequently,

L 1 [Lh
h(y)dy = hoL, or = —-@dy = 1. (4.24)
Yo L Yo ho
The stress components are given by (4.7). Consequently, the stress vector
component ¢, is given approximately by

t
2o C 22Uy + iy — )+ (00 — )2 (00— T)
Po Po

and

t
2% CuP s+t~ 1)+ (v = 0)? U+ 1y = ).
o (2]
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The condition t; = 0 then requires
%= Us + Uy, (4.25)

which simply says that the average speed of the surface oil in the downwind
direction is given by the average Lagrangian velocity of the underlying water.
Since 7 = 0,
ty = Cwe-"il'vwl Uy (4.26)
Po Po
This now permits 2(y) to be estimated from (4.23), provided v,,(y) is pro-
vided.
For two dimensional, time independent Langmuir circulation, the sweep-
ing speed can be written as

vu(y) = UrcV(n), wheren = %, (4.27)

and where V(n) is a dimensionless function. A theoretical value for wy
(or V(n) requires the solution of the Langmuir circulation problem. Such
theoretical estimates will be incorporated in our final model. As a simple
illustration, however, suppose that

3
V(n) =28 (%) (1- %), (4.28)

where 3 is a constant factor.

This form for v, (y) has the property that the maximum sweeping speed
is attained one-quarter cell width from the convergence line - a behavior not
dissimilar from the calculations reported by Leibovich and Paolucci [54].
Furthermore if 8 = 256/27, then the maximum sweeping speed is Urc.
We expect the maximum value of vy, to be near to that for the maximum
downwelling speed (again, from [54]). While this is not expected to be as
large as Urcpu, this value should be of the right order of magnitude, so
for the purpose of illustration, take § = 256/27. Figure 4.4.1 shows the
hypothesized form of V().

For any V(n), in a given Langmuir cell, h(n) = 0 for 5 smaller than some
value 79, which remains to be determined, and

M) _ e (" Ve, (4.29)
ho 1o
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Figure 4.1: Sample water sweeping speed.

for n > mg. Here

pwl? U %C
Poh(2) xg9L
is the square of a weighted densimetric Froude number based on the Lang-
muir circulation speed scale and cell width. If Urc is related to the wind
speed U by taking the Pierson-Moskowitz form from §4.3,C, = 0.004,
po/pw = 0.98; and by taking u, = 0.001U, and L/d = 7/2 (consistent
with the results of [83]), then

—2772\ 2
r= (mghé] ) , (4.31)

F:Cw

(4.30)

and typically I' > 1 (for example,if taking even the substantial value of
ho = lmm, and U = 10m/s, then T' ~ 10%). For the example,

h(n) NJP<777—778_778—778+779—?78>.

ho 7 4 9

The value of 79 may be determined by conservation of volume. From

(4.24),
1 7 7 8 8 9 9
n"—N =T , 7 —To
Tr - dn =1. 4.32
[70\] ( 7 T ) 7 (4.52)

When I is large, etag is close to the surface convergence line, n = 1. This
suggests that etap may be found by perturbation methods. The lowest
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Figure 4.2: Film thickness variation for the example in text.

approximation in an expansion in inverse powers of I' produces

3 2/5
m=1- (5) -1, (4.33)
The variation of film is then
0, fornp<mno

—_— R 2/5
ho { (%) 310 /=m0, forn > no

where ng is given by (4.33). This approximation can be systematically im-
proved. For the example with U = 10m/s, hg = lmm,

(4.34)

h(n) _ 0, forn<0.81 (4.35)
ho | 8.05y/7—0.81, forn>0.81 ‘

The oil thickness in the windrow for this example is shown in Figure 4.2.
Notice that the maximum film thickness, occurring at the surface conver-
gence, is about 8 times the uniform oil thickness hg, and that the oil is
concentrated in windrows occupying only 20% of the surface area.

4.4.2 Collection effects on downwind transport

Because oil is collected into windrows, its surface transport is not the same
as the horizontally averaged surface motion.

From (4.25), surface oil moves in the downwind direction with the down-
wind mean speed of the water particles, which is the sum of the Stokes drift
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Figure 4.3: Mean Lagrangian downwind current at surface.

and the Eulerian-mean velocity component, u,,. As with v, 4, is found
by solving for the Langmuir circulation current field. To illustrate, however,
we can construct an artificial form for wu,,. Since the current variations scale
with Urc and u,, peaks at surface convergence lines, in the Langmuir cell
discussed in the previous subsection, it is reasonable to take

uw(y/L) = UrclU(n), n=y/L,

with
U(n) = Uy + Uy exp[-16(1 — n)?],

with Uy and U constants. The factor in the exponent is chosen so that
the surface jet in the windrows e-folds where v,, is maximum. The ratio
of Uy to Uy is not known and presumably depends on the details of the
Langmuir circulation field. Nevertheless, they are order one numbers, and
here we take them to have the common value 2.

Assuming the Pierson-Moskowitz spectrum and (as before) u, = 0.001U,
this choice yields

uw(n) _ U — —n)?
o = 0013+ 0.034—— (1 + exp[-16(1 = m)?) ,

which is shown in the graph of figure 3 for the case U = 10m/s, d = 40m.
For the example in Figure 4.4.2, the horizontally averaged surface current




Environmental Sciences of Ithaca 86

speed is 0.034U. The rate of downwind transport of oil is

/y ’ uy (y)h(y)dy, (4.36)

0

and we can now compare this when the oil has a uniform thickness (no
surface sweeping), and when the oil is collected into windrows as in the
previous section.

In the absence of windrow collection, the downwind rate of volume trans-
port for the example discussed is

0.034ho LU

while in the case of oil collected in windrows, the downwind rate of volume
transport is - upon numerically evaluating the integral in (4.36) -

0.045ho LU,

an increase of 32%. This increase is the same as the downwind speed increase
of the oil for trajectory analysis.

While the particular example is artificial, the same kind of analysis can
be done with currents generated by the Langmuir circulation model. The
results are expected to be qualitatively similar to the artificial example.
Whether the results will turn out to be quantitatively similar remains to be
seen, but the prospect seems plausible.




Chapter 5

Oil Suspended in the Water
Column

Vertical mixing of oil into the water column by small scale turbulent fluc-
tuations can be treated by standard methods, and results in a smearing
of oil that is horizontally homogeneous. When coherent turbulent features
with large spatial scales are present, such as Langmuir circulation, then the
distributions of oil both in the horizonal and in the vertical may be sub-
stantially altered. In particular, oil can be found at much greater depths,
can be held in suspension for relatively long times, and can be concentrated
in horizontally compact zones. Such subsurface distributions are discussed
in this Chapter, together with ways to estimate the oil particle sizes to be
expected from the breakup of large floating oil masses.

5.1 Introduction

When coherent masses of floating oil are fragmented by oceanic turbulence,
the distribution of oil in the water column follows the same history as any
other buoyant particle of similar density, size and shape. The physically
significant aspects are the particle buoyancy and fluid mechanical drag. Be-
cause oil properties change with due to weathering, these physically relevant
features will change with time for oil particles, but this change is relatively
slow after oil water contact, and especially after the first few minutes of oil
fragmentation.

Fragmentation and the initial dispersion of oil depend heavily on small
scale turbulence. However, the dispersion produced by the small scale tur-

87
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bulence is limited to a relatively shallow layer close to the air/sea interface.
Persistent large scale vertical motions, on the other hand, notably thermal
convection and Langmuir circulations, may lead to a permanent suspension,
and spatial concentration, of buoyant material in a subsurface trapping zone.
These subsurface effects and consequent great penetration depth of buoyant
particles was first recognized by Stommel [82], and it is likely that the phe-
nomenon he decribed is ubiquitous. We call these trapping zones, regardless
of the physical mechanism that engenders the convection, “Stommel reten-
tion zones”, and abbreviate this by SRZ in what follows.

Evidence exists of the role of convective activity leading to anomalously
large submergence of oil. The blowout of the Ixtoc I oil well in the Gulf of
Mexico, beginning in June, 1979 and continuing for more than four months
(the largest oil spill in history), allowed prolonged observation of an oil spill
well away from surf zones and hundreds of miles away from the spill source.
Visual observations of subsurface oil were recorded by divers. Although few
in number, these observations were remarkable (Williams [91]; Robinson
[76]; Galt, [25]; Hooper [32]). Apparently oil, in the form of flakes (thought
to be the fragmented semi-solid skin of oil ” pancakes”, was mixed to depths
of at least 40 feet. The explanation for the existence of buoyant particles in
substantial numbers, originating at the surface and mixed to such depths,
defies ordinary turbulent transport models [46]. It seems almost certain that
the explanation lies in the presence of a mixing mechanism of larger scale.
In point of fact, windrows of oil associated with Langmuir circulations were
a notable feature in the Ixtoc-I spill, and are carefully described by Atwood
et al.[5], and had been described in accounts of earlier oil spills as well (see
the 1969 Batelle review [36] of the Santa Barbara blowout, and Galt’s [24]
discussion of the AMOCO CADIZ and HAWAITAN PATRIOT tanker spills).
The joint features of banded surface structure and oil at depth clearly are
likely to be related, and that connection has been explored by Leibovich and
Lumley [53].

The ability of large-scale convection to maintain suspension zones de-
pends in part on the spatial scale, intensity, and most likely the coherence, of
the convective activity, as noted by Stommel [82]. A more complete treat-
ment [53] shows that the effectiveness of suspension also depends on the
small scale turbulence. This relevant aspects of the the features found by
[63] are reviewed here.
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5.2 Oil breakup

Continuous floating sheets of oil can be broken into smaller pieces by forces
exerted by the underlying or surrounding water. The dispersion of oil into
the water column depends on the degree to which the oil is fragmented into
small volumes, and the dispersion, for a given water dynamical state, is
maximal when the oil particles have reached the smallest size that can be
expected .

Consequently, we need an estimate of the distribution of oil particle
sizes in a turbulent water medium. Kolmogorov has provided a start on this
question, which is explained by Levich [59], together with additional consid-
erations. The Kolmogorov theory is reviewed and extended in Chapter 6.
At this point, we simply note Kolmogorov’s result

3/5
Umaz = bf (%) (e)7%/%, (5.1)

where by = (16/ k?) 1/5, where by is a constant and e is the dissipation rate
of turbulent kinetic energy, for the maximum stable drop size. Equation
(5.1) depends only on the interfacial tension of the oil in seawater, and the
turbulent kinetic energy dissipation rate. The mechanical properties of both
refined and crude oils depend on temperature and degree of weathering, as
might be expected. They also depend critically on the chemical composition
of the oil: for crude oils, this varies over time for oil from the same well, and
generally from well to well at any given time for oils in the same region and
bearing the same name, as described in the MMS/EETD Catalog of Crude
Oil and Oil Products Properties [1]. For example, the density of Prudhoe
Bay Crude at 15°C' was 0.8936 gm/cc in 1975 and 0.905 gm/cc in 1982,
while its interfacial tension against seawater at this temperature was 9.7
dynes/cm in 1985 and 27.4 dynes/cm in 1989. While one can imagine several
reasons for variations like this, the available information on any particular
“type” of oil clearly can not be presumed to be known with precision. In
the temperature range 0 — 15°C' which is of interest for oil in the ocean,
a typical range of ¢ is 7-25 dynes/cm, depending on oil type and degree
of weathering. This range of variation, while substantial, leads only to a
factor of two variation in the drop radius predicted by (5.1). On the other

Tt is assumed throughout that the oil volume is negligible compared to that of the
water, and that the motion of the water is unaffected by the presence of the oil. This
assumption does not always reflect the facts.
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hand, the dissipation rate in (5.1) is both difficult to estimate and can lead
to substantial variation in a@mge. This point will be addressed again in
Chapter 6.

5.3 Subsurface Trapping of Oil

We first describe the idealized problem introduced by Stommel, and then
explain the refinements shown in [53] to be needed to maintain buoyant
material in subsurface suspensionl.

5.3.1 Stommel’s model problem

Stommel [82] actually addressed the distribution of heavy particles sus-
pended by upwelling motions in Langmuir circulation cells, but our con-
siderations can apply (with caveats which will be explained later in this
section) to this mirror image of the situation that we have so far presented.
Stommel approached the issue by supposing the existence of a simple, arti-
ficial, velocity field simulating steady, two dimensional convection, and we
explain his idea in the context of light particles.

Let a two-dimensional velocity field be represented by a streamfunction,
Y(y, z,t), where z measures distances vertically (upwards) from the mean
free surface. Then (y,z) velocity components (v, w) in the water are given

by

0z oy
In Chapter 7, the streamfunction arising from Langmuir is computed for a
number of cases for a monochromatic surface wave spectrum. In that chap-
ter, the problem is made dimensionless by taking lengths to be scaled by the
depth, d of the water layer, velocities in the (y, z) plane perpendicular to the
wind direction are scaled by vp/d (which may be more conveniently written
as U/ Ry, where u, is the friction velocity and R, is the Reynolds number
based on uy, vr, and d). As a consequence, the scale for the streamfunction
is vp. In the discussion of this chapter, we assume the problem has been
made dimensionless in this way.

The dimensionless problem for 1 then depends on the shape of the Stokes
drift profile, and on the ratio of the magnitude of the maximum Stokes drift
speed to the friction velocity — the latter may also be represented by a
“Rayleigh number”, R, and this is how it is accounted for in Chapter 7. In
the case of considered in Chapter 7 with a dimensionless gravity wavenumber

v = (5.2)
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k, the Stokes drift is an exponentially decaying function of depth, and the
dimensionless streamfunction is then a function of x and R. Furthermore,
these two parameters combine to make the dimensionless streamfunction
proportional to
R — R.(k)
Re(k) '

where R.(k) is a function given by (7.9).

Suppose buoyant particles are placed in the water, having a buoyant
velocity in still water of Vi, and suppose, with Stommel, that in the presence
of water motion, the velocity of a particle relative to the surrounding water
is always in the vertical with speed Vp. The dimensionless representation
for the trajectory of a particle is then given by (Y (¢), Z(¢)), where

dY oy dZ _ 0(¥ — Rry)
A e v (5:3)
where Vind
Ry = =
vr

is the dimensionless form of the terminal velocity of rise in the system of
units adopted. If the water motion is steady, then the trajectories are given
by the level curves of the function

¥(y,2) = ¢(y, 2) — Rry. (5.4)

If the maximum downwelling water speed is greater than Vz, then parti-
cles placed in certain regions near downwelling planes will remained trapped
(forever) in a closed zone (the SRZ). Furthermore, the SRZ does not connect
to the surface. This is easily understood by realizing that the downwards
speed on a downwelling plane increases from zero at the surface to a maxi-
mum value |wy,q,| at some depth and then decreases to zero again. Provided
Vr < |Wmaz|, there will be two points, say z; and 2, < z;, on the plane at
which the vertical velocity of a buoyant particle is zero. The SRZ is bounded
in the vertical by these two points, so the size of the trapping zone is deter-
mined by the intensity of the convection |wyqz| and by the buoyant velocity
of the particle. This is illustrated in the figure below, which is calculated for
one of the Langmuir circulation fields computed in Chapter 7 for the case of
monochromatic surface waves with dimensionless wavenumber « = 10 and
Rayleigh number (see Chapter 7) R = 25,000, and Ry = 1. Note that the
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Figure 5.1: Variation of the perturbation windward velocity component pro-
file at the surface with  for fixed R(=10,000).

nearly closed curve should in fact be closed, and the break in it is an artifact
of the contour plotting routine. Particles move on these lines from the bot-
tom of the figure to the top with the exception of those trapped inside the
region of nested closed curves. Note that the closed region in Stommel’s ide-
alized case is associated with two points of zero particle speed, w + Ry = 0.
One of these zeros is near the surface at z = 24, and the other below that
point at z = zpottom-

5.3.2 Transport across the retention zone boundary

How does a particle get into the SRZ? In Stommel’s idealized problem, a
particle is either in or out; it cannot cross the boundary of the trapping
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zone. Of course, if a particle were able to get in, it would presumably also
be able to get out, so the trapping is not complete. The idealized problem,
as Stommel himself noted, neglects velocity fluctuations in the water: such
fluctuations, due to turbulence and to surface waves, are always expected,
and these must be accounted for to describe the degree of trapping realized.

In the absence of organized convection, all the particles would be in a
layer near the surface. The layer has a finite thickness due to the the presence
of velocity fluctuations. If the fluctuations are parameterized by an eddy
diffusivity, D, then this surface layer would have thickness comparable to
¢=D/Vp.

When organized convection is present, the particles in the surface layer
are swept towards lines of surface convergence. Most particles that initially
may be present below the surface layer but outside the SRZ will rise to the
surface layer. Some particles rising outside but very near the SRZ will be
entrained into the trapping zone by velocity fluctuations that carry them
inside. At the same time, some of the particles initially inside the SRZ will
be detrained and rise to the surface. Suppose |zi0p| >> ¢, then there is no
way for particles in the surface layer to be entrained into the SRZ, and when
the bulk of the water column outside the SRZ is swept clean of particles,
there is no further source for entrainment into the SRZ. In time, the SRZ
itself will lose all of its particulate content in this case. A balance in which
the average number of particles in the SRZ remains constant is therefore
only possible if the |z;p| is comparable to or smaller than £. In this case,
the SRZ can feed on the surface layer. Due to the long residence times
within the SRZ, the concentration of particles within it can be assumed to
be spatially uniform, and depends on the ratio v = |zp|/¢. In any event,
if a fixed amount of oil is present, ultimately all of it will be in the feeder
layer confined to the part of the surface near convergence lines and, if v is
not large to prevent exchange, in the SRZ below.

The analysis of [53] is based on this picture, and the concentration within
the has been determined as a function of ~. This is conveniently expressed
as a ratio, Cy, of the concentration of particles in the SRZ to the maximum
concentration in the feeder region. The results of the calculations are given
in Figure 5.3.2 by the points marked with x’s, and the a least squares fit to
the data given by the solid line is

C* = 6.7y% +1.62y+ 1. (5.5)
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Figure 5.2: Peak concentration in the “feeder” layer. Points marked by the

symbols are data from [53], and the solid line is the fit given by (5.5).




Chapter 6

Disintegration of Coherent
Oil into Droplets

Oil spilled in the ocean will tend to be concentrated near the surface, but
depending on the intensity of turbulence in the upper portion of the wa-
ter column, the oil may be dispersed over a greater or lesser depth. In
severe environmental conditions, it may not even be apparent from surface
observations that oil is present.

To determine the subsurface distribution and transport of oil at sea, the
size distribution of oil particles must first be known or estimated. Oil size
distribution depends on a number of factors - interfacial properties between
oil and the ambient seawater, oil density and viscosity, and the turbulent
kinetic energy spectrum of the sea.

Continuous floating sheets of oil can be broken into smaller pieces by
forces exerted by the underlying or surrounding water. The dispersion of oil
into the water column depends on the degree to which the oil is fragmented
into small volumes, and the dispersion, for a given water dynamical state,
is maximal when the oil particles have reached the smallest size that can be
expected. !

The theoretical models of Kolmogorov [41] and Hinze [31] for the drop
size of the dispersed phase in turbulent flow remain the conceptual basis for
work in this field. Published work ([77], [4], [17], [43], [11], [12]) which has
followed has attempted to correct for the viscosity of the dispersed phase,

Tt is assumed throughout that the oil volume is negligible compared to that of the
water, and that the motion of the water is unaffected by the presence of the oil. This
assumption does not always reflect the facts.
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and for coalesence of particles of the dispersed phase. Coalescence needs to
be accounted for when the volume fraction of the dispersed phase is large, as
in emulsions produced for pharmaceutical or commercial products, but is of
little consequence when the volume fraction of the dispersed phase is small,
as it usually is in oil spills (and where we think of any coherent floating mats
of oil as a separate entity rather than dispersed phase, so that droplets rising
to the surface and rejoining floating mats are considered to be removed from
the dispersed phase).

All of the work done on this problem to date focusses on the mazimum
stable droplet size. No theoretical model appears to have been proposed
for the distribution of droplet sizes that can be expected. Furthermore,
existing models do not account for the intermittency of the turbulence. In
the upper ocean the intermittency depends on wave breaking, itself a highly
intermittent process in space and time, and the resulting fluxes therefore are
as well. Consequently, the instantaneous peak values of turbulent kinetic
energy, g and its rate of dissipation, €, are much higher than their averaged
values, q, and € It is presumably necessary, therefore, to account for the
intermittency and distribution of turbulent quantities in a rational model for
transport in the sea. In this Chapter, a statistical model for oil droplet size
distribution is presented that accounts for these factors, and proceeds further
to attempt to link the sizes to oil type and to the most basic meteorological
data, the local wind speed. This requires assumptions on the mechanisms
of oil disintegration, on the relation of sea state to wind speed, and the
connection between sea state and turbulent kinetic energy to the wind.

A limited amount of laboratory and field data on the size of oil droplets
suspended in a turbulent seawater is available, but its reliability remains
controvesial (M. Fingas, private communication). Moreover, the work has
been done on this problem with oil spills (see Fingas et al. [21], [22], [22])
in mind, have mostly been concerned with the overall effectiveness of dis-
persants, with most of the effort on laboratory studies. It does not seem to
have addressed the the linkage between the wind and sea state, which is a
key issue for risk assessment.

Nevertheless, we use what data is available to us to adjust our model.
The factors entering the modelling considerations suggest the kinds of lab-
oratory and field data that would be helpful in the future. We conclude by
discussing the terminal velocity of oil droplets in turbulent seas for a wide
variety of oil types of interest in oil spill questions.
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6.1 A statistical model for droplet size

Consider a volume of oil introduced into a water column in turbulent motion.
In general, the rate of energy supply, and therefore its dissipation rate per
unit mass, €(x,t), must be treated as a stochastic function of space and

time. Let
3

€ = W/@ edV

be the volume average of dissipation rate over a sphere (indicated by () of
radius 7, where 7 is in the inertial range of the turbulence. We will designate
mean quantities by an overbar, so the expected value of € is € which is also
the mean value for ¢,.

6.1.1 Conditional probability density

Suppose for the moment that € is constant, then ¢, also is constant and equal
to e. This corresponds to the picture contemplated in Kolmogorov’s analysis
of droplet size and leading to the estimate (5.1). This result represents the
largest droplet size emerging after an indefinitely long exposure to the fluid
turbulence.

Let us take up the picture of oil breakup at a stage when the oil has been
fragmented into pieces comparable to the size of eddies in the inertial range.
We suppose, as before, that the viscosities of the water and the oil play no
role in the force (or energy) balances. If a drop is exposed to an eddy of
a much larger length scale than its own radius a, then the droplet will be
moved bodily by the eddy and will be only slightly distorted in the process.
If the eddy is exposed to a field of eddies of much smaller scale than a, then
the pressure fluctuations felt over the droplet will by and large cancel out,
again producing only small distortions. The greatest distortions experienced
by a droplet are therefore expected to arise when it interacts with eddies
having a size comparable to its diameter. The characteristic time that an
oil drop will be exposed to an eddy of size £ is the eddy turnover time,
7 = £/vy = £2/3¢71/3) and in this interval of time, the fluid is capable of
accomplishing an amount of work per unit mass (of water)

ery = ()3
If this amount of work exceeds the surface free energy, the drop can be
expected to fragment into (at least) two parts. The size of an eddy of interest
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in our context is approximately the diameter of the drop, so fragmentation
is anticipated when?

droa? o
77 3o

2/3 2/3
(ef) (2€a)™° > po—— s

where o is the interfacial surface tension coefficient and p is the water density.
Thus, a drop with radius exceeding

3/5
o= (32)" 297, (6.1)
P
or volume exceeding
Vi
€= ?(12, (6.2)

will ultimately undergo further division. The drop size given by equation
(6.1) is the result found by Kolmogorov [41] and Hinze [31], arrived at by a
different route. The the undetermined multiplicative factor, by, presumably
depends on the detailed dynamical process during the rupturing events and
estimates in the literature vary widely. Data reviewed by Hinze, for example,
suggests by ~ 0.36, which is an order of magnitude less than one inferred
from Levich [59]. The matter remains in doubt — for example, Sleicher [79)
has raised plausible questions about Hinze's interpretation of the available
data. Nevertheless, Hinze’s value is assumed in the estimates we make later
in this Chapter.

Total volume is conserved in a division, so if the original volume is Vj,
then the volume of one (of an assumed two-) part of the fission product is
a1Vp and the second part has volume (1 — a;)Vp, where a1 is a fraction less
than one.

The ratio of surface free energy after the division to that before the
division is

QP4 (1—a))¥® 1.
The maximum surface energy increase in a two-part division therefore occurs
when the product drops are of equal volume, and this occurs when the
surface free energy after the division is 1.26 times the original surface energy.
Therefore if the work done on a drop exceeds its free energy by 26%, then on
energetic grounds at least, the value of a; can be any value in the interval

2The argument accounts only for inertial (pressure) work, which is valid in turbulent
flow only when the length scales are large compared to the Kolmogorov scale, n. It
therefore applies for lengths in the inertial range and larger.
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(0,1). The details of the splitting are not known, and so we assume that
when division occurs, it does so with a; being equally likely to assume any
of the values between 0 and 1.

If either (or both) of the subvolumes a;Vy and (1 — a1)Vj is greater
than V,, then it (or they) will eventually split again, into an equally likely
fraction 0 < ap < 1 of its previous volume, and so on. If this process goes on
forever, one can expect all of the oil to be distributed in drops of volume less
than V.. The nature of the process contemplated here is reminiscent of that
shown by Kolmogorov in 1941 to lead to the so-called logarithmic-normal
distribution (see [66], pp. 317-319 and also Halmos [28].). There is, however,
one significant difference: in the related examples, every particle, regardless
of its size, is subject to breakage, while in the case we are considering, there
is a special role played by particles of volume V, or smaller, which are not
subject to further breakage. To determine the role of V, in this process,
the probability distribution for the process was determined by a computer
simulation. The result, which no doubt we should have been able to see
without empiricism, is simple — the oil is uniformly distributed into drops
with volumes less than V.

Thus, the conditional probability for oil volume size, V, given the dissi-
pation rate per unit mass (which is used as a measure of the rate at which the
water is capable of doing work on suspended oil), is the uniform distribution,

0, if Vo <0
P?‘{V1<’U<VQI6,~=€}= Va—-WV)/V, f0<V <V <V,
0, itvy > V..

The expected value of volume holding € fixed is then %—VE

6.1.2 Allowing for energy supply rate variability

In 1962, Obukhov [69] and Kolmogorov [42] argued that the probability
distribution for logarithm of the dissipation rate averaged over a sphere of
radius r, is distributed normally, with a size-dependent variance o,. More
specifically, the probability density for €, they proposed is

_ €0 _ (log(er/e0) = my)?
p(f?‘) - \/ﬂ-o'rf'r €xXp 20_72‘ ’ (6'3)

where m; is expectation of log(e,/€g) and €p is a constant reference value
of dissipation rate related to the m, and ¢,. This concept is developed in
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more concrete form by Gurvich and Yaglom [27]. They argue that o and
m, are determined by the flow according to

o2 = plog (%) + A(x, t), (6.4)

where 1 is a constant, L is the scale of the energy-containing eddies, and
it is assumed that » < L. The term A(x,t) here and in the expression for
m, to follow, represents the effects caused by the large scale variations. The
parameter m;, the mean value of log(e,/eg), can be expressed (see [27]) as
m, = log € — L [u log (£> — A(x, t)] .
2 r

Gurvich and Yaglom review data in the atmospheric boundary layer [27]
that suggest that p =~ 0.4. Yamazaki [93] provides additional discussion,
while Yamazaki and Lueck [94] show that standard methods of computing
e from oceanic measurements fail to reveal a lognormal distribution due
to inconsistencies in the assumptions used in the computation, and that if
appropriate methods are used, the lognormal distribution is supported by
oceanic data.

The smaller the averaging volume, the larger the variance o2, as one
would expect. The averaging volume of interest to us presumably is some-
what larger than the size of drops produced. Some conclusions about inertial
ranges turbulence drawn from the logarithmic normal distribution have been
established to be correct, and the same distribution has been claimed to fit
the dissipation rate measured under waves in the ocean [2]. We therefore
adopt it to estimate dropsize.

As o increases, the tails of the distribution are elevated, so extreme
events are more likely to occur. This is manifest in a more intermittent pro-
cess, and in fact, Kolmogorov called 02 “the intermittency”. The elevation
of the tails is illustrated in Figure 6.1.2, in which the lognormal distribution
of a random variable z with distribution mean of m = 1 is plotted for two
values, 0.1 and 1 of the standard deviation, o.

6.1.3 Simulation of stochastic breakup

Suppose the averaged dissipation rate is € and the maximum stable drop
volume (abbreviated henceforth by MSDV) based on this is V. A lognormal
distribution for € will be determined by two parameters, the distribution
mean and variance. Starting with an oil volume Vy much larger than Vz, we




Environmental Sciences of Ithaca 101

e 1 ¥ T T

! ~: Stantdard deviation=0.5; o SOV=1
o.ak \\ ]

Y
.25+ A :
0.2k :
= .
o 5,
&8+ %% Ay
f
Bg
. &
ﬁ 1 ™ GQQQ .
Py oo
%N
W N
~2%0p
b,

M
1 2 3 4 5 & 7

Figure 6.1: Lognormal distributions with the same mean and different in-
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select a sample dissipation rate e from a specified lognormal distribution,
and calculate the MSDV V, for the sample dissipation rate. If Vy < V., we
leave the drop in its original state, repeat the process starting from a new
sample for e. If Vy > V,, the drop is divided into two by a random choice
from the uniform probability distribution, while conserving volume in the
splitting. The dissipation rate is then sampled again, and each droplet in
the collection is tested and is either left undivided, or is divided, depending
upon the relation of its individual volume to the MSDV based on the current
realization of €. The procedure continues until no further divisions appear
to occur.

The resulting ensemble of droplets is then examined for its statistics.
Histograms and frequency (probability) distributions, means and variances,
of the droplet volume have been produced, using simple numerical codes
written in MATLAB.

A sample histogram is shown in Figure 6.1.3, produced for ¢ = 4. In
typical simulations, the original oil volume has split a large number of times.
For example, the simulation corresponds to Vy/V: = 100, and 5992 drops
emerge before the process appears to terminate. The mean drop size ap-
pears insensitive to V;/Vz, provided this is 20 or greater, but depends in an
important way on o.

The results of the simulations for mean drop volume for a range of dis-
tribution standard deviations, ¢,is shown in Figure 6.1.3, where the volumes

have been normalized by Vz. A curve,
LA, 3 > _ 4,060
7 _exp[ 0.16640° + 1.46502 — 4.060 0.75],
€

fits the variation over the range 0 < o < 4, and for ¢ > 2, the ratio

>
v = 0013 (6.5)

to very good accuracy. The value at ¢ = 0 is 0.47 according to the fit, but
here the exact answer can be calculated to be 0.5.

6.2 Dissipation rate near the sea surface

According to the model developed in the previous section, the mean droplet
size depends on the mean dissipation rate, €, and on the standard deviation
o of the lognormal distribution, as it occurs in the ocean.
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In the surface mixed layer, both the mean supply of turbulent kinetic
energy and its variance are anticipated to be strongly affected by wave break-
ing. Wave breaking produces turbulence. Since it occurs at the boundary of
the water body, wave breaking can be regarded as providing a surface flux
of turbulent kinetic energy, and other turbulent statistics. The challenge is
to model the fluxes arising from this process in a tractable way. Previous
efforts by the community to address this question were frustrated by the
lack of adequate means of measurement; better instrumentation now avail-
able has altered this situation in the laboratory, and perhaps in the field.
There has been recent progress and good reasons to believe ([26], [71], [65],
[85], [87]) that significant improvements in the understanding of the effects
of wave breaking are on the way.

Early views of the process associated wave breaking with the attainment
of a local acceleration of the water surface in excess of %g (see Longuet-
Higgins, [63]), which corresponds to the acceleration of the Stokes wave
of maximum slope. This is now thought (see [71]) to be an oversimplifi-
cation, and it is now recognized that breaking can occur at much smaller
surface accelerations, and is determined by the time history of the interfacial
displacement,® the local surface drift due to wind stress, and no doubt other
effects as well.

The effects of wave age, defined as 8 = ¢, /U, where ¢, is the phase speed
at the spectral peak of the wave spectrum and U is the wind speed,* have
come to the forefront ([65], [85]) as an important factor in wave breaking
and its associated energy transfers from waves to turbulence. A firm deter-
mination of the role of wave age remains an active subject of research. A
model for the

The part of the water column that determines the disintegration of oil
is near the air-sea interface, and this is where measurements of turbulent
characteristics are most difficult. Measurements [37] below the wave zone
have indicated that the dissipation rate can be represented as if the inter-
face were a smooth no-slip surface, or € = u2/(k|z|) where & ~ 0.4 is von
Kérman’s constant, u, is the friction velocity in the water, and |z| is the
depth below the mean water surface. This is called “wall-layer” scaling.

Recently, it has become possible to measure [2] in the active wave zone,
much closer to the free surface. Such measurements reveal a dissipation

$With the orbital speeds of large waves affecting the local dynamics of smaller waves
riding upon them.

4 An alternate definition of wave age replaces U by the air friction velocity at the air/sea
interface.
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rate up to two orders of magnitude higher in this region, which has been
attributed to injection and dissipation of turbulence by breaking waves. In a
recent analysis of the data, [85], the same group suggests a parameterization
that gives for the dissipation rate near the mean free surface of

uf'c‘

1.2H,’

€= (6.6)
where Hj is the significant wave height, and ¢ is an effective wave phase
velocity. The velocity ¢ is a function of “wave age”, 8 = c,/U, where ¢,
is the phase speed at the spectral peak. For 8 < 0.5, € is approximately
constant with value ¢ = 0.5, while if 8 > 0.5, ¢ is a linear function of wind
speed® € = 0.6¢, for the fetches examined in [85)].

The significant wave height by definition is the mean height of the 1/3
highest waves in the spectrum. According to Longuet-Higgins [62], the
significant wave height is 2.83 times the r.m.s. surface displacement. For a
spectrum with the Pierson-Moskowitz shape, this leads to

o
Hy = 2.83 gf-’g, (6.7)
where wy, is the angular frequency at the peak of the frequency spectrum, and
« is the parameter used in the wind-wave development model of Hasselmann
et al. invoked in Chapter 2. ©
With ¢ = 0.6c, and ¢, = g/wjp (for deep water waves), the spectral shape
assumption leads to

€ = ——=Wwply. (6.8)

In a developing sea, o and wy, vary with duration and fetch, and a rational
operational procedure is to use an appropriate model for the development of
these parameters — such as the parametric wave model discussed in Chapter 2
— while fixing the spectral shape to be Pierson-Moscowitz. The data for the
“fully developed sea” to which the Pierson-Moscowitz model was intended
to apply gives a = 0.0081 is a constant, and w, = 0.88 g/U. For the present
purposes, we adopt this choice without verification of the sensitivity of the
conclusions to variation of these parameters; this leads to a significant wave

5We have replaced the friction velocity in the air by U/28 in converting the data of
[85], and otherwise have “rounded off” the values given there.
5Where it was called 8.
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height
U2
H, =0.147T—
g
and a dissipation rate of
&= 3.86u3% ~ 4.7 x 107U (6.9)

on replacing u, ~ 1.1 x 1073U.

This information provides us with an estimate for €& To determine mean
drop size from out model, we also need an estimate for the intermittency,
o2. That the dissipation rate is lognormal, with intermittency due to wave
breaking, has been suggested by Agrawal et al. [2]. The connection derives
from the intermittent behavior exhibited by 13 second time averages (as
close to instantaneous as the experimental method permitted) of dissipation
rate, and is summarized in Figure 6.2 4 for one value of the wind speed. A
more definitive determination that a lognormal distribution is an accurate
representation of the statistics was not made (Terray, private communica-
tion), and the parameters of the distribution are unknown.

A more specific indication of lognormality in dissipation rate under
breaking waves is provided by George et al. [26]. They have fitted mea-
surements of the dissipation rate in a surf zone to a lognormal distribution,
reproduced in Figure6.2. The utility of this work for our purposes derives
from the estimates ([26], pg. 805) for the intermittency in the natural surf
zone of 0 between 2 and 12, and between 3 and 7 for the deep ocean. If
this is the case then ¢ > 1, and it is not unreasonable to adopt (6.5) to
relate the mean drop volume to the maximum stable drop volume based on
the mean dissipation rate, €.

6.3 Terminal ve‘locity by oil product type

We are now in a position to calculate particle sizes as a function of wind
and oil type. Our model provides us with the estimate

_ 9/5
V =0.013V; = 0.013b§%7r (3%) (28)78/5 (6.10)

with € correlated with wind speed through

e~ 4.7 x 107%gU. (6.11)
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exzfu}

Figure 6.4: Time-dependent dissipation estimates, exz/ud, or €/, based
on intervals of 13 s, the shortest data length yielding spectra that can be
interrogated for e. Wind speed was 12 m s~!. From [2].
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This produces an estimate for average droplet size that is 0.235 (= 0.0131/3)
times the maximum stable drop radius (5.1).

Let the density difference between the water and oil be Ap, and let
the drag coeflicient for a sphere of radius a in steady motion at speed V
be Cp(Re), where Re = 2Va/v is the Reynolds number based on sphere
diameter. The terminal velocity of thea sphere is found by balancing the
buoyancy and drag, and leads to the equation

\/Cp(Re)V = ’/%ga, (6.12)

where g is the acceleration of gravity.

The Reynolds number turns out to be of order 10% to 103, well beyond
the Stokes regime. A curve-fit to empirical data for Cp suggested by White
[90] (pg-209),

24 6
Cp=—+—+—+04 6.13
P~ Re 1+ vVRe ( )

is as accurate as the experimental data over the range Re < 2 x 10°.

In [1], properties of 195 types of oil and oil products are given. In Table
6.3, we list the maximum and minimum values cited for product density and
interfacial tension of the product against seawater for the 53 products of [1]
for which both types of data are provided. The oil density does not enter
expression (5.1), but is listed because the drop buoyancy and therefore its
terminal velocity directly depend on oil density. Both density and interfacial
tension depend on the precise chemical composition and thermal states of
the oil and water. So, for example, when an interfacial tension against
“seawater” is quoted, the salt content of the seawater is not known, and
so such a quantity presumably is subject to variability when measured for
the same oil in seawater obtained from different locations. Of course, the
variability of the petroleum mixture is extremely wide, as emphasized in
our last report, and so one should expect the quoted data to be subject to
significant and so far unquantified error bars.

From this data, we have computed the particle size, as determined from
the formulas (6.5) and (5.1) with € parameterized in terms of wind speed
and sea state by (6.9). The numerical evaluation is based on a single wind
speed of 10m/s, and the range of particle radius (a;e, to @high) is based on
the range of interfacial tensions reported for each oil type. To find the drop
sizes for any other wind speed, multiply the radius by (10/U)!?, with U
expressed in meters/second.
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The table also includes high and low values of the terminal velocity. This
depends on the drop size, and on the ratio (p — peir)/p, where p, the density
of seawater; in the calculations, p was taken to be 1.02 gm/cc. The terminal
velocities were found by solving (6.12) numerically, using (6.13) for the drag
coefficient.

The droplet sizes indicated for natural breakup at a wind speed of 10m/s
are much larger than the drop sizes reported in laboratory studies of disper-
sant effectiveness, which appear to be a few tens of microns (see [21]-[23]).
This partially reflects the results of the preliminary treatment of the oil with
the chemical additives being investigated.

There is no doubt that, had the interfacial tension of the oil products
reviewed in Table 1 been measured after being pretreated with dispersants,
the droplet size predicted in the Table would be substantially smaller. Nev-
ertheless, it is unlikely that the average droplet size would be in the 100
micron or less range.

This brings to the forefront the question of correlating the mixing energy
applied in the laboratory and that actually realized in the ocean. Whether
dispersants are used or not (and in risk assessment studies, disperant use
presumably would decidedly not be assumed), it is not possible to assess
droplet sizes, and hence vertical mixing and dispersion of oil, unless rea-
sonable estimates of naturally encountered mixing energy can be made as
a function of easily observed environmental parameters. Short of relating
the mixing energies applied in the laboratory to those occuring in the field,
laboratory dispersant studies are of valuable in comparing the relative mer-
its of additives, but would seem to be of lesser value for risk assessment
purposes. This is especially true of existing data, in which the turbulence
realized in experimental apparatus is not measured or characterized, making
it impossible to translate these results into a more fundamental mechanical
description.

It is possible that our model results overestimate the oil particle sizes to
be expected in the ocean. We have accounted in part for the observation
that turbulence in the upper ocean is highly intermittent. However, the
parameterization of the data used averages over the significant height of
the waves. It would not be a startling surprise to discover that virtually
all of the drop formation results from wave breaking and occurs locally
within breaking events. If this were the case, the turbulence is far from
equilibrium, the turbulent kinetic energy density is at much higher than our
estimates. Furthermore, the parameterization of turbulent kinetic energy by
its dissipation rate, as contemplated in the models of Kolmogorov, Hinze,
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[ Gil Type | Plow | Phigh | Glow |  Ohigh | @low | Ghigh | View | Vhigh |
| [ gm/cc | gm/cc | dynes/cm | dynes/cm | cm | cm | cm/s | cm/s |
Adgo Crude 0.952 0.967 6.9 21.5 0.14 0.29 0.35 8.74
Alberta Sweet Mixed Blend Crude 0.839 0.888 8.4 17.5 0.16 0.25 0.54 13.42
Amauligak Crude 0.890 0.9156 15.0 21.1 0.23 0.28 0.78 12.08
Arabian Heavy Crude 0.887 0.951 15.0 20.0 0.23 0.27 0.73 11.79
Atkinson Crude 0.906 0.924 7.1 18.7 0.15 0.26 0.41 10.46
Avalon Crude 0.844 0.897 20.5 33.2 0.28 0.37 1.72 16.61
Aviation Gasoline 80 0.695 0.708 32.1 33.1 0.36 0.37 3.08 23.16
Aviation Gasoline 100 0.715 0.728 40.0 42.2 0.41 0.43 4.29 24.35
Bent Horn A-02 Crude 0.815 0.874 1.7 34.4 0.06 0.38 0.42 18.38
Bent Horn Crude 0.818 0.874 2.2 53.5 0.07 0.49 0.73 21.22
Cohasset Crude 0.779 0.847 12.5 16.5 0.21 0.24 0.77 15.32
Cold Lake Dilbit 0.917 0.927 16.3 28.1 0.24 0.34 0.97 11.86
Cold Lake Diluent 0.704 0.716 6.8 7.5 0.14 0.15 0.27 12.70
Diesel Fuel 0.827 0.845 28.0 28.2 0.33 0.34 1.88 16.76
Electrical Insulating (Virgin) 0.867 0.892 14.2 17.7 0.22 0.25 0.67 12.13
Electrical Insulating (Used) 0.867 0.878 16.7 23.9 0.25 0.30 1.03 13.67
Electrical Lubricating (Virgin) 0.872 0.882 13.6 19.0 0.22 0.27 0.76 12.77
Electrical Lubricating (Used) 0.873 0.883 11.4 21.8 0.20 G.29 0.75 12.88
Endicott Crude 0.915 0.952 25.8 29.0 0.32 0.34 1.29 11.86
Federated Crude 0.826 0.886 22.2 23.1 0.29 0.30 1.35 15.54
Fuel Oil No. 1 (J.P.-4) 0.755 0.767 9.3 17.0 0.17 0.25 0.67 16.43
Fuel Oil No. 1 (Jet Fuel A-T) 0.804 0.816 37.4 38.4 0.40 0.40 3.11 19.42
Fuel Oil No. 1 (Jet Fuel B) 0.757 0.802 10.8 10.8 0.19 0.19 0.49 13.67
Fuel Oil No. 2 0.840 0.876 26.2 29.0 0.32 0.34 1.77 16.28
Fuel Oil No. 4 0.895 0.938 30.2 — 0.35 0.35 1.63 13.34
Gasoline 0.729 0.750 18.6 19.8 0.26 0.27 1.28 18.28
Gullfaks Crude 0.882 0.914 13.0 17.0 0.21 0.25 0.61 11.67
Hibernia Crude 0.836 0.925 13.5 24.2 0.22 0.31 1.05 15.40
Issungnak Crude 0.828 0.890 12.5 28.2 0.21 0.34 1.20 16.76
Kuwait Crude 0.872 0.928 13.4 24.5 0.22 0.31 0.95 13.95
Lago Medio Crude 0.872 0.898 12.4 17.1 0.21 0.25 0.64 12.13
Lubricating Oil (Extreme pressure) 0.883 0.893 2.8 3.2 0.08 0.09 0.04 4.90
Lubricating Oil (Virgin crankcase) 0.878 0.889 16.6 18.2 0.24 0.26 0.75 11.98
Lubricating Oil (Used crankcase) 0.8845 0.895 21.0 24.2 0.28 0.31 1.12 12.91
Marine Intermediate Fuel Oil 0.971 0.991 35.5 — 0.39 0.39 1.35 8.86
Murban Crude 0.822 0.838 14.3 16.3 0.22 0.24 0.71 13.46
Naptha (Mineral Spirits) 0.793 0.804 43.1 43.2 0.43 0.43 3.83 20.73
Naptha (Petroleum Ether) 0.640 0.655 43.8 44.8 0.44 0.44 5.32 27.48
Nektoralik K-59 Crude 0.854 0.917 14.8 15.1 0.23 0.23 0.63 11.87
Nerlerk M-98A Crude 0.920 0.923 5.2 11.0 0.12 0.19 0.18 7.75
Norman Wells Crude 0.829 0.881 16.4 16.5 0.24 0.24 0.78 13.46
Primer Asphalt 0.942 0.953 24.7 26.8 0.31 0.33 1.05 10.29
Prudhoe Bay Crude 0.881 0.950 9.7 27.6 0.18 0.33 0.83 13.98
Sable Island Condensate 0.869 0.914 18.4 29.6 0.26 0.35 1.37 15.03
Sour Bend Crude 0.836 0.875 24.1 25.8 0.31 0.32 1.56 15.70
Statfjord Crude 0.834 0.895 15.0 23.0 0.23 0.30 1.04 15.09
Sweet Blend Crude 0.825 0.840 16.9 20.2 0.25 0.28 1.04 14.88
Synthetic Crude 0.861 0.916 15.5 29.6 0.23 0.35 1.25 15.56
Tarsiut Crude 0.875 0.902 13.9 18.0 0.22 0.26 0.69 11.98
Terra Nova Crude 0.856 0.871 28.8 29.4 0.34 0.34 1.77 15.29
Transmountain Blend Crude 0.855 0.925 19.3 25.1 0.27 0.31 1.21 14.45
Uviluk P-66 Crude 0.897 0.915 8.8 = 0.17 0.17 0.23 7.87
Uviluk Crude 0.879 0.924 12.2 23.5 0.20 0.30 0.79 13.16

Table 6.1: Oil and oil product properties, mean droplet size, and terminal
velocity, based on formula 5.1 with by = 0.36, and mean dissipation rate
parameterized by 6.9, and wind speed of 10 m/s.




Environmental Sciences of Ithaca 113

and all of the work that has stemmed from these seminal papers, is suspect.

Whether the model we have produced here provides useful estimates
must be assessed by experiments in which the wave breaking is the principal
turbulence source.




Chapter 7

Model for Three-Dimensional
Current Structure

7.1 Introduction

Our objective of developing a predictive system for near-surface currents
as an operational tool for risk assessment studies of oil transport requires
a method of calculating the effects of Langmuir circulation. Operational
purposes cannot be served by computation with the complete mathematical
formulation for Langmuir circulation in the ocean mixed layer, since the
computational effort exceeds available capacity, and this will not change
in the foreseeable future. Instead, we need to devise an extremely rapid
procedure to extract the information we need for surface transport from the
more complete theory. This must allow the repetitive evaluation of many
scenarios so that statistical inferences can be drawn concerning risk.

The most important feature of Langmuir circulation for the surface trans-
port of floating material is the water velocity right at the surface. At the
surface, oil is swept into convergence lines and then accelerated downwind
relative to the horizontally averaged surface current. The oil in collected in
surface convergences is subject to being drawn into suspension in the water
column as described in Chapter 5. Thus the downwelling component of the
current underlying surface convergences is also of special interest.

The goal of this Chapter is to construct a compact description of the
surface sweeping motions, surface downwind jets, and the downwelling com-
ponent that can be rationally related to the surface waves, wind, and mixed
layer depth and which is useable for operational purposes.

114
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The description given here is physically based and therefore a reason-
able choice to replace the artificial form used for illustrative purposes in
Chapter 4. We originally had planned to use the amplitude equation of Cox
and Leibovich [13]. After some effort (reported on in interim reports), we
came to the conclusion that the amplitude equations required cross-checking
against direct numerical simulations to confirm that the large aspect ratio
assumption underlying the asymptotic theory of [13] adequately described
typical physical realizations for which the aspect ratio is not bery large.
At that point, it became clear that the parameterization of a body of syn-
thetic data generated from numerical simulations was a feasible and more
direct alternative. This is the approach finally taken and documented in
this Chapter.

7.2 Simulation problem

The configuration considered is motion in a layer of water of constant density,
overlying a strong thermocline. This is the basic situation contemplated
in the section 2.2 of Chapter 2. The motion here is supposed to be two-
dimensional. The depth of the layer is d. Empirical observation (see Chapter
1) indicates that the largest scale windrow separation is about three times
the depth of the mixed layer. We invoke this informationand require the
motion to be periodic in this direction with wavelength fixed L fixed to be
3d.

We take the (y, z) plane to normal to the wind direction, - and time. A
constant applied wind stress measured by the (water side) friction velocity
uy is assumed at the mean air-sea interface z = 0. At the base of the mixed
layer, z = —d, the stress is prescibed by a parameterization of momentum
lost to internal waves below and by entrainment effected by any mixed layer
deepening. The parameterized form is given in Chapter 3. With this choice,
the velocity vector may be written as

V=u*{R*[E+1+_(_1_:ﬁ’.)

7 o +u} ez+R*‘1[vey+wez]}, (7.1)

where R, = u.d/vr. Here u is the dimensionless perturbation velocity com-
ponent in the wind direction caused by the presence of vertical motions
in the Langmuir circulation system, (v,w) are the dimensionless compo-
nents of the system in the cross-wind (y), and vertical (z) directions. When
u,v, and w are all zero, the current is a linear shear, and this “structureless
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equilibrium” is a possible solution to the problem, but is unstable when the
Rayleigh number (see below), which measures the relative importance of
the wind and wave forcing to viscous resistance, exceeds a threshold that
permits Langmuir circulation to grow.

Unless specifically noted to the contrary, in the subsequent discussion it
is assumed that all lengths have been made dimensionless with respect to
the depth d, even though the coordinate labels are retained, so that now
z,y, and z are dimensionless coordinates. The latter two (dimensionless)
cross-plane velocity components can be represented by a streamfunction, ¥
by

_
— 5% (7.2)
_ o

wo= By (7.3)

For the purposes of the simulations, the surface wave spectrum is as-
sumed to be narrow band, and the wave field replaced by a monochromatic
wave with wavelength equal to that at the spectral peak. The vertical profile
of the Stokes drift is taken to be exponential with surface drift speed U,

Us = Usenzex, (7.4)

corresponding to a monochromatic wave with wavelength at peak of the
Pierson-Moskowitz spectrum, or

gd
k=kd= 0.774(—]—2-.

The governing equations for u and 1) are

o 2\ o2, ou 9
(a_v )v v = Rh(2)g +J0, V),

(2 -v?)u = % + (W, ).

Taking the limit of m — 1 in (7.1) and o4p — O in the stress boundary
conditions of Chapter 3 implies that

Oy, v, w)

5= =0 at z = -1 and at z=0. (7.5)
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The parameter R is the “Rayleigh number,” given by

d*u2 8U Bu
=R= *——(0). 7.6
R=R v3 8z Oz 0) (76)
With the choice of exponential Stokes drift, this becomes
R == 2mg3R§. (7.7)
U

The dimensionless problem is now determined by two dimensionless num-
bers, R and &, with the latter appearing as an independent parameter
through its involvement in the Stokes drift profile, h(2).

We note that if we were to take the surface value of the Stokes drift to
be given by the Pierson-Moscowitz spectrum, then the ratio Us/u, would
be a fixed number, giving

R = 24kR3.

In the limiting process referred to earlier, we set

1-—
A= hm ET™)
m—1,ap—0 ap

Then (7.1) providing the dimensional current is

V= U, {R* [—§+1+/\+u] e; + R;! {vey-l—wez]}, (7.8)
and A is chosen to fix the horizontal average surface Lagrangian current to be
0.035U. This choice, clearly rather arbitrary, allows us to beg the question
of a specification of internal wave and entrainment drag, instead fixing the
horizontal mean current to be a commonly used value, while not prejuding
the variation of the current from the mean value caused by the Langmuir
circulation. :

Langmuir circulation fields were generated by direct numerical simula-
tion for 23 different combinations of x and R using a pseudospectral code
written and provided to us by G. Chini. The code solves the time-dependent
problem in a vorticity-streamfunction form, using Fourier series expansions
in the cross-wind direction and Chebyshev polynomials in the vertical. In
each case, the final asymptotic condition is a steady state. Once a solution
was obtained and recorded, it was used as initial condition for a neighboring
point in the R, kx parameter space.
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To guide to these computations, we utilized the known information on
the linear stability characteristics of the structureless equilibrium fo this
problem. These were first determined by Lele [58] and are also quoted by
Cox and Leibovich [13]. Lele found that the Langmuir circulation instability
is operable if R > Ry(k), and that the threshold values Ro(k) are given by

32x5

Bo = 1-k+k3/3—e2(1+Kk—k3/3)

These threshold values occur in the limit of infinite windrow spacing, or
L/d — oo. For finite values of L/d, larger values of R are required for
instability. From the computations described in the next paragraph, we infer
that for the aspect ratio L/d = 3 used in this Chapter, the critical value,
R.(k), of R for instability is approximately twice Ry, and we therefore used

R(r) = i (7.9
T 11—k + k33— e 2% (14 K — 3/3)’ '

in our analysis of the data.

The results of the computations may be anticipated. Increasing R causes
the Langmuir system to increase in strength. The effect of varying & is to
increase the asymmetry of the circulation system. When & = 0 (occuring as
the wavelength of the surface waves becomes extremely large compared to
the water depth), the Langmuir system is symmetric about the mid-depth of
the layer, and upwelling and downwelling are interchangeable except for di-
rection, and the maximum value of both occur at mid-depth. As  increases,
downwelling is stronger than upwelling, and the depth at which maximum
downwelling occurs decreases. This continues as & increases at fixed R until
the system is rendered stable (since R.(x) will also be increasing) or, if R
is simultaneously increased to keep R > R.(k), the position of maximum
upwelling will rise to an asymptotic depth around one-third of the layer
depth.

Three series of data sets were acquired, that reflect the anticipated sce-
nario. In the first series, we fixed k = 1 and varied R, with computations at
R = 650,750,1x10%,5x 103 to 14 x 103 in steps of 103,16 x 103, 18 x 103, 2x
10%. A computation at R = 600 decayed, indicating that the system is stable
to Langmuir circulation at that point; the linear stability limit is therefore
inferred to be between R = 600 and 650 when x = 1, and the latter value is
the lowest one reported for this series. In the second series, we fixed R = 104
and varied k, with computations at x = 0.5,1,2, and 4. The system is stable
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Figure 7.1: Variation of the perturbation windward velocity component pro-
file at the surface with x for fixed R(=10,000).

for values of k around 7 and larger. A third series increased R as k was in-
creased, and the points (x, R) = (10, 25x 10%), (15, 5x 10%), and (20, 8x 10%)
were added.

The Eulerian surface velocity component in the direction of the wind is,
from (7.1),

Figure 7.2 is a plot of u(y,0) for various values of k at R = 10%. Figure re-
fusurfkl gives the corresponding plot showing how u(y,0) varies for a fixed
value of k as R is varied. The figures are similar, and follow the same trend
if the convective activity in the system increases as R/R.(k) increases, as
would be expected from stability theory.

The component Urc has jet-like behavior over lines of surface conver-
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Figure 7.2: Variation of the perturbation windward velocity component pro-
file at the surface with R for fixed k =(=1).
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Figure 7.3: Vertical profile of the horizontally averaged perturbation current
corresponding to the (k, R) data in Figure 7.2.

gence. When the parameter I' (defined in Chapter 4) is very large, oil is
collected in surface convergences and moves with a speed close to the max-
imum value in the surface jet. Consequently, although we have found a
functional form that fits Urc, the principal interest is in the velocity with
which the jet exceeds the horizontal average surface current. If the horizon-
tal average is denoted by angle brackets, then

{Urc) = weRe {1+ A+ (u(y, 0))}.

Profiles of the horizontally averaged perturbation current as a function of
depth, (u(2)), are shown in Figures 7.2 and 7.2 for the data (x, R) data in
Figures 7.2 and 7.2, respectively.
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Figure 7.4: Vertical profile of the horizontally averaged perturbation current
corresponding to the (k, R) data in Figure 7.2.
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The maximum speed at the surface is then in the jet, and
(Urc) + uxRyujet,

where u;e; is defined to be

ujer = maxu(y,0) — (u(y,0)). (7.11)
The jet enhancement was found to be fitted by
1
- . —-0.278r 12
Ujer = V7 |0.de T+ 045957 + 2.3879r + 0.7515] (7.12)
where
Re(r)

for R > R.(k) to reasonable accuracy, and is zero for R < R.(k) (where no
Langmuir circulation takes place). The jet enhancement, u;e; rises from zero
to a maximum of about 0.314 at r = 1.8, and then decreases algebraically.
A composite of our data for the various numerical experiments is shown in
Figure 7.2, which shows that the data is collapsed by the scaling with r, and
also shows the curve fit (7.12).

The increase in uje; from zero value at r = 0 is understandable, since
there is no Langmuir activity for negative values of r. As r increases, the
convective activity and associated mixing of momentum increases. When
fully mixed, the current in the wind direction would be uniform with depth,
and therefore there could be no variation of the windward current in the cross
wind direction even in the presence of convection, and therefore ujer — 0
for sufficiently large r. This is reflected also in the horizontally averaged
current profiles in Figures 7.2 and 7.2. As r increases, the surface value of
(u(z)) becomes increasingly negative, while the value at the bottom of the
layer becomes increasingly positive. This is added to the uniformly sheared
current that exists in the absence of convective motion, and therefore the
complete current becomes increasingly uniform with depth. The situation
cannot progress beyond the uniform current, which is coincident with Ujer =
0.

The vertical velocity below lines of surface convergence in the simulations
is well fitted to the following form,

W(z) = —5.4-% R — Re(x)

2
RN (p12%+ P2z + s (7.13)
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Figure 7.5: Jet enhancement for the simulated data is collapsed by scaling
with 7 = (R — R¢(k)) /Rc(k). The symbols are data, the solid line is the
function in (7.12).
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8

Figure 7.6: Data points from the data set at fixed k¥ = 1, various R are
shown as circles, and those from the set with R = 10¢, various k are shown
by x’s. The solid line is the fit (7.13).

where —z is the depth normalized by the total mixed layer depth, and P1,2,3
are constants that are determined by the normalized depth, z = z,,, of the
maximum vertical speed. Figure 7.2 shows the data together with the fit
provided by (7.13). When the gravity waves are extremely long compared to
the depth of the mixed layer, or kK — 0, the vertical speed is symmetrical with
respect to the mid-depth of the mixed layer under the boundary conditions
utilized, so z;, = —0.5. It may be expected that z,, depends on &, and this is
borne out by the simulations, which show that the location of the maximum
downwelling moves towards the surface as x increases. This movement has
an asymptote, however, at a specific depth. From our simulations, which
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Figure 7.7: The data points correspond to the points (k,zm) =
(1,—0.4347), (2, —0.4347), (4, —0.3706), (5, —0.3706), (6, —0.3706) joined by
the step-like solid line. The circles correspond to the fit (7.14).

can only establish this movement of z,, crudely, we estimate

K2

=-05+0.1318 ——~
om = =05+ 01818 a7

(7.14)

In terms of z,,, the constants P1,2,3 are

_ 2zm+1 322 -1 3z +2
25 (1+ 2m)?’ = 25(1+ 2m)?’ = zm(1 + 2m)?

The fit to the steplike data points in shown in figure 7.2.

The surface sweeping velocity component, V;(y), is approximately sinu-
soidal, with a maximum value V;,, that depends only on (R — R.)/R.,

(R- R,
R,

P =

Vi = 6.07 (7.15)
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Figure 7.8: Data points from the data set at fixed k = 1, various R are
shown as circles, and those from the set with R = 104, various k are shown
by x’s. The solid line is the fit (7.15).

Figure 7.2 shows the data points from simulation, together with the fit
(reffitvee).

The shape of the wavy function Vi(y) depends on « and (R — R.)/R..
The maximum amplitude occurs at the cell center for small values of x for
sufficiently large (R~ R.)/R. and migrates towards the zeros of V;(y) corre-
sponding to the lines of surface convergence as  increases. This migration,
which can be seen in figure 7.2, will be neglected, and we will take

Vi) = ~Vawsin (70 -1

where a convergence line is located at .
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Figure 7.9: Data for the surface value of the sweeping velocity component
for seven values of x at R = 10%. Ordinate is the (dimensionless) value of V,
and the abscissa is the cross wind coordinate. As x increases, the maximum
and minimum values of Vs migrate towards the surface convergence.
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1 Introduction

OILTRACK is a computational model, written in Matlab, for a first genera-
tion of operational model for oil spill trajectory simulation incorporating the
effects of both wind and waves. It is of the simplest possible structure, with
little attention paid to computational efficiency and execution speed. The
purpose of OILTRACK is to bring together — in concrete form — the physical
models for near surface oil transport that have been developed under MMS
Contract 14-35-0001-30612. The program can be integrated into existing
oil trajectory codes with modest expenditure of effort.

2 Description of OILTRACK

2.1 Input Data and Assumptions

It is presumed that for applications of risk analyses, the available environ-
mental information will be limited. For this reason, in this effort we assume
that direct environmental data is limited to surface wind speed and direc-
tion, on the grounds that this is the information most readily available in
real time, and the most readily forecasted, that is directly relevant to surface
transport estimates. Since this first model makes modest demands on ob-
served information, it makes substantial demands on modelling assumptions
to link the wind data to surface motion. These modelled links amount to
synthesized data. The surface transport model is expected to be improved
if synthetic data is replaced by real data. Furthermore, the transport model
should be revised by comparing its performance in tests designed for this
purpose. '

More sophisticated models can be developed subsequently to account for
other relevant physical factors, such as air and sea surface temperatures and
consequent heat transfers.

2.2 Large scale currents

“Large scale” here means horizontal scales large compared to the mixed
layer depth, or horizontal scales on the order of kilometers. It is assumed
that these current patterns, which incorporate the bathymetry of the re-
gion, are available from other sources. These currents are assumed to be
supplied, in meters/second, at regular time intervals. Intervals on the order
of 4 hours are probably adequate. Defining a coordinate system with X
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measuring distances from the origin in an eastward direction, and Y in a
northward direction, the large scale surface currents are denoted by the vec-
tor U(X,Y,t) = (U, V;), where (U, V,) are the eastward and northward
components, respectively.

2.3 Surface wind velocity

It is assumed that the surface wind speed, given in meters/second, and
direction given by the angle § measured from the X-axis, is available on a
grid, and is updated periodically. The length scales of the relevant velocity
variations in Langmuir circulation are on the order of tens of meters, and
since the grid is assumed very much larger (kilometers or more), the wind
field appears uniform within a grid so far as the dynamics of the circulation
are concerned. The time scale for formation of the circulations is typically
tens of minutes. Since the time scale of the change of the wind forcing
is anticipated to be long compared to the Langmuir circulation time, the
wind field in a given grid appears to the Langmuir circulation system to be
essentially steady.

The surface wind speed is converted to the friction velocity ., employed
in the model development according to the following formula derived from
the bulk aerodynamic drag coefficients of Large and Pond, as cited in Chap-
ter 3. Converting stress to water friction velocity gives the relationship
between friction velocity and wind speed U at anemometer height

us = 1/ paCp/ puU.

In this relationship, we always take p,/py = 1.2 x 1073, which is appropriate
for the sea-level value of air density in the standard atmosphere, and a
seawater density of 1.02gm/cc. Under neutral atmospheric conditions, Large
and Pond correlate their data for Cp with the

O — 1.2x 1073, for U < 11m/s
P70 (0.49+0.065U) x 1073, for 11m/s < U < 25m/s.

Available data did not permit extension to wind speeds larger than 25m /s.
Such high wind speeds are rare events. In the absence of data, for wind
speeds higher than 25m/s, we shall retain the value occuring at the upper
end of Large and Pond’s correlation, or

Cp =2.1x 1073 for U > 25m/s.
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2.4 Sea State

Sea state data is needed to specify the Stokes drift speed, us(z), as a func-
tion of depth |z|, in the horizontal and vertical transport model. This is
done by first fixing the surface value, us(z), of the Stokes drift by its value
corresponding to a surface wave spectrum of Pierson-Moscowitz (PM) form.
According to Chapter 2, this gives

u—t d,u,
371'2 U/ S
h
where o Ui,
T 2mg

and wy, is the angular frequency at the peak of the wave spectrum. Both «
and v are dimensionless parameters that Pierson and Moscowitz take to be
.0081 and v = 0.14, but we can extend the model to developing situations,
as explained in Chapter 2, by taking o = 0.0320%/3, and then relating v to
the wind duration and fetch. We can evaluate the integral to obtain

us(0) = 322 i (5)1/41“ G) U, 2)

where I'(z) is the Gamma function, and T’ (%) = 3.6256.
Therefore we take the surface Stokes drift speed to be

_ a_ .} 0.013U, for fully-developed seas,
us(0) = 0'2321/[] - { 0.0074v~1/3U, for developing seas, ,
where the development is prescribed by prescription of v, according to Chap-
ter 2. In the model, we suppose unlimited fetch, so the development of the
sea is limited by the wind duration, and then

B <743 U)3/ 7

=% i
In the prototype model, however, no account is taken of wind duration, and
a fully-developed sea is the program default.

The depth variation of the Stokes drift is taken to be a simple exponen-
tial, as in a monochromatic spectrum, with the frequency taken to be that
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at the peak of the PM spectrum. Invoking the deep water wave dispersion
relation, this leads to a wavenumber

_0.774¢
km = "'—Z—]"z——
at the spectral peak, and the Stokes drift is therefore taken to be

ug(z) = uqs(z) exp (9—7;]-%—9—3) )

2.5 Mixed layer depth

The surface current estimates are based on a two-layer model in which the
upper layer thickness is assumed known, and supplied in units of 1 meter.
It is assumed that this data is provided from another source, such as a
predictive model for the “large scales” or from observation. In any event,
the depth of the first significant density gradient (or the depth to the bottom
if this is the “first significant density gradient”) is assumed to be the local
mixed layer depth.

If no estimate of the water temperature variation with depth is known,
then we replace the mixed layer arising in our model by twice the depth of
the Ekman layer. This, in turn, is estimated by supplying the latitude, ),
of the location. In particular, the scaling depth is taken to be

Ux
d=2dp =0.5 7
where f = 20 sin A = 1.4544 x 10~*sin \ radians/s is the Coriolis parameter,
and u, is the water friction velocity. The length dg represents the e-folding
depth of the turbulent Ekman layer computations of Coleman et al. (1990).
Estimating d ~ 2dg, with dg taken to be from the Coleman et al. compu-
tations is consistent with the eddy viscosity estimates of Chapter 3, where
the eddy viscosity was taken to be ku.d, where d is the order of magnitude
of the surface layer depth. Our LES computations reported in Milestone 7
gave k ~ 1/18. If d were set at 2dg for the purposes of setting the eddy vis-
cosity, then the e-folding depth of the classical quasi-laminar Ekman layer
would agree with turbulent Ekman layer computations of Coleman et al.
for k = 1/16. The argument for substituting an Ekman layer depth for
the mixed layer depth is simply that this layer contains the active wind
generated shear, and Langmuir circulation takes place in such a layer. The
argument is admittedly not overly compelling, and points to the desirability
of obtaining density data.
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2.6 Oil properties

The oil properties used in our analyses consist of oil density and oil-seawater
interfacial tension only. These can be adjusted for ambient water tempera-
ture, but this will not be done in the prototype. The water density is that of
sea water at a specified water temperature and salinity, but this adjustment
also will be omitted in the prototype, which fixes the default water density
to be 1.02 gm/cc.

3 Output Oil Spill Attributes and Spill Trajectory

The model assumes that oil on the surface moves with the velocity vector

Uo(X,Y,t) = UX,Y,8) + {Uc(X, Y, 1) + 0013U(X, Y, 8)}  (3)
x {cos8(X,Y,t)ex +sin0(X,Y,t)ey}.

In this relation, the terms refer to the following factors.

o U.(X,Y,t) is the surface velocity vector of the prescribed background
current field.

e Urc(X,Y,t) is a mass-weighted average of the surface current speed,
parallel to the wind, in the Langmuir circulation field. This attribute
will be explained further.

e U(X,Y,t) is the wind speed, and 0.013U(X,Y, ) is the surface Stokes
drift with the assumptions already made on the surface wave spec-
trum. The sum Urc(X,Y,t) + 0.013U(X,Y,t) is the wind-generated
Lagrangian speed of a oil floating on the surface (and assumed par-
allel to the local wind direction), relative to the background surface
current. ,

This transport model is characterized by the attributes Uro(X, Y, t), and
by the modifying attributes Ls, the oil lane separation, and by tsyeep, the
characteristic time for oil collection into oil lanes. Each of these now will be
specified more fully.

3.1 Oil lane separation attribute

The transport model assumes that oil is collected into oil lanes coinciding
with the dominant Langmuir circulation windrow, and that the time re-
quired for this collection to take place is negligible compared to the time
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scale of interest in a simulation. The oil lane separation,
Ly=3xd, (4)

where d is the prescribed depth of the mixed layer.

3.2 Qil sweep time attribute

This time measure is taken to be equation (20) of Milestone 9, on noting that
the symbol L appearing there is Ly/2, the width of one dominant Langmuir
circulation cell, which is half the distance between dominant windrows,

d v/gd
tsweep = 86‘[']"‘\‘/"‘Uq_"- (5)

This attribute is found as a check that it is small compared to the simulation
time.

3.3 Current structure attributes

Three speed profiles in the Langmuir circulation convective field are of par-
ticular interest for transport computations. These are Urc(y) and Vi(y),
the surface values of the Eulerian speeds in the wind direction and in the
crosswind direction, respectively, as functions of crosswind coordinate, y,
and W(z), the vertical velocity below windrows as a function of depth.

These current features are abstracted from data obtained by direct sim-
ulation of the two-dimensional Langmuir circulation problem. In the simu-
lations, the Stokes drift is assumed to be an exponential function of depth
corresponding to a monochromatic surface wave field. The wavenumber of
the surface waves is assumed to be determined by the peak of the Pierson-
Moskowitz spectrum. Once the Stokes drift is specified, the simulation de-
pends on a single dimensionless parameter,

_ Ou, d3
R= 5;(0) Uc*y_%'

where U, is a charateristic surface current speed determined by boundary
conditions, vr is the eddy viscosity, and u, is the Stokes drift. The boundary
conditions determining the simulations are described in Part 1. They result
in

R = 23.6kR%,
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where d
g
4—0—2—
is the dimensionless gravity wave wavenumber at the spectral peak of the
Pierson-Moskowitz spectrum, and

k= 0.77

_ Ud
vr

B,

is a Reynolds number based on the friction velocity imparted to the water
by the wind stress. Thus, the result of the simulations are that the veloc-
ity structure of the Langmuir circulation system is determined by the two
dimensionless parameters, x and R or, alternatively, x and R,.

The three velocity profiles found from simulations at 16 values of R
ranging from R = 650 (just above the value for which Langmuir circulation
cannot be sustained) to R = 20,000 for x = 1 and for 9 values of k ranging
from k = 0.5 to k = 20 for values of R ranging from 10000 to 80000 were
fitted to simple functional forms of R and . In particular, the critical value
of R = R, below which Langmuir circulation with aspect ratio L;/d = 3
decays was found to be approximately

Rc = 2RO(K/) .

Here Ry(k) is the theoretical value found by Lele (1985) for L/d = oo, and
this produces

64x5

Be = 1-k+r3/3—e26(1+k—r%/3)

The component Urc has jet-like behavior over lines of surface conver-
gence. When the parameter I' (defined below) is very large, oil is collected
in surface convergences and moves with a speed close to the maximum value
in the surface jet. Consequently, although we have found a functional form
that fits UL, the principal interest is in the excess velocity in the jet. We
have set the horizontal average of UL¢ to be

(Urc) = 0.0220,
and the maximum speed in the jet is then

(ULc) + ux Ruttjet.
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The jet enhancement was found to be fitted by

| 1
- —0.278r
Ujer = VT [046 T 04505 + 2.3879r + 0.7515]
where
_R-— Re(k)
R.:(k)

for R > Rc(k) to reasonable accuracy, and is zero for R < R.(k) (where no
Langmuir circulation takes place). The jet enhancement, uje; rises from zero
to a maximum of about 0.314 at r = 1.8, and then decreases algebraically.

The vertical velocity below lines of surface convergence in the simulations
is well fitted to the following form,

_ Us |R— Re(k) 9
W(z) = 5'4R* Ro(r) z <p1z + poz +p3)

where —z is the depth normalized by the total mixed layer depth, and P1,2,3
are constants that are determined by the normalized depth, z = z,,, of
the maximum vertical speed. When the gravity waves are extremely long
compared to the depth of the mixed layer, or k — 0, the vertical speed is
symmetrical with respect to the mid-depth of the mixed layer under the
boundary conditions utilized, so z, = —0.5. It may be expected that z,
depends on &, and this is borne out by the simulations, which show that
the location of the maximum downwelling moves towards the surface as x
increases. This movement has an asymptote, however, at a specific depth.
From our simulations, which can only establish this movement of z,, crudely,

we estimate

K2

In terms of z2,,, the constants P1,2,3 are

2+l 321 32m +2
22, (14 2)?’ p2 22,(1 4 2p,)?’ b3 Zm(1+ zm)?

1=

The surface sweeping velocity component, V;(y), is approximately sinu-
soidal, with a maximum value V;,that depends only on (R — R.)/R.,

(R - Rc)

Vm = 6.
m = 6.07 E
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The shape of the wavy function V,(y) depends on « and (R — R;)/R.. The
maximum amplitude occurs at the cell center for small values of s for suf-
ficiently large (R — R.)/R. and migrates towards the zeros of V;(y) corre-
sponding to the lines of surface convergence as k increases. This migration
will be neglected, and we will take

2

Va(s) = Vinsin (-0 = 34))

where a convergence line is located at y,.

3.4 Mass-weighted surface current speed attribute

The speed Urc called for in (3) for the computation of surface oil mass
transport is

_ L,
Urc = h(y)Urc(y)dy, (6)
Lshg Jo

where ho would be the thickness of the oil film if it were spread uniformly
over the surface, and Upc(y) is the surface value of the downwind Eulerian
speed. A method for calculating the cross-wind variation of the oil film
thickness, h(y) from the surface sweeping speed, V;(y) is provided in Part I.
When the parameter I (see below) is large, as it is expected to be, Uc ~
(Urc) + usxRyujer, or the maximum speed surface in the direction of the
wind. This form is used for the model implemented in Qiltrack.

3.5 Surface oil thickness attribute

This is the oil thickness h(y) used in defining Uzc. In Part I, this is found
from the surface sweeping speed, vs(y) by balancing the stress imposed on
the oil layer by the sweeping component and the gravity spreading force. The
surface stresses sweep oil towards the convergences, piling it into windrows.
Surface tension spreading is ignored, so monomolecular layers of oil may
remain in water that has been nominally swept clean of oil.

In this description, we have defined y = 0 at lines of surface divergence,
so that in the notation of the previous section y. = 0 there, and |y| = L,/2
at a adjacent lines of surface convergence. Considering the region between
a surface divergence and the convergence at y = L;/2, the water surface is
“clean” from y = 0 to y = yo, so h(y) = 0 for 0 < y < yo, and is given by

h(y) 2Cy pw /y L,
P LA b V2 d , for <y < —=, 7
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Substituting for V,(y) from the previous section, and defining

fro Vi Cupu <_L_S>2
gLs x po \ ho ’
we have
h . 1 .
o = \/I-“{n — o — ;cosw(n-i-no)smﬁ(n— 770)} )
where
2y
TS5
_ 2
T’O Ls *

3.6 Clean surface water attribute

This is defined here as the fraction of the surface for which h(y) = 0. It is
therefore given by 7, which is found by imposing oil mass conservation,

2 /Ls/2 h 1 p
— —dy =1, or / —dn =1,
L, Yo ho Y M0 ho 7

as explained in Part I. It is expected that I is a large number. When this
is the case, 1 — np will be small, and the integral needed to find 7y can
be approximated. In particular, when 1 — 7 is small, so is n — 79, and so
expanding h/ho when these variables are small leads to

- O U
W\/I:(l - ?70)5/2/0 §p3 —p?+pdp =1, (8)

so the large I approximation leads to

no = 1 —0.73520~1/3, (9)

3.7 Subsurface oil size attribute

The model presented in Part I gives the mean oil droplet radius to be

o\ 3/5
a = 0.235a, = 0.085 (3;) (26)—2/5,
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where the near-surface mean turbulent dissipation rate € is taken to be
§=4.7x107%U.

The interfacial tension, o, and p is the seawater density, both of which
are input data without need for processing.

3.8 Subsurface oil terminal velocity attribute

This is found from the force balance given in Part I, using the drag coefficient

24 6
Cp=—+

Re " 1+ VRe

where Re is the Reynolds number

+0.4,

2V
Re = Ta.

v

The force balance can be expressed as

29a A
Re\/Cp(Re) = %,/-%37”.

Here v is the molecular viscosity of seawater, and Vr is the terminal velocity.
The left-hand side of this equation is approximately linear. Over the range
of 100 < Re < 1000, it may be approximated by

0.74Re + 46.11

to within about 10%. For the data in’Table 6.1 of Part I, the results are
therefore reasonably well fitted by the rule

2Ap 11.53v
VT—1.35{\/ 3 ga— — } (10)

Thus, the terminal velocity at any wind speed, U, can be calculated by
first calculating the average drop radius, and then calculating the terminal
velocity using (10).
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3.9 Subsurface oil submergence zone

This is taken to be the depth of the Stommel retention zone, as given in
Chapter 5 of Part II. Specifically, given the terminal velocity Vp (previous
section), this depth is found from the vertical speed W (z) of subsection 3.3

as the root of
W)+ Vr=20 (11)

having the largest absolute value.
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4 OILTRACK Listing
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2/06/97 2:48 ™M main.m Page 1

clear
global hx hy U Theta U_c Theta ¢ ustar fric Rstar Ko D Kp r k

% Set up grid. Each grid point, (I,J) represents

% the southwest comer of a cell in which wind and current
% are assumed constant.

NE =10;% input('Number of surface grid points to the East
NN =10; %input ('Number of surface grid points to the North =
IMAX=NE+1 ;

JMAX=NNH+1 ;

hx=5;%input ( 'x- Mesh point separation (in km)= ');
hy=5;%input ('y- Mesh point separation (in km)= ');

[}
-
~

1
-
~

XMAX=hx*NE;

YMAX=hy*NN;

R R e b E R R E T R P R R PR e
% EFE%%%%%% Time Intervals $%%%%%%%%

%

% Nt = muber of time instants for which wind and current data is provided.
Ttotal=144; %input('Total tracking time=');
Nt =Ttotal;%input ('Number of time instants for wind/current data = ');
tstep=Ttotal /Nt; %time-step increment
deltXcross=tstep;
deltYcross=tstep;
B o o R T R I R T LR R RS LI S I L DR 1Y
% FEEL5%%% Parameters X EEE%%
lat=40; % Latitude in degrees
Rstar=10; % Reynolds number Rstar=ustar*D/(eddy viscosity)
rhow=1.02; % Water density
rhoo=0.99; % Oil density
chi=1-rhoo/rhow;
g=9.81; % Acceleration of gravity
Cw=0.004; % Oil-water friction coefficient
ho=0.001; % Average thickness of oil, in meters.
gamma= (Cw/chi) * (rhow/rhoo) / (g*ho™2) ;
sigma=20; % Interfacial tension, dynes/am
visc=0.01; % Kinematic viscosity of water in an*2/s.
R e L T E R TR R SR L L L DD L E TS LR85
% Initialize Problem
x0=input ('Initial X position=');
y0=input ('Initial y position=');
XP=[x0 y0];
if (x0* (XMAX-x%0) < 0) | (yO* (YWMBX-y0) < 0)
error ('Initial point is outside damain boundary')

ax
= XP; % X-Matrix will contain particle location history.
% % Rows are time levels
% % Colums are(east,north) particle coordinates
XNEW=[0 0};
attributes=[];

% Fhhkkkkhkkhhhkkhhkdkhhdkhkkhhkhdhhkkrhkkdhhkdkhkkkkdkdhrddrn




2/06/97 2:48 PM

main.m

% Begin time loop
clf
tracker=plot (X(1,1),X(1,2),'."', 'MarkerSize',f12);

axis ([0 hx*NE 0 hy*NN])
axis('square')

grid
hax=gca;

xtickmarks=[0:hx:hx*NE] ;
ytickmarks=[0:hy:Iy*NN] ;
set (hax, 'XTick',xtickmarks, 'YTick',ytickmarks);

hold on

for itime=1:Nt

XP=X(itime, :); % Position at start of time step
I=ceil (XP(1)/hx); % Locate grid cell containing particle
J=ceil (XP(2) /hy) ;

wind; seastate; % Update wind and seastate over simulation region
frictionvel; depth; % Stress and effective depth of layer
current; % Rackground current

[Vel,r k,E]=V(I,J);
XNEN=XP+tstep*Vel; % Step time and spill position

%If a damain boundary was crossed, stop.

if (XEW(1)* (MAX-XNEW(1)) < 0) | (XNEW(2)* (YMAX-XNEW(2)) < 0)
'Hit! Damain boundary was crossed'
if XNEW(1) <O
P=[0 XP(2)];
elseif XNEW(1)>XMAX
P=[XMAX XP(2)];
elseif XNEW(2) <0
P=[XP(1) 0];
elseif XNEWN(2)>YMAX
P={XP(1l) YWBX];
ed
plot(P(1),P(2), 'r*', 'MarkerSize', 18)
reak
ad

IT=ceil (XNEW(1) /hx); %Locate the cell containing the new spill
JJ=ceil (XNEW(2) /hy) ; %position.

% Find out if a grid cell boundary was crossed in this time step.
%1f so, backtrack, and correct for the fraction of the time step
% taken in each of the cells.

[VelNext, r,k,E]=V(II,JT);
if (IT~=I)
% Here a cell boundary was crossed in the x-direction
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% Therefore Vel (1,1)~=0
XB=(II-1)*hx; % This is the cell boundary crossed
deltXcross=(XB-XP(1)) /Vel (1,1);
% This is the time travelled after crossing the cell ndry
ed
if (JJ~=J)
% Here a cell boundary was crossed in the y-direction
% Therefore Vel (1,2)~=0
YB=(JJ-1)*hy; % This is the cell boundary crossed
deltYcross=(YB-XP(2)) /Vel(1,2);
ad .

if (II~=I | J3~=J)

XP=XNEW; % Saves the uncorrected position

deltCross=min (deltXcross,deltYcross) ;

KNEW=XP+ (tstep-deltCross) * (VelNext-Vel) ; %Corrects position
ad
% This corrects the position to account for the interval within
% time step that the particle moves with a new velocity due to
% crossing into another cell.

%1f a damain boundary was crossed, stop.

if (XNEW(1)* (XMAX-XNEW(1)) < 0) | (XNEW(2)* (YMAX-XNEW(2)) < 0)
'Hit! Darmain boundary was crossed'
if XNEW(1) <0
P=[0 XP(2)]1;
elseif XNEW(1)>XMAX
P=[XMAX XP( )],
elseif XNEW(2) <
P=[XP(1) 0],
elseif XNEW(2)>YMAX
P=[XP (1) YMAX];
ad
plot (P(1),P(2),'g*', 'MarkerSize', 18)
break
ad

X=[X;XNEW] ; % Append the position at current time level to trajectory array.
fric=ustar(I1I,37);
tamor=sart (r) ;
d=D(II,3J);
wd=5.4*tarpr*fric/Rstar; % Peak vertical speed
vn=6.07*teampr*fric/Rstar; % Peak sweep speed
sweeptime=(1.5*d/vm) /3600; % Characteristic time (in hrs) for surface sweeping
Garma=vm™2*3*d*ganma ; % Parameter fixing clean water fraction
CleanWater=1-.7352/Gamma” (.2) ;
drop;
attrib.ltes=[attributes, E Hs(II,JJ) vm wd sweeptime ClearWater V_T];% SukmerDeptl
Fplot (XNEWN (1) , XNEW (2) , , 'MarkerSize',12); drawnow
end
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plot(X(:,1),X(:,2),'."', '"MarkerSize',12):
plot(X(:,1),X(:,2)) % Connect the dots
hold off
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% Reads in background surface and direction (or camputes it, given the
% wind velocity)

% 'U_c' = current speed matrix of dimension NE,NN. This is updated for each

% of the Nt time instants for which the tracer trajectory is to be camputed.

%

% 'Theta c' is the current direction measured counterclockwise in degrees fram East.
% The organization of this data imitates that for U.c.

% The data given here is artificial, produced by a random fluctuation of
% speed and direction about a mean current of 10an/sec=.lm/sec and a mean direction
% of due North.

U _c = .1*ones(NE,NN) + .03*rand(NE,NN);
U_c = zeros(NE,NN) ;
Theta_c= 90*ones (NE,NN) + 6*rand(NE,NN) ;
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% Read depth files.
% Set initial arrays for the 3 possible layer depths to minimum)
dml=20. *ones (NE, NN) ; % Depth of observed mixed layer array

dbottam=100. *ones (NE,NN) ;% Depth to bottam topography array, assumes no layer
% of interest will be more than 100 meters, in which case this serves as

% an upper bound.

coriolisparam=2*7.2722*10" (-5) *sin (pi*1lat/180) ;
dekman=0.5.*ustar . /coriolisparam;

% Caompare each depth, and select the smallest for each grid point

dl=min (dnl, doottam) ;
Demin (dl, dekman) ; % d has the smallest elements of the 3 possibilities.




2/06/97 2:45 ™M dowrwelling.m Page 1

function y=dowrmelling (r)
% Functional fit to the minimm value of w as as function of r= R/R c-1
% Here R c=2"R O(kappa), or twice the minimm Rc that occurs at L=infinity.

y=5.4.*sqrt (r)
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ep=2*%4.24*g*10" (-2) *U(II,JT); %in an™2/s"3
a=0.085* (3*sigma/rhow)~ (0.6) * (ep) "~ (-.4); % a is drop radius in om.
V_T=0.38* (visc/a) * (chi*981*a"3/visc"2) " (.7); % Terminal velocity in au/s
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% Water friction velocity matrix
% 'ustar' camputed fraom Large & Pond bulk aerodynamic drag coefficient.
% 'U' is the wind speed matrix in m/s.

ustar=.001*sqgrt (1.2* (.49+.065.*U) ) . *U;
if min(min(U))<11

[itest, jtest]=find(U<1l) ;replace=[itest jtest];

ustar (replace(:,1) ,replace(:,2))=.0012*U(replace(:,1),replace(:,2));
ed;
if max(max(U))>25

[ktest, ltest]=find(U>25); Replace=[ktest ltest];

ustar (Replace(:, 1) ,Replace(:,2))=0.0015931*U(Replace(:,1) ,Replace(:,2));
ed;
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function v=R_c{kappa)
% Critial Rayleigh # for constant stress layer of aspect ratio 3

% This is twice the value for aspect ratio infinity.

% kappa=gravity wave wavenumber

den= (1-kappa+kappa.”3./3) -exp (-2. *kappa) . * (1+kappa-kappa.”3./3) ;
V=64 . *kappa."5. /den;
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% 'U' is the wind speed in mv/s.

% 'Us'=surface Stokes drift, assuming either fully-developed seas (P-M),
% where 'P-M' means "Pierson-Moskowitz spectrum”, or developing seas.
% 'Kp'=wavernumber (in m*{-1}) at the peak of the P-M spectrum,
% 'Ip' = length of the waves at the spectral peak, in meters,
% 'Hs' = significant wave height according to Longuet-Higgins.

glokal Us Kp

g=9.8; % acceleration of gravity

nut=.14;% mu(time,U); % The PM spectral parameter according to Milestone 2
%

Us=(0.013) .*U; %This is gppropriate for the P-M fully developed sea.

%

%Us=0.0074.*U./mut.~(1/3); %This is appropriate for the developing sea of Mile2.
Ko=(2*pi.*nut) . "2*g. /U."2;

Lp=(2*pi) . /Kp;

Hs=2.83*sqrt (.0081/5) ./Kp; % See (4) of Mile 16 (with 4 replaced by 2.83)

%
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function v=sweep(r)

% Fit to the maximm of the surface sweeping camponent. Here r=(R-Rc)/Rc,
% where Rc=2*R_0 (kappa)

v=6.07.*sart (r);
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function y=ujet (xr)

% functional fit to carbined ujet data
rm=1.7983;um=.3143; sigma=2*rm;

X=r;

$ul=.1966;x1=18.1672;

xh=x."(.5); x2=r./sigma;

ebl=.04.*exp (x2) ;
y=xh./(.7515+2.3879.*xh+.4595. *xh."2) +xh. *ebl;
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function [vel,r, k]=V(IX,JY)

% Carputes the velocity at the current particle location, in km/hr.

% Imput z=[t x], where x is the vector-valued location.

% Located x within the grid defined by the input data.

global U Theta U _c¢ Theta c ustar Rstar Kp D

theta=pi*Theta (IX,JY) /180; ¥Wind direction, in radians

theta c=pi*Theta c(IX,JY)/180; %Current direction, in radians

k=Kp (IX,JY) *D(IX,JY) ;

r=23.6*Rstar"3*k/R_c(k)-1;

U_IC(IX,JY)=0.035*U(IX,JY) +ustar (IX, JY) *Rstar*ujet (r) ;

% U_LC= Stokes drift + horizontal average Eulerian speed

vel=U_c(IX,JY) * [cos (theta _¢) sin(theta c)]; % Background cu
vel=vel+U_LC(IX,JY) * [cos (theta) sin(theta)]; % 2dds wind forced speed. :
vel=3.6*vel; % Converts m/s to km/hr. (3600 sec/hr)* (10”
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function w=W(z)

% Vertical velocity on plane of surface convergence. z is the vertical
% coordinate, measured fram the surface, so -z is the depth below the air-sea
% interface.

glokal r k fric Rstar

zm=-0.5+.1318*k"2/ (1+1.0187*k"2) ;

den=zm"2* (1+zm) °2;

pl=-(2*zm+1) /den;

p2=(3*zm"2-1) /den;

p3=(3*zm+2) *zm/den;

downspeed=5.4. *sqrt (r) *fric/Rstar;

w=-downspeed. *z.* (pl*z . 2+p2*z+p3) ;
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R R e e R R e R e R R R Rt ot R e RSt S TR A L 1S
% Reads in wind speed data fram external files or internally

% generated randamized wind field.

% Produces friction velocity array.

'U' = current speed matrix of dimension NE,NN. This
is updated for each of the Nt time instants
for which the tracer trajectory is to be camputed.

o° de of o

'Theta' is the wind direction measured counterclockwise
in degrees from East.
Its organization imitates that for U.

d0 0 o°

o

The data given here is artificial, produced by a randam fluctuation of
speed and direction about a mean wind and a mean direction.

oe

o0

U = 10*cnes (NE,NN) + 10*rand (NE,NN)- 10*rand(NE,NN) ;
Theta= 45*ones (NE,NN) + 180*rand (NE,NN) -180*rand (NE, NN) ;
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