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A geostrophic, hydrostatic, frontal or filamentary flow adjusts conservatively to
accommodate a surface gravity wave field with wave-averaged, Stokes-drift vortex
and Coriolis forces in an altered balanced state. In this altered state, the wave-balanced
perturbations have an opposite cross-front symmetry to the original geostrophic state;
e.g. the along-front flow perturbation is odd-symmetric about the frontal centre while
the geostrophic flow is even-symmetric. The adjustment tends to make the flow scale
closer to the deformation radius, and it induces a cross-front shape displacement in the
opposite direction to the overturning effects of wave-aligned down-front and up-front
winds. The ageostrophic, non-hydrostatic, adjusted flow may differ from the initial
flow substantially, with velocity and buoyancy perturbations that extend over a larger
and deeper region than the initial front and Stokes drift. The largest effect occurs
for fronts that are wider than the mixed layer deformation radius and that fill about
two-thirds of a well-mixed surface layer, with the Stokes drift spanning only the
shallowest part of the mixed layer. For even deeper mixed layers, and especially for
thinner or absent mixed layers, the wave-balanced adjustments are not as large.
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1. Introduction
The persistent currents in the ocean are unstable and generate mesoscale eddies. In

turn the eddies have surface currents with horizontal strain fields that act on horizontal
density gradients to form elongated surface fronts and filaments on a smaller spatial
scale (called submesoscale). Fronts have narrow zones with a one-signed density
gradient across their axis, while filaments have a central density extremum on their
axis; both configurations develop along-axis currents in approximately hydrostatic,
geostrophic momentum balance. In the absence of further mesoscale straining and
dissipative processes (e.g. boundary layer turbulence), these are approximately steady
states of flow and density stratification, although they may often be unstable steady
states.

This depiction neglects the surface-layer influence of surface gravity waves that are
also prevalent. The waves induce a surface-trapped Lagrangian mean current in the
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direction of their propagation, called Stokes drift us. Stokes drift provides a vortex
stretching (also called the vortex force) and a Stokes Coriolis force that influence the
evolution of the ambient currents. In addition to these new forces, the scalar fields
whose distribution specifies a geostrophic, hydrostatic flow (i.e. buoyancy and potential
vorticity) are advected by the sum of the Stokes and the wave-averaged Eulerian
velocity. In this paper we extend the geostrophic, hydrostatic balance that is germane
to oceanic submesoscale surface fronts and filaments, so that wave effects can be
incorporated in a generalized balanced stationary state.

The relevant dynamical regime comprises rotating, stratified flows near the top of
the ocean. This defines a regime parameter, the Rossby number R = V/f ` (with V a
characteristic frontal velocity scale, ` its width, and f the Coriolis frequency), that is
typically quite small for basin-scale and mesoscale currents and often is not large even
for submesoscale currents. The density field is usually stably stratified in the upper
ocean – often weakly so in the ‘mixed layer’ created by boundary layer turbulence,
but strongly so in the pycnocline below. Surface waves develop in response to wind
generation, with typical equilibrium conditions characterized by a Stokes drift with
magnitude (Vs) larger than the current speed (V) and vertical length scale (hs) smaller
than the scale of the currents or stratification (h). The parameter ε = Vsh/(f `hs)
quantifies the relative size of the wave-induced effects in the adjusted front.

Conservative geostrophic balance is well accepted as relevant for surface fronts
observed in the ocean, and a conservative generalization to encompass wave balance
should be at least as relevant. It is common diagnostic practice to decompose sub-
inertial surface currents into geostrophic and Ekman-layer components, assuming a
linear superposition of their respectively conservative and non-conservative (turbulent)
dynamics, at least partly justified by a difference in their horizontal scales.
Nevertheless, frontal flows may have significant modifications by turbulent mixing, and
this needs further investigation, for example using large-eddy simulation models with
full wave-averaged dynamics, where the conservative wave-adjusted states obtained
here could be used for consistent initialization. The conservative theory including
surface wave effects presented in this paper is a useful first step on this path.

In § 2 we specify the wave-averaged dynamical equations, then identify steady
frontal and filamentary flow configurations without surface waves, and next derive
the generalized balance relations in the presence of waves. We posit a conservative
adjustment process for the evolution between these two configurations. In § 3 we
perform an asymptotic analysis for small R to explicitly pose the adjustment problem,
and we identify another relevant parameter, ε, which is typically larger than R in
the ocean (figure 1). In § 4 we solve the adjustment problem at leading order in
R, ε � 1, for both frontal and filamentary flows with both uniform stratification and
a surface mixed layer. In § 5 we extend these solutions to finite ε while retaining
R � 1, consistent with the observational estimate in figure 1. We do not consider
cases here with R ∼ 1, despite their importance for the oceanic submesoscale, because
the nonlinear equations that result are less tractable. In § 6 we give a summary and
discussion of some further implications of this phenomenon.

2. Wave-averaged dynamics and frontal balance
In the presence of a steady, horizontally uniform surface gravity wave field,

conservative wave-averaged Boussinesq fluid equations for the current u are

∂tu+ (f ẑ+ ω)× (u+ us)=−∇(π† + 1
2u

2)+ b†ẑ, (2.1a)

∂tb
† + (u+ us) ·∇b† = 0, ∇ ·u= 0 (2.1b)

(Craik & Leibovich 1976; Gjaja & Holm 1996; McWilliams, Restrepo & Lane 2004).
Here f is the Coriolis frequency, and we have made the ‘traditional approximation’
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FIGURE 1. (Colour online) Estimated ratio ε/R ≈ (|us ·u|h) /(|u|2hs) governing the relative
importance of Stokes effects versus nonlinearity. Eulerian velocity (u) is taken as the
AVISO weekly satellite geostrophic velocity or −us (for anti-Stokes flow) if |us| > |u|. The
front/filament depth (h) is estimated as the mixed layer depth from the de Boyer Montégut
et al. (2004) climatology. An exponential fit to the Stokes drift of the upper 9 m projected
onto the AVISO geostrophic velocity provides us · u and hs. Stokes drift is taken from the
Wave Watch 3 simulation described in Webb & Fox-Kemper (2011). u,us, and hs are all for
the year 2000, while h is from a climatology of observations over 1961–2008. The year 2000
average of ε/R is shown.

by neglecting the locally horizontal projection of Earth’s rotation vector; ω = ∇ × u
is the vorticity; us(z) is the waves’ Lagrangian-mean Stokes-drift profile, and u + us

is the total wave-averaged Lagrangian-mean velocity for waves and currents; z is the
vertical coordinate parallel to gravity and the rotation axis, and ẑ is its unit vector;
the total buoyancy field is b† = −(ρ − ρ0)g/ρ0, and π† is a generalized pressure field
that additionally includes the Bernoulli head from averaging over the wave fluctuations,
normalized by a spatially constant mean density ρ0. These equations can be combined
to yield Lagrangian-advective conservation of Ertel potential vorticity q,

∂tq+ (u+ us) ·∇q= 0, q= (f ẑ+ ω) ·∇b†, (2.2)

as a complement to the advective conservation of b† in (2.1).
A well-known and importantly oceanic steady solution of (2.1) is a geostrophic,

hydrostatic, parallel flow, u = v0(x, z)ŷ, with associated π0(x, z) and b0(x, z), when
there are no waves (i.e. us = 0):

fv0 = ∂xπ0, ∂zπ0 = b0 ⇒ f ∂zv0 = ∂xb0. (2.3)

The last relation is derived from the first two and is called thermal wind balance.
Here (x, y, z) and (u, v,w) are Cartesian coordinates and velocities. We assume f is
spatially uniform and oriented in the vertical for simplicity. We further assume that b0

is additive on top of a background stratification profile, b(z)= ∫z N2(z′) dz′, where N(z)
is the buoyancy frequency, which is in hydrostatic balance with a mean background
pressure, π(z). Henceforth we denote by b the dynamical buoyancy increment to b in a
decomposition of the total buoyancy, b† = b+ b (ditto for π). We restrict our attention
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to statically stable flows, with

∂zb
† = N2(z)+ ∂zb(x, z)> 0 (2.4)

at all locations. The associated two-dimensional q field is

q= (f + ∂xv)(N
2 + ∂zb)− ∂zv∂xb= fN2 + N2∂xv + f ∂zb+ J(v, b), (2.5)

where J(α, β)= ∂xα∂zβ − ∂zα∂xβ is the two-dimensional Jacobian differential operator.
In the absence of waves q= q0 is evaluated using v = v0 and b= b0.

This hydrostatic, geostrophic balanced flow has the property that when b0(x, z) and
q0(x, z) are specified, v0 is then fully determined by ‘inversion’ of the balance relations
under the constraint that v0→ 0 in the far field. Invertibility is a general property of
balanced flows (Gent & McWilliams 1983). We now seek to generalize the balance
relations for currents in the presence of surface waves.

Assume there is an obliquely incident, steady, conservative surface gravity wave
field with a Stokes drift velocity, us = (us(z), vs(z), 0). This permits a differently
balanced steady two-dimensional solution of (2.1). In the cross-front direction, it has
velocity u = −us(z). This is an ‘anti-Stokes’ Eulerian flow that opposes the Stokes
drift; because f 6= 0 and the pressure does not vary in y, the only term that can balance
the Stokes Coriolis term (fus) in the ŷ momentum equation is the Eulerian Coriolis
term (fu). The rest of the wave-adjusted two-dimensional flow is the along-front
velocity v = v(x, z) and vertical velocity w = 0; so the Lagrangian circulation in the
cross-frontal plane is zero. The steady x̂, ẑ momentum equations are

−f (v + vs︸︷︷︸
SC

)=−∂xπ+ vs∂xv︸ ︷︷ ︸
SV

, ∂zπ= b+ vs∂zv︸ ︷︷ ︸
SV

⇒ f ∂z(v + vs︸︷︷︸
SC

)= ∂xb− (∂zvs)∂xv︸ ︷︷ ︸
SV

.

(2.6)

No momentum advection is present in these balances. The Stokes Coriolis (SC) and
Stokes vortex (SV) forces now interfere with geostrophic, hydrostatic balance, and
the thermal wind relation and down-front vorticity balance are now unbalanced by
Stokes Coriolis (SC) and Stokes vortex (SV) tilting terms. The ŷ momentum, buoyancy
conservation, and continuity equations in (2.1) are satisfied trivially for b= b(x, z), due
to the anti-Stokes flow and combined advection by Eulerian and Stokes velocities
in (2.1)–(2.2). Notice, however, that the system (2.6) is undetermined, with two
independent equations for three fields, (v,π, b). The associated two-dimensional
q= q(x, z) field is given by (2.5).

We resolve the indeterminacy by posing the wave-balanced front problem as one
of conservative adjustment of the waveless balanced front (2.3), analogous to the
geostrophic adjustment of an initially unbalanced flow. That is, we assume an initial
front v0(x, z) and an adiabatic adjustment to the arrival of the surface waves, reaching
a final steady flow v(x, z) through a transient stage of advective rearrangement of the
material parcels and radiation of internal inertia-gravity waves. This type of analysis
using conservation during material parcel displacement is more fully explained in
McWilliams 2006 (§ 4.3).

This concept also assumes that the spatially and temporally variable current does
not alter the surface waves, consistent with an asymptotic time scale separation and
a small ratio between current and wave propagation speeds (McWilliams et al. 2004).
Lagrangian-advective conservation of q and total buoyancy, b + b, between the initial
and final states is expressed by

q(x, z)= q0(x0, z0), (b+ b)(x, z)= (b+ b0)(x0, z0) (2.7)
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with cross-frontal and vertical parcel displacement fields

(ξ, ζ )(x, z)= (x− x0(x, z), z− z0(x, z)), (2.8)

respectively. Thus, (x0, z0) are the initial coordinates of a parcel in the frontal plane,
and (x, z) are its final coordinates. Volume conservation between initial and final states
requires that the Jacobian of the transformation, |∂(x0, z0)/∂(x, z)|, be equal to unity, or

∂xξ + ∂zζ = J(ξ, ζ ), (2.9)

where the operator J(a, b) = ∂xa∂zb − ∂za∂xb. Equations (2.7)–(2.9) resolve the
indeterminacy of (2.6) to determine (v,π, b) given f ,N2, (v0,π0, b0), and vs. While
other wave-balanced solutions to (2.6) do exist – even such extreme alternatives as
v = 0 or v = −vs – they require that an unspecified, hence arbitrary, non-conservative
process would accompany the wave adjustment, so they are less physically plausible
than the conservative solution chosen here. Exploring simulations of the wave-
averaged equations (2.1) with varying initial conditions, wave forcing, and non-
conservative forces (as in Hamlington et al. 2013), may reveal whether other plausible
end states exist.

We focus on fronts and filaments concentrated both near the mean sea surface at
z = 0 and near a horizontal centre at x = 0; i.e. these are flows in which v0→ 0 as
either z→−∞ or x→±∞. The ocean has a free surface at an elevation of z = η(x).
It is a material surface, so we can write η(x)= η0(x) + ζ(x, η). We Taylor-expand this
condition in z about the mean sea level, i.e. η ≈ η0 + ζ(x, 0). This assumes that the
vertical scale of interior variation within the front is large compared to the surface
elevation variation. The initial frontal flow is in geostrophic balance at the mean sea
level, i.e. fv0(x, 0) = ∂xπ0(x, 0). The total pressure is a constant at the free surface if
the atmospheric pressure is constant on the scale of the front, so

π(x, 0)+ P(x)≈ gη(x), (2.10)

where P is a wave-averaged correction to π in the Taylor series expansion about
mean sea level (McWilliams et al. 2004; § 9.3). In particular, the initial front without
waves satisfies π0(x, 0) = gη0(x). Consistent with the conservative dynamics in (2.1),
no surface boundary condition on tangential stress is included.

3. Asymptotic analysis
The PDE system (2.6)–(2.9) is nonlinear with spatially variable coefficients. A

degree of simplification is achieved with an asymptotic-approximation-based small
Rossby number, R� 1. We denote characteristic scales for the waveless front in (2.3)
by velocity V , horizontal width `, vertical extent h, stratification frequency in the
pycnocline N , and rotation rate f . In the usual way, R = V/f `. The Burger number
is B = (N h/f `)2, and we assume it is O(1). By geostrophic, hydrostatic balance the
pressure and buoyancy scales are Π = Vf ` and B = Vf `/h. Furthermore, because us

often has larger surface speed Vs and smaller vertical scale hs compared to a surface
front, we define the parameters

µ≡ La−2 = Vs/V and λ= h/hs, (3.1)

with the expectation that typically µ, λ> 1, so La 6 1. The parameter La is similar to
the ‘turbulent Langmuir number’ (McWilliams, Sullivan & Moeng 1997), except that
here it is defined in terms of the frontal speed V instead of the friction velocity u∗ that
is relevant to the wind–wave turbulent boundary layer. (These are different from the
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laminar Langmuir number used in viscous theories of Langmuir circulation (Leibovich
1983).)

We non-dimensionalize the variables and equations using the frontal scales.
Henceforth, all quantities are non-dimensional. We decompose the dependent variables
as follows:

v = v0 − µvs + εv′, b= b0 + εb′, π= π0 + επ′, (ξ, ζ )= εR(ξ ′, ζ ′), (3.2)

where the parcel displacements are non-dimensionalized by (`, h). By substitution of
(3.2) into the wave-balanced equations (2.6)–(2.9) and removal of the zeroth-order
balances (2.3), the problem is recast in terms of the primed fields that are the rescaled
adjustment departures from the initial, waveless front plus an anti-Stokes horizontal
velocity. For small ε, the leading terms in the equations are well-ordered with the
choice

ε = µλR = λR
La2
= Vsh

f `hs
. (3.3)

After non-dimensionalization and factoring the leading-order scaling amplitudes, the
wave-balanced equations (2.6)–(2.9) are

Momentum: ∂zv
′ − ∂xb

′ + Ss∂xv0 = εP ′

Potential vorticity: N2∂xv
′ + ∂zb

′ + (∂zN
2)ζ ′ + Ss∂xb0 = εQ′

Buoyancy: b′ + N2ζ ′ = RT ′

Volume: ∂xξ
′ + ∂zζ

′ = εRW ′

 . (3.4)

Here Ss(z) is the normalized along-front Stokes shear ∂zvs(z) (whose dimensional scale
is Vs/hs = µλV/h), and N(z) is now the non-dimensional buoyancy frequency whose
value approaches 1 in the pycnocline. The left sides comprise a forced linear system
for the primed variables with spatially variable coefficients only dependent on N2(z),
which we assume on physical grounds to be a positive smooth function. The right
sides are higher-order corrections, and they can be neglected in the leading-order
asymptotic model. If these further corrections are of interest, we can evaluate their
dependences on the primed variables by successive iterative corrections of the left-side
solution (i.e. Lg′n = R[g′n−1], n = 2, 3, . . . , schematically), with convergence expected
for R and ε not too large. The right sides in (3.4) are defined by

εP ′ =−εSs∂xv
′ ∼ ε, (3.5a)

εQ′ =−εSs∂xb
′ −R

(
J(v0, b′)+ J(v′, b0)+ εJ(v′, b′)

)
+ 1
εR

∫ z−εRζ ′

z

[
∂zN

2(z′)− ∂zN
2(z)
]

dz′

+ 1
ε

(
N2∂xv0 + ∂zb0 +RJ(v0, b0)

) |(x−εRξ ′,z−εRζ ′)
(x,z) ∼ ε,R, (3.5b)

RT ′ = 1
εR

∫ z−εRζ ′

z

[
N2(z′)− N2(z)

]
dz′ + 1

ε
b0

∣∣∣∣(x−εRξ ′,z−εRζ ′)

(x,z)

∼R (3.5c)

εRW ′ = εRJ(ξ ′, ζ ′)∼ εR. (3.5d)

Here we use the notation p|ba = p(b) − p(a). For each right-side term we indicate its
leading asymptotic order in R and ε with the ∼ symbol at the end. The subtraction
terms in the integrands in Q′ and T ′ (i.e.

∫
∂zN2(z) dz′ and

∫
N2(z) dz′, respectively)
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are identical to the left-side terms proportional to ζ ′ in their corresponding second and
third equations in (3.4); the use of these identities allows us to separate leading- and
higher-order contributions.

For localized initial flows in v0(x, z) (§ 2), we choose far-field boundary conditions
such that the adjustment fluctuations are vanishingly small,

v′, b′, ζ ′, ∂xξ
′→ 0 as x→±∞, z→−∞. (3.6)

These include the possibility of a horizontally uniform displacement profile ξ ′(z) in the
horizontal far field. As a further localization condition, we constrain the fluctuations to
have zero overall horizontal displacement by setting ξ ′(∞, z) + ξ ′(−∞, z) = 0 at all
depths. In § 4 we will see that this determines an x-integration constant for each z.

With a dimensional geostrophic frontal scale of fV`/g for η, the non-dimensional
surface elevation anomaly (i.e. minus an area average) is

η(x)≈ η0(x)+ εBextζ
′(x, 0), Bext = gh

f 2`2
(3.7)

after linearization about the mean sea level. Bext is an ‘external’ Burger number
based on the air-sea density difference (rather than the internal density stratification
in B), and it has a very large value for the ` values associated with mesoscale
and submesoscale flows, i.e. B = (Lext/`)

2 with Lext an external deformation radius.
Furthermore, the free surface condition of constant pressure (2.10) is

π0 + επ′ + ε
λ
P = η = η0 + εBextζ

′ at z= 0 (3.8)

after non-dimensionalization by the geostrophic frontal scales, substitution of (3.2),
and recognition that P has a dimensional scale of VsV for the wave–current
interaction component that is spatially variable in the present problem (McWilliams
et al. 2004). This has a frontal hydrostatic balance of π0(x, 0) = η0(x) without waves,
but it is ill-ordered with waves for the adjustment fields at O(ε) when Bext � 1.
This formally implies that, in the x-momentum balance for the adjustment fields, the
pressure gradient ∂xπ

′ at the surface associated with ζ ′ is large compared to the v′

Coriolis force by the factor Bext . Therefore, to avoid an ill-ordered balance with a
non-trivial pressure force, we must choose a surface boundary condition of

ζ ′ = 0 at z= 0. (3.9)

This is a ‘rigid lid’ approximation for the adjustment fields. In the wave-averaged
equations for the present problem, the effects of surface gravity waves appear
via the externally-imposed Stokes drift, and therefore a wave-averaged free surface
displacement is not essential to include these effects.

Inserting (3.9) into the buoyancy conservation relation in (3.4)–(3.5), we obtain the
equivalent surface condition on b′,

b′(x, 0)=RT ′(x, 0)= 1
ε

b0

∣∣∣∣(x−εRξ ′(x,0),0)

(x,0)

∼R. (3.10)

The static stability constraint (2.4) has the non-dimensional form of

B

R
N2(z)+ ∂zb0(x, z)+ ε∂zb

′(x, z)> 0. (3.11)
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4. Leading-order wave adjustment
We analyse the forced linear system (3.4) with zero right sides that is the balanced

frontal adjustment to the surface gravity waves to leading order in ε,R � 1. We
proceed by eliminating the other fields in terms of b′. The buoyancy conservation
relation gives

ζ ′ =− 1
N2

b′. (4.1)

The continuity relation implies a two-dimensional non-divergent displacement vector,
so we define a rotational potential with ξ ′ =−∂zχ

′, ζ ′ = ∂xχ
′, and from (4.1),

χ ′(x, z)=− 1
N2

∫ x

0
b′(x′, z) dx′ + χ ′0(z). (4.2)

Using the displacement localization condition after (3.6), we determine the reference
profile as

χ ′0(z)=
1

2N2

∫ ∞
0

(
b′(x′, z)− b′(−x′, z)

)
dx′. (4.3)

We substitute for ζ ′ in the potential vorticity relation and obtain

∂xv
′ + ∂z

(
b′

N2

)
=− Ss

N2
∂xb0. (4.4)

Finally, we eliminate v′ between the thermal wind imbalance relation (2.6) and (4.4) to
obtain a single, second-order, elliptic equation for b′:

∂2
x b′ + ∂2

z

(
b′

N2

)
=F ′ ≡ Ss∂

2
x v0 − ∂z

(
Ss

N2
∂zv0

)
. (4.5)

The right-side forcing is from the vortex force. The left-side operator is well-
conditioned because N2 > 0 by assumption. The boundary conditions for (4.5) from
(3.6) and (3.10) are b′ = 0 at z = 0 and b′→ 0 in the far field. Once b′ is known, we
evaluate χ ′ from (4.2) and v′ from the x-integral of (4.4),

v′ =−
∫ x

−∞

[
∂z

(
b′

N2

)
+ Ss

N2
∂zv0

]
dx′, (4.6)

using the boundary condition v′→ 0 as x→−∞. The boundary conditions for (4.5)
are b′→ 0 as z→−∞ and x→±∞, as for the frontal flow itself, plus the surface
condition, b′ = 0 at z = 0. Alternatively, a similar elliptic equation for v′ alone can be
found, but the surface boundary condition is not as simple as for b′.

The leading-order system for the wave-balanced adjustment is linear in the
adjustment fields, us and v0. In particular, a change in sign for either us or v0

yields oppositely signed adjustment fields. If v0(x, z) has a simple reflection symmetry
about x = 0 – i.e. even for a front and odd for a filament – then b0 has the opposite
symmetry by geostrophic balance. The leading-order system in this section also has
symmetric solutions for the adjustment fields. For a symmetric front, v′, χ ′, and
ξ ′ have odd symmetry while b′ and ζ ′ have even symmetry, and vice versa for a
symmetric filament. With the higher-order corrections (§ 5), these symmetries do not
hold.
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4.1. Constant N2

In the special case of N2(z) constant with depth (i.e. non-dimensional N = B1/2),
the boundary value problem (4.5) is a two-dimensional Poisson equation with a
homogeneous Dirichlet boundary condition. The solution for this in a lower half-plane
domain geometry is known in terms of its Green’s function (Guenther & Lee 1996):

b′ = 1
4π

∫ ∞
−∞

dx̃
∫ 0

−∞
(B1/2 dz̃) ln

[
r2(x̃, z̃)

r2(x̃,−z̃)

]
F ′(x̃, z̃), (4.7)

with r2 = (x− x̃)2 +B(z− z̃)2. The Green’s function is ln[r] in an unbounded domain,
and the combination ln[r2(x̃, z̃)] − ln[r2(x̃,−z̃)] satisfies the boundary condition of
b′ = 0 at z = 0 through the use of an image point above the z = 0 surface. In this
leading-order, constant-N limit, the only parameters are B and λ, both here and in
the diagnostic formulas (4.2) for χ ′ and (4.6) for v′. We evaluate (4.7) by numerical
quadrature using second-order discretization.

The static stability constraint (3.11) sets a limit on the minimum allowable
stratification. For example, with constant stratification and the frontal flow defined
in (4.8) without any wave adjustment, this lower limit is B >

√
π/2R. This limitation

on the stratification, frontal flow, and wave adjustment formally does not apply at
leading order as R, ε→ 0, but for finite parameter values and a given frontal flow
it will limit both the minimum N2 and a wave-response amplitude consistent with
conservative adjustment.

4.1.1. Front
We define a simple initial frontal flow and balanced buoyancy anomaly by

v0(x, z)= e−x2+z, b0(x, z)=
√
π

2
erf[x]ez. (4.8)

This is a step in b0 towards lighter water near the surface for x > 0 and a positive,
surface-trapped jet in v0 (figure 2). The maximum velocity is equal to one at (0, 0),
and the maximum b0 is

√
π/2 = 0.89 at (∞, 0); v0 is even in x, and b0 is odd.

With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(−x̃, z̃)r2(x̃,−z̃)r2(−x̃,−z̃).

Without loss of generality because of the sign-symmetry of Ss in (4.5) and (4.6),
we define the Stokes drift with a positive down-front component (vs > 0). The Stokes
shear profile is taken to be

Ss(z)= eλz. (4.9)

This shape corresponds to a monochromatic surface wave with dimensional wavelength
4πhs, and it is less surface-intensified than the Stokes drift of a realistic wave spectrum
(Webb & Fox-Kemper 2011). The sign of the adjustment fields would switch with a
change in the sign of vs and Ss. This formula implies that in defining ε we choose
the Stokes velocity scale Vs in (3.3) as equal to the surface value of the along-axis
component of Stokes drift vs. As remarked just above (2.6), the cross-axis Stokes
component us simply induces an anti-Stokes flow u during the adjustment. If the
gravity wave field is perpendicular to the initial flow, then the associated vortex force
is zero; the Stokes Coriolis force is cancelled by the anti-Stokes flow u′ = −us; and
v′ = b′ = 0 after the adjustment, hence v = v0 and b= b0.

A frontal solution is shown in figure 3 for B = 1 and λ = 2 and constant
stratification (N2 = 1). The adjustment in b′ is a positive monopole centred on the
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FIGURE 2. Initial frontal fields b0(x, z) and v0(x, z) from (4.8). The contours have an interval
of 0.1 and straddle zero. Positive and negative contours are solid and dashed, respectively.

front at a depth of the base of the Stokes flow layer, z ≈ −λ−1. Its shape is broadly
like that of v0 except that b′ vanishes toward the surface to satisfy the boundary
condition. The accompanying v′ has subsurface extrema at a similar depth, but it is a
negative (up-front) flow on the light side of the front (x> 0) and positive (down-front)
flow on the dense side, with weak opposing flows in a very thin layer closer to the
centre of the front. When added to the initial front (v0, b0), the adjustment has the
effect of shifting the centre of the front leftward toward the dense side beneath the
surface, in association with the Stokes flow that has a positive along-front component.
Because waves often are aligned with winds, the leading-order cross-front shift has the
curious effect that it opposes the Ekman overturning circulation driven by down-front
winds (Thomas 2005). Thus, conservative wave adjustment may act to destabilize the
front when the wind tends to stabilize it, and stabilize it when the wind tends to
destabilize.

The adjustment displacement field has an anti-symmetric χ ′, with convergent
inward displacements within the Stokes flow layer coming from the sides; downward
displacements in the centre; and divergent (outward and downward) displacements at
depth. Because of the even horizontal symmetry in b′ for a front, χ ′0 = 0 from (4.3).
In the horizontal far field, χ ′(z) and ξ ′(z) 6= 0, but they are horizontally uniform and
have opposite sign on the two sides, with no net horizontal displacement across the
front. The sense of v′ is consistent with a Coriolis torque, ∂zv

′, forced by the frontal
torque, −Ss∂xv0, associated with the cross-front Stokes vortex force in the the first
equation in (3.4). The buoyancy torque, −∂xb′, partly opposes the v′ flow response,
but not to the full extent of thermal wind balance. Below the Stokes flow layer, the
forcing term in (4.5) becomes very small, and thermal wind balance holds. However,
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FIGURE 3. Wave-adjustment fields for the front (4.8) with B = 1 and λ = 2 and constant N:
(a) b′(x, z); (b) v′(x, z); (c) χ ′(x, z). The fields are normalized by their extreme magnitudes
(i.e. 0.21, 0.12, and 0.25, respectively) and contoured with an interval of 0.1 straddling zero.
Positive and negative contours are solid and dashed, respectively. The along-front Stokes drift
is directed toward positive y. All signs reverse if the along-front Stokes drift is reversed.

the wave-adjusted buoyancy peaks near z = 1/λ, and it decays slowly below, as does
the wave-adjusted velocity. The pattern in b′ relates to the vertical displacement ζ ′

as buoyancy conservation of the mean stratification b(z), as expressed in (4.1); the
displacement contributions from b0(x, z) would arise at O(R).

Where the right-side forcing is small, the homogeneous b′ and v′ solutions of the
left-side elliptic operator (4.5) that decay to zero in the far field have the form of
r−n times either cos[nθ ] or sin[nθ ], where r and θ are cylindrical coordinates in the
(x,B1/2z) plane. For the frontal flow, as can be derived by expanding the logarithmic
argument in (4.7) for large r, the leading-order solutions vary as the n= 1 solution,

b′ ∼ sin[θ ]
r
= B1/2z

r2
, v′ ∼ cos[θ ]

r
= x

r2
. (4.10)
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This indicates a long reach, ∼1/r, in the frontal adjustment fields even though the
Stokes drift forcing decays exponentially faster.

The patterns in the wave adjustment fields are essentially invariant across parameter
changes in B and λ, though their amplitudes and scales do change. Here we
summarize these dependences qualitatively, and then do so more explicitly with the
semi-separable approximation in § 4.3. For different B values and fixed λ (not shown),
the wave adjustment process behaves similarly to the familiar geostrophic adjustment
process in response to an initially unbalanced state (McWilliams 2006). For small
B (i.e. a front wider than deformation radius, ` >N h/f in dimensional quantities),
the adjustment patterns are similar to figure 3, but they extend deeper in z while
contracting slightly in x. As B decreases, the velocity adjustment v′ magnitude is
larger, while the buoyancy adjustment b′ magnitude changes only slightly. That is,
the wave-induced adjustment tends to make the final frontal structure have a larger
effective B value, closer to unity. For large B, the opposite happens: the adjustment
fields have a slightly larger x scale, smaller z scale, bigger b′, and similar v′, indicating
a decrease in the effective B value of the front after adjustment. Thus, the width
of the wave-adjusted front is closer to the upper-ocean deformation radius than is
the initial front. For different λ values and fixed B (also not shown), the subsurface
extrema shift vertically according to the scale λ−1, and the amplitudes of b′ and v′

decrease as λ increases (due to the lesser vertical extent of F ′ in the z̃ integration
in (4.7)).

4.1.2. Filament
We define a simple initial cold filamentary flow and buoyancy anomaly by

v0(x, z)= c0xe−x2+z, b0(x, z)=−c0

2
e−x2+z. (4.11)

This is a negative b0 anomaly at the surface, with a pair of opposite jets on either
side (figure 4). With c0 =

√
2e0.5 = 2.33, the maximum velocity is equal to one at

(1/
√

2, 0), and the minimum in b0 is −1.17 at (0, 0); v0 is odd in x, and b0 is
even. With this symmetry the evaluation of (4.7) can be shortened by restricting the
x̃ integration to the positive half-line and replacing the logarithmic argument with
r2(x̃, z̃)r2(−x̃,−z̃)r2(x̃,−z̃)r2(−x̃, z̃). We use the same Stokes profile (4.9).

The adjustment fields have very different shapes for a filament (figure 5). Again
b′, v′, and χ ′ have subsurface extrema at the base of the Stokes flow layer, in the
sense of Coriolis torque balancing vortex-force torque. Here v′ is primarily a positive
monopole centred on the filament with weak negative lobes on each side, while b′ is
a dipole that is lighter on the right side and denser on the left side. The overall shape
of b′ is topologically similar to v0 except for weakening to zero at the surface. When
added to the primary filament fields, these adjustment fields have the effect of moving
the subsurface centre of the filament to the left in x. The displacement field χ ′ is a
clockwise movement around the filament, rightward within the Stokes flow layer and
leftward in a deep layer underneath. Once again, this displacement pattern opposes
the sense of the Ekman buoyancy flux overturning, if winds were aligned with the
waves. The localization condition (4.3) gives χ ′0(z) 6= 0 because b′ is odd symmetric
about x = 0 in a filament, and this implies that χ ′, ξ ′→ 0 as x→±∞. In all the
fields, the filamentary far-field adjustment is more confined than for a front, with a
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FIGURE 4. Initial cold filamentary fields b0(x, z) and v0(x, z) from (4.11). The contours have
an interval of 0.1 and straddle zero. Positive and negative contours are solid and dashed,
respectively.

dominant n= 2 structure of

b′ ∼ sin[2θ ]
r2
= 2B1/2xz

r4
, v′ ∼ cos[2θ ]

r
= x2 −Bz2

r4
, (4.12)

i.e. ∼1/r2 as r→∞. Even so, the decay is much slower than the decay of Ss or the
initial filament fields. The B and λ dependences for the filament are similar to those
for the front (see also § 4.3).

4.2. Variable N2(z)

We choose canonical upper-ocean stratification as a simple, monotonic profile for a
nearly mixed layer above a broad pycnocline:

N2(z)=Bm + B −Bm

2
(1− tanh[λm(z+ hm)]). (4.13)

Within the mixed layer, N2 ≈Bm, and at depth N2→B. For a mixed layer above a
sharp transition to the pycnocline at z≈−hm, we take 0 6 Bm�B and λmhm� 1 for
a sharp transition between the mixed layer and pycnocline.

The PDE system (3.4) and its boundary conditions are solved numerically in
the limit of εR → 0 by expanding in Chebyshev basis functions algebraically
mapped from x′ ∈ [−1, 1] to x ∈ [−∞,∞] using basis functions TBn(x) and from
z′ ∈ [−1, 1] to z ∈ [−∞, 0] using TLn(z), as laid out by Boyd (2000). A similar
infinite half-plane approach was used for atmospheric linear instability calculations
by Lin & Pierrehumbert (1988). This representation is well suited to localized
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FIGURE 5. Wave-adjustment fields for the cold filament (4.11) with B = 1 and λ = 2
and constant N: (a) b′(x, z); (b) v′(x, z); (c) χ ′(x, z). The fields are normalized by their
extreme magnitudes (i.e. 0.21, 0.24, and 0.24, respectively) and contoured with interval of 0.1
straddling zero. Positive and negative contours are solid and dashed, respectively, when the
along-filament Stokes drift is directed toward positive y.

functions that vanish in the far field. The mapping functions are x = Lxx′/
√

1− x′2

and z = −Lz(1 + z′)/(1 − z′) and the collocation points are at x′i = cos(πi/M)
and z′j = cos(πj/N), with their respective truncation numbers of M and N ranging
from 30 to 60 depending on the parameter choices. Results presented here are
qualitatively robust to doubling the truncation numbers and varying the mapping
function coefficients (Lx = 2, Lz = 4) by a factor of 3. The primary advantages to this
approach are: (i) spectral accuracy in differentiation; (ii) high collocation resolution
near the upper boundary where the Stokes drift varies rapidly; (iii) high collocation
resolution near the centre of the front or filament feature; and (iv) bounded behaviour
at infinity. The stratification N2(z) and the pseudo-spectral collocation of right-side
‘forcing’ terms are evaluated on the Gauss–Lobatto ‘endpoints’ grid. Some care is
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FIGURE 6. Wave-adjustment fields for the front (4.8) with λ = 2 and a mixed layer N(z)
from (4.13) with Bm = 0.01, hm = 1.7, and λm = 3 at leading order in (ε,R): (a) b′(x, z);
(b) v′(x, z). The fields are normalized by their extreme magnitudes (i.e. 9.1 and 7.1,
respectively) and contoured with an interval of 0.1 straddling zero. Positive and negative
contours are solid and dashed, respectively, when the along-filament Stokes drift is directed
toward positive y.

required in evaluating first-order relations, such as (4.6), because two endpoints in x
are located at infinity. For this reason, first-order equation solutions must be performed
in (x′, z′) and then transformed to (x, z) by a change of variables. The method in § 5
employs the same rescaled coordinates using an iterative method when ε 6= 0.

Frontal and filamentary adjustment solutions to the leading-order approximation to
(3.4) with variable N(z) show a remarkable degree of pattern similarity to the constant-
N solutions in § 4.1, even across a wide range of the stratification profile parameters
in (4.13). N2(z) deforms and modulates the adjustment patterns but essentially does not
change their gross shape; e.g. b′(x, z) is a positive, subsurface monopole for a front
with either a uniform or mixed-layer stratification profile. In general terms, a small
mixed-layer value of Bm widens and deepens the adjustment response, analogous to
the overall B dependence for constant N. This is a modest effect for hm < 1 (a shallow
mixed layer compared to frontal depth scale), but it becomes quite strong for hm > 1
and Bm � 1, i.e. fronts shallower than the mixed layer but wider than the mixed
layer deformation radius. The perturbation fields (b′, v′) are wider with a mixed layer
(figures 6–7) than with the interior stratification uniform up to the surface (figures 3
and 5). In both fronts and filaments, v′(x, z) is strong with weak vertical shear all
across the mixed layer, and b′(x, z) amplifies from zero at the surface to a strong
response within the transition zone between the mixed layer and pycnocline (figures 6
and 7 for Bm = 0.01 and hm = 1.7). In an initial value problem, where waves arrive
at a front suddenly and then adjustment follows over the next inertial periods, this
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FIGURE 7. Wave-adjustment fields for the cold filament (4.11) with λ = 2 and a mixed
layer N(z) from (4.13) with Bm = 0.01, hm = 1.7, and λm = 3 at leading order in (ε,R):
(a) b′(x, z); (b) v′(x, z). The fields are normalized by their extreme magnitudes (i.e. 4.6 and
10.4, respectively) and contoured with an interval of 0.1 straddling zero. Positive and negative
contours are solid and dashed, respectively, when the along-filament Stokes drift is directed
toward positive y.

buoyancy perturbation is likely to generate very strong internal waves radiating along
the mixed layer base. The adjusted-state displacement fields (not shown) are quite
similar in shape to the constant-N solutions (§ 4.1) in spite of the deep mixed layer.
With these particular parameter values, the adjustment amplitudes are nearly 100 times
stronger than without a mixed layer (cf. figures 3 and 5 for Bm =B = 1).

4.3. Semi-separable approximation
In this subsection we provide an approximate explanation and parameter analysis
of the wave-adjustment amplification with N(z) demonstrated in § 4.2. Readers more
interested in the rigorous solutions of the adjustment problem may skip ahead to § 5.

The leading-order, linear system (3.4) with zero right sides does not have exactly
(x, z)-separable solutions even when the forcing terms are separable (as with the
profiles (4.8), (4.9) and (4.11)). But they are close to having separable solutions, and
we can obtain useful approximate solutions that we call semi-separable. Their utility is
as a simpler explanation of the frontal and filamentary solutions above.

For the frontal case with the Ss, v0 and b0 profiles above, we define two-dimensional
b′, v′(x, z) solution forms by

b′ ≈ b̃(z) e−x2
, v′ ≈ ṽ(z) (−2xe−x2

). (4.14)

We substitute these into (3.4) and delete terms proportional to x2 exp[−x2], i.e. we
make an approximation based on small x to obtain a one-dimensional system
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FIGURE 8. A comparison of frontal wave-adjustment profiles for a front with B = 1 and
λ = 2 and constant N (cf. figure 3): the one-dimensional (1D) semi-separable profiles, b̃(z)
(a) and ṽ(z) (b), and their two-dimensional (2D) counterparts, b′(0, z) and
limx→0[v′(x, z)/(−2x)], as determined from (4.14).

for b̃, ṽ(z), [
∂2

z

(
1

N2

)
− 2
]

b̃=−2e(1+λ)z − ∂z

(
e(1+λ)z

N2

)
, (4.15a)

ṽ = 1
2

(
∂z

(
b̃

N2

)
+ e(1+λ)z

N2

)
, (4.15b)

with boundary conditions b̃(0)= 0 and vanishing amplitudes as z→−∞.
For constant buoyancy frequency, N(z)=B, we have closed-form analytic solutions

to (4.15):

b̃(z)= 1+ λ+ 2B

(1+ λ)2 − 2B

(
e
√

2Bz − e(1+λ)z
)
, (4.16a)

ṽ(z)= 1+ λ+ 2B√
2B((1+ λ)2 − 2B)

e
√

2Bz − 2+ λ
(1+ λ)2 − 2B

e(1+λ)z. (4.16b)

Both fields exhibit two vertical decay rates: 1 + λ associated with the frontal and
Stokes flows and

√
2B associated with the vertical stratification. These show the

contraction of the vertical scale of the adjustment for a shallower Stokes profile (larger
λ) and a stronger stratification (larger B), and vice versa, as described in § 4.1.1.
Here b̃(z) is always positive and convex in shape with a subsurface maximum; ṽ(z)
is usually negative at the surface (note that this occurs in the thin surface layer of
reverse flow in figure 3) except when B < 0.5, but ṽ(z) is always positive at depth, so
ṽ too has a subsurface maximum. (Note that the zero of the denominators in (4.16) at√

2B = λ+ 1 is not a singularity.)
How accurate is the semi-separable solution? We assess it compared to the complete

solution (4.7) in figure 8 at the centre of the front. It is very accurate near the surface,
and it is reasonably accurate, within 10 % or so, down through the peaks in b′ and
z′ near the base of the frontal flow. However, it becomes inaccurate at depth, with
algebraic decay in z in the complete solution (4.10) and exponential decay in the
semi-separable one (4.16). This is a consequence of the non-locality in the elliptical
boundary-value problem (4.5) and its Green’s function solution (4.7): in the upper



Wave-balanced fronts and filaments 481

0.2

0.05

0.150.4

5

4

3

2

1

4 6 8 102

5

4

3

2

1

4 6 8 102

5

4

3

2

1

4 6 8 102

5

4

3

2

1

4 6 8 102

–0.3

–0.5

–0.6

–0.4

(a) (b)

(c) (d )

FIGURE 9. Vertical profile maxima for the semi-separable frontal adjustment solutions (4.16)
with constant N. Top row: max[b̃] (a) and max[ṽ] (b). For both maxima the contour interval is
0.05. Bottom row: positions of the maxima, zb (c) and zv (d). The contour interval is 0.1.

region for b′(x, z) with small x, the important contributions from the forcing integrand,
F ′(x̃, z̃), are ones with small r associated with small x̃, so the approximation is
accurate, whereas at depth, both small and intermediate values of x̃ have very nearly
the same r values, and the small x̃ approximation is not accurate. Similarly, the far
field in x is inaccurately approximated in the semi-separable model. However, the
larger adjustment amplitudes are in the upper regions not far from the front centre, and
thus the accuracy of b̃(z) and ṽ(z) is sufficient to explain these primary features of
b′(x, z) and v′(x, z).

The parameter dependences of the subsurface maxima implied by the semi-separable
solution (4.16) for constant N are graphically demonstrated in figure 9. Here b̃ is
larger for larger B and smaller λ, except for a small increase as B→ 0; ṽ increases
as B decreases, with a much weaker dependence on λ. The depths of the maxima,
zb and zv respectively, mostly decrease with increasing B and λ. Both adjustment
amplitudes decrease ∼1/λ for large λ; however, recall from (3.3) that the prefactor
ε is ∝ λ, so in this limit the non-dimensional wave adjustment amplitudes vary as
ε(b′, v′) ∼ µR, independent of λ. This shows that even a very shallow Stokes shear
profile still has an adjustment effect ∝ µ= La−2, the Stokes drift amplitude.

For the most part, all of these adjustment properties vary within moderate ranges.
An exception is for small B where ṽ(z) becomes very large and slowly decays
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FIGURE 10. Vertical profiles of the semi-separable, frontal-adjustment response b̃(z) and
ṽ(z) from (4.15) with a mixed layer N(z) from (4.13) with Bm = 0.01, λm = 3, and hm values
ranging from 0 to 3 in increments of 0.25 with successively deeper response profiles. In this
set the largest amplitudes occur at hm = 1.5.

with depth. Here we can further approximate (4.16) by

b̃(z)≈ e
√

2Bz

1+ λ, ṽ(z)≈ e
√

2Bz

√
2B(1+ λ), (4.17)

except within a small distance ∼(1+ λ)−1 of the surface; ṽ grows without limit as
the stratification weakens (B→ 0), even though the amplitude of b̃ remains bounded.
The static stability constraint (3.11) implies a lower limit on B that precludes taking
the limit N2→ 0 for a fixed R > 0. This constraint is likely to be most severe in the
mixed layer where N2 is smallest. Nevertheless, the depths of the subsurface maxima,
derived from the full solution (4.16), remain fairly close to the surface. The depth of
the velocity maximum varies as zv→−ln[2+ λ]/(1+ λ) < 0, which is independent of
B as B→ 0. The depth of the buoyancy maximum varies as zb→ ln[B]/2(1+λ) < 0,
which is only weakly deepening in this small-B limit.

For a uniformly stratified ocean, weak stratification does not usually occur where
fronts and filaments arise, so the preceding limit is not very realistic. However, fronts
and filaments are common in the presence of a weakly stratified mixed layer above
a pycnocline, as represented in the N(z) profile (4.13), and we have seen that this
situation has a large and deep adjustment response (figures 3–5). To understand this,
we use the simplified semi-separable approximation (4.15), although now no explicit
analytic solutions are known for b̃(z) and ṽ(z), so the solution procedure is numerical.
It is solved with second-order finite differences integrated upward in z from below. We
add together the inhomogeneous solution that vanishes in the far field plus a multiple
of the homogeneous solution with far-field decay ∝ exp[√2Bz] to satisfy the surface
boundary condition, b̃(0) = 0. We again confirm approximate accuracy compared to
the complete leading-order solution of (3.4) near the frontal centre and in the depth
ranges around and above the subsurface maxima in b′ and v′ (similar to figure 8).

With a mixed layer N(z), the adjustment responses in both b̃ and z̃ increase
significantly with increasing hm up to a value somewhat larger than the frontal depth
(non-dimensionally equal to 1); in figure 10 the maximum response is at hm = 1.5.
With further increases in hm, the response amplitudes slowly decrease although their
vertical extent continues to deepen up to the point with hm ≈ 1/

√
2Bm� 1 where the
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mixed layer looks uniformly stratified, as in (4.17). A prescription for this ‘sweet spot’
value in hm comes from a vertical integral of the second relation in (4.15):∫ 0

−∞
dzṽ = 1

2

∫ 0

−∞
dz

e(1+λ)z

N2(z)
, (4.18)

using the zero boundary conditions on b̃. For small Bm and hm neither very large nor
very small, ṽ(z) has the ‘mixed layer’ structure evident in figures 6, 7 and 10, viz. a
nearly uniform amplitude ≈ṽm for z > −hm and decaying ∼e

√
2Bz underneath. This

structural approximation to ṽ(z) is easily integrated for the left side of (4.18), yielding
a depth factor of hm + 1/

√
2B that can be divided through to obtain

ṽm ≈ 1

2hm +
√

2/B

∫ 0

−∞
dz

e(1+λ)z

N2(z)
, (4.19)

which is fully specified in terms of the stratification function (4.13) and parameters
B,Bm, λ, λm, and hm. In particular, for large hm, we can approximate (4.19) by
assuming N2(z)≈Bm in the integral, to obtain the explicit formula

ṽm ≈ 1

2hm +
√

2/B

1
(1+ λ)Bm

. (4.20)

This approximate formula agrees well with the large-hm end of the curve plotted in
figure 11.

Indeed, ṽm does have a sweet spot in hm, which we define as ṽ∗ = maxz,hm[ṽ(z, hm)].
In figure 11, ṽm(hm) has a rather broad peak in hm around an order-one value, here
h∗ = 1.5. The asymptotic scaling of ṽm is ∼1/

√
Bm for large hm and small Bm. The

right side of (4.19) scales as ∼1/(hmBm), which is consistent with the constant-N
solution (4.17) for hm ∼ 1/

√
Bm. Thus, the sweet spot response with order-one hm

is much stronger than can be explained just by the weakness of the stratification
alone. The sweet-spot amplitude ṽ∗ is most strongly a function of the mixed-layer
stratification, with ṽ∗ ∼ 1/Bm, which grows without limit as the stratification vanishes.
The sweet spot is a more modest function of the other parameters in the most common
oceanic regime: h∗ and ṽ∗ decrease as λ > 1 increases; h∗ decreases and ṽ∗ increases
slightly as λm > 1 increases; and h∗ and ṽ∗ both decrease as B ∼ 1 increases.

Around the sweet spot, b̃(z) is much weaker than ṽ(z) within the mixed layer
(figures 6, 7 and 10). It is smaller by a factor ∼√2Bm � 1, consistent with the
homogeneous solution component in a uniform stratification N2 = Bm (see (4.16)).
Entering into the pycnocline, however, b̃(z) grows rapidly to approximately match vm

because of thermal wind balance beneath the frontal and Stokes flows; i.e. ∂xb′ ≈ ∂zv
′

or b̃≈ ∂zṽ ≈
√

2Bvm ∼ vm.
In the leading-order adjustment model, a filament has the opposite x-symmetry to

a front. It too can be analysed in a semi-separable approximation, in this case with
b′ ∝ xe−x2

and v′ ∝ e−x2
near the centre (see the patterns in figures 5 and 7). The

resulting adjustment response equations have the same functional form as (4.15) with
only a difference in the coefficients. So all the qualitative conclusions about parameter
dependences and vertical structure are essentially the same for both filaments and
fronts.

In the asymptotic ordering of the wave-balanced fields (3.2), the perturbation fields
were seen to be O(ε) compared to the initial fields. Section 1 and figure 1 indicate
that this parameter is often larger than the Rossby number, so wave adjustment may
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FIGURE 11. The wave-adjustment velocity amplitude ṽm from (4.13), (4.15), or
approximately from (4.19), as a function of mixed layer depth hm for a front with
λ= 2,B = 1,Bm = 0.01, and λm = 3. The maximum is defined as ṽ∗ at h∗.

be important even when R is small. The preceding sections show that the perturbation
field accompanying this scale factor varies substantially with the stratification. In the
constant stratification cases shown, the peak in b′ is O(0.2), substantially reducing the
magnitude of the wave adjustment. However, in the sweet-spot examples with variable
N2(z), the perturbation fields peak near O(5) in locations somewhat remote from the
v0 flow. These assessments were made by neglecting the right-hand sides of (3.4), yet
they seem robust for determining magnitudes of the response. The next section shows
that considering ε ∼ 1,R� 1 changes the shape but minimally impacts the magnitude
of the wave adjustment responses.

5. Finite-ε wave adjustment
As remarked in § 3, we can solve (3.4)–(3.5) by iteration with an expectation of

convergence for small enough ε and R. Rather than do so generally, we focus on
a particular limit of R � ε . 1. This is the expected oceanic regime for nearly
geostrophic fronts with strong surface waves, µλ� 1, and it is empirically supported
by figure 1. This greatly simplifies the general solution procedure and provides an
indication of the effects of finite ε. While ε is a formal ordering parameter in
(3.2)–(3.3), it does not appear explicitly in the leading-order model (§ 4), and it
should be understood here as representative of the relative size of the wave-induced
adjustment fields. In the case of large non-dimensional adjustment amplitude (e.g. near
a sweet spot; figures 6–7), the effective size of the wave-induced correction is larger
than the formal estimate of ε.

In the limit R� ε . 1, we neglect all higher-order corrections in R while retaining
terms proportional to ε. Thus, the static stability constraint (3.11) is again assured
asymptotically by R� 1. In the right sides (3.5) of the system (3.4), neglecting O(R)
terms leaves only the following correction effects to the leading-order adjustment:

εP ′ =−εSs∂xv
′, εQ′ ≈−εSs∂xb

′, RT ′ ≈ εRW ′ ≈ 0. (5.1)

These terms in P ′ and Q′ represent the vortex force due to the wave adjustment
fields. We retain these corrections while otherwise following the derivation path in § 4.
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The generalization of the elliptic boundary-value problem (4.5) for b′ is

∂2
x b′ + ∂2

z

(
b′

N2

)
=F ′ + ∂z

(
εQ′

N2

)
− ∂xεP

′

=F ′ − ε
(

S2
s

N2
∂x∂zv0 + 2Ss∂z

(
∂xb′

N2

)
+ (∂zSs)

(
∂xb′

N2

)
+ εS2

s

(
∂2

x b′

N2

))
, (5.2)

with homogeneous boundary conditions for b′ because T ′(x, 0) ≈ 0 in (3.10). This
is a linear system for b′, which could in principle be solved directly. Instead,
we solve it iteratively as Lb′n = R[b′n−1; ε], n = 2, 3, . . . , starting with b′1 = 0.
Iteration convergence is aided for finite ε by additionally incrementing the value
of εk = k1ε in the right-side evaluation, for k = 1, . . . ,K and 1ε = ε/K. For
larger values of ε, convergence is further aided by relaxation at each iterative step;
i.e. b′n ← (1 − α)b′n + αb′n−1 for α > 0. For very large values of ε, the iteration
does not converge. An advantage of iteration is that the same elliptic solvers in
§§ 4.1 and 4.2 can be applied to the inversion of L. As before, we consider
Ss > 0, but in this case the sign symmetry with respect to Ss is more complicated
because the right-hand side of (5.2) is nonlinear in Stokes shear. The finite-ε sign
symmetry is (x, z, γ, b′, v′, v0, Ss)↔ (−x, z, γ,−b′, v′, v0,−Ss), where γ is defined
following (5.5). This symmetry also holds for ε = 0, along with the simpler symmetry
(b′, v′, v0, Ss)↔ (−b′,−v′, v0,−Ss) discussed in § 4.

The generalization of the v′ evaluation (4.6) is

v′ =−
∫ x

−∞

[
∂z

(
b′

N2

)
+ Ss

N2
∂zv0 + εSs

∂xb′

N2

]
dx′. (5.3)

The parcel-displacement evaluations (4.1)–(4.2) are unchanged. Thus, the fields
v′, ζ ′, ξ ′ and χ ′ can be evaluated explicitly once the solution for b′ is available.

Finite-ε wave-adjustment solutions are rather similar to the leading-order solutions
in § 4. They are illustrated in figures 12 and 13 for a front and filament, respectively.
There is remarkably little change in the peak amplitudes of b′ and v′, even for ε
as large as 2, but their patterns are deformed by tilting leftward toward negative
x while descending from the surface in comparison with the adjustment fields for
ε = 0 in figures 6–7. Similar behaviour is found for the finite-ε effect with constant
N (not shown). Notice that finite ε breaks the simple x-symmetry of wave-adjusted
fronts and filaments, quite substantially in these examples. Because ε(b′, v′) are
large compared to (b0, v0), the wave-adjusted states look very different from the
geostrophic–hydrostatic initial states.

We can explain the tilt by rewriting (5.2)–(5.3) as

∂2
x b′ + (∂z + εSs∂x)

2

(
b′

N2

)
= Ss∂

2
x v0 − (∂z + εSs∂x)

(
Ss

N2
∂xb0

)
(5.4)

v′ =−
∫ x

−∞

[
(∂z + εSs∂x)

(
b′

N2

)
+ Ss

N2
∂xb0

]
dx′. (5.5)

Notice that this system only has the derivatives ∂x and ∂γ = ∂z + εSs(z)∂x. In this
regard (5.5) is isomorphic to the ε = 0 system in § 4 except that the derivatives
are transformed from the orthogonal (x, z) coordinates to the non-orthogonal (x, γ ).
The isomorphism is not complete, however, because the right-side field b0 remains a
function of (x, z), rather than (x, γ ). Nevertheless, a line passing through the origin
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FIGURE 12. Wave-adjustment fields for the front (4.8) with the same parameters and
stratification as in figure 6 except for ε = 2. The fields are normalized by their extreme
magnitudes (i.e. 8.8 and 6.8, respectively) and contoured as before. Stokes drift is directed
toward positive y. The dark solid line is the γ coordinate axis passing through the origin;
see (5.7).

in (x, z) and everywhere tangent to the unit vector

γ̂ ≡ |∂γ x|−1(∂γ xx̂+ ∂γ zẑ)= J−1/2(εSs(z)x̂+ ẑ), (5.6)

with J = 1+ ε2S2
s , viz.

x(z)=−ε
∫ 0

z
Ss(z

′) dz′ = ε
λ
(eλz − 1), (5.7)

defines an approximate x symmetry line in (b′, v′) for finite ε (figures 12–13),
replacing the exact x = 0 symmetry line for ε = 0. However, this line is somewhat
of an overestimate of the degree of leftward shift of the extrema in b′ and v′. The line
does show the same tilt as the isolines of v′ through the mixed layer for both front and
filament, whereas these isolines are nearly vertical with ε = 0 (figures 6–7).

6. Summary and discussion
Surface fronts and filaments are inviscid steady states in geostrophic, hydrostatic

balance in the absence of surface gravity waves. They can adjust conservatively
to accommodate the Stokes drift vortex and Coriolis forces from gravity waves in
a new steady balanced state. The wave-adjusted perturbation fields comprise two
parts. One part is a horizontally uniform, anti-Stokes Eulerian flow that preserves the
initial Lagrangian mean flow after adjustment. In the absence of a front, filament,
or other flow structure to provide balancing forces for the Stokes–Coriolis effect, a
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FIGURE 13. Wave-adjustment fields for the cold filament (4.11) with the same parameters
and stratification as in figure 7 except for ε = 2. The fields are normalized by their extreme
magnitudes (i.e. 4.1 and 11.2, respectively) and contoured as before. Stokes drift is directed
toward positive y. The dark solid line is the γ coordinate axis passing through the origin;
see (5.7).

complete anti-Stokes flow would result. The other part is a localized adjustment in
the neighbourhood of a front or filament that has the opposite horizontal symmetry
from the initial fields (to leading order in ε) and thus induces a change of shape
in the buoyancy and flow fields. The local wave-adjustment magnitude is relatively
small for a uniformly stratified ocean, but it can be quite large for a mixed-layer
stratification somewhat deeper than the vertical scale of the initial fields (i.e. the
sweet-spot condition). For typical Stokes drift profiles that are stronger than the initial
flow and have a shallower vertical scale, the parameter ε is not necessarily small,
and fronts and filaments lose their horizontal symmetry during adjustment. The wave
adjustment problem is posed for an arbitrary Rossby number R, but solutions are
obtained here only for R � 1, i.e. more representative of the mesoscale and larger
submesoscale than of the strongest submesoscale fronts and filaments.

In the ocean, fronts and filaments are more likely to be found in an already
adjusted state than actively undergoing adjustment to suddenly arriving surface waves
(which would be completed in a short interval of order f−1 ≈ h). This means that
the before-and-after shape comparisons exploited here will usually not be available
from measurements. Rather, an observational validation of wave-balanced adjustment
is best done by diagnosing the force balances in the local buoyancy and flow fields:
significant Stokes vortex and Coriolis forces within the thin Stokes layer and thermal
wind balance below. Field detection is further complicated by the usual presence of
active boundary layer turbulence (e.g. a wind-driven Ekman layer), so non-conservative
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evolution will be occurring in addition to the conservative adjustment process analysed
here. Furthermore, in the presence of waves, Langmuir turbulence in the boundary
layer enhances the non-conservative effects in the wind-driven mean momentum
balance (McWilliams et al. 1997; D’Asaro 2001). For this reason, the conservative
wave-adjusted state may best be observed under solar restratification or swell without
winds, so that the turbulent mixing plays a subdominant role. Furthermore, when
the wave adjustment response is large because the mixed-layer stratification is weak,
it may induce static instability and initiate further turbulence and non-conservative
evolution. We commented above that sometimes the wave adjustment tends to
oppose the effects of up-front and down-front winds. Clearly, observing general
overturning and mixing is not sufficient to distinguish these competing processes.
These complications go beyond the idealized problems solved here, and they are
better explored in numerical large-eddy simulations with full wave-averaged dynamics
(e.g. an initial frontal flow in the presence of a slowly growing wave field and
boundary layer turbulence) that need not be restricted in the values of ε and R and
that fully incorporate non-conservative boundary layer forcing and mixing processes.

It is still uncommon for surface gravity wave effects to be included in realistic
oceanic circulation models, although prototypes exist (e.g. Uchiyama, McWilliams &
Shchepetkin 2010) and there are cogent reasons for doing so (Cavaleri, Fox-Kemper
& Hemer 2012) even beyond their classic roles in generating littoral currents through
surf-zone breaking and Langmuir circulations in the Ekman layer through the vortex
force. However, as modellers embark on this path, in particular by including the
Stokes vortex and Coriolis forces featured here, several cautions about the requisite
model spatial resolution and dynamics should be stated. Even at the larger scale of
basin currents and mesoscale eddies, the anti-Stokes flow from the Stokes Coriolis
force will be significant relative to other surface-layer currents. The effects of
the Stokes vortex force are increasingly important on the smaller mesoscales and
submesoscales, as ` decreases and ε and R increase, and where fronts and filaments
arise in nature. As shown here, the dominant balances involve important ageostrophic
and even non-hydrostatic dynamics. Most circulation models are hydrostatic, although
it may often be sufficient to generalize them to a quasi-hydrostatic balance, i.e. one
that includes the Stokes forces and even the non-traditional Coriolis force (the full
three-dimensional 2Ω × (u + us) of Earth’s rotation vector) while still neglecting
vertical acceleration. Such a procedure would allow for the equilibrated state studied
here, but the internal waves generated in time-varying or initial-value problems
may be more fundamentally non-hydrostatic. Clearly, direct simulation of the wave
effects of Langmuir turbulence and wave breaking requires a non-hydrostatic model.
Finally, fronts and filaments are often unstable to submesoscale fluctuations even
while undergoing active sharpening through strain-induced frontogenesis (Fox-Kemper,
Ferrari & Hallberg 2008; McWilliams, Molemaker & Olafsdottir 2009), and we remark
that as yet no three-dimensional stability analysis has been made for a basic flow
and stratification satisfying the wave-balanced constraints presented here, although a
symmetric instability problem has recently been solved with wave effects (Li et al.
2012).

Because µ and ε/R are usually not small in the ocean (figure 1), how much
of our present dynamical understanding of geostrophic, hydrostatic flows needs to
be reconsidered? Only near the surface are flows within the direct vertical domain
of influence of the Stokes-drift forces, although the adjustment solutions here and
Langmuir turbulence more generally (e.g. Polton & Belcher 2007) show that the
domain extends deeper than the Stokes vertical scale hs. For ε = R = 0, the flow
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satisfies a ‘Lagrangian thermal wind’ balance wherein the same sea-level η and
buoyancy distribution b† are valid with or without waves for an Eulerian flow
u that is altered only by the subtraction of an anti-Stokes flow, u → u − us;
nevertheless, this Lagrangian remapping does not provide a dynamical isomorphism
because the potential vorticity q and surface boundary conditions involve only the
Eulerian velocity (u), not the Lagrangian one (u + us). Most oceanic ‘measurements’
of larger-scale velocity – sea-level and hydrographic profile gradients, water mass
tracer analysis, drifter trajectories, radar backscatter off surface waves – are more
reflective of Lagrangian velocity than Eulerian. Therefore, although the magnitude of
wave effects will not always be large, and their observational detection is often subtle,
their influence may matter for a variety of upper-oceanic situations that should be
reconsidered on a case-by-case basis.
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