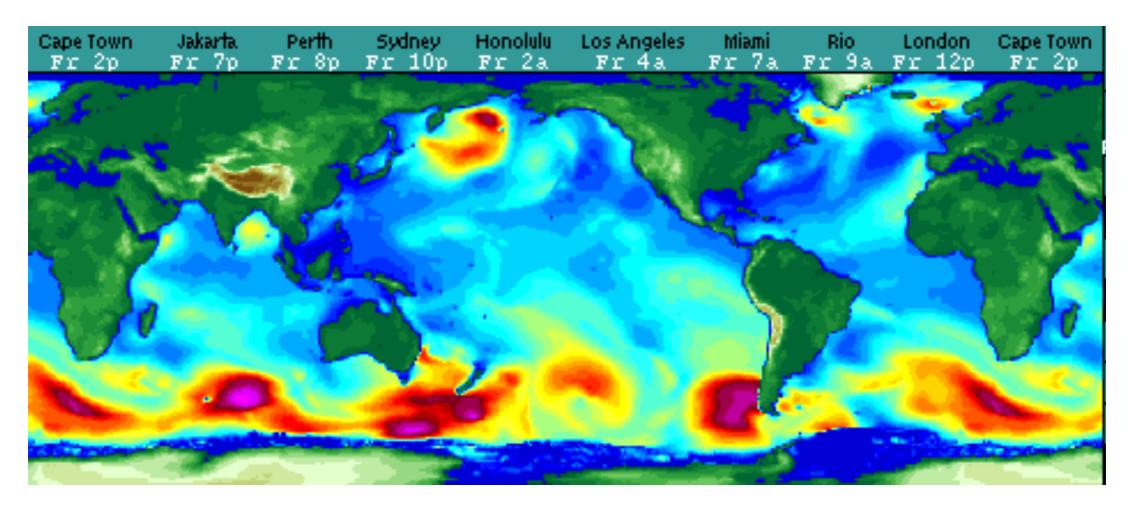
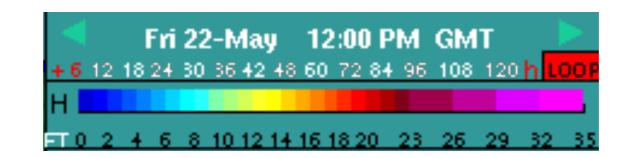
Oceanic wave-balanced surface fronts and filaments

by Jim McWilliams and Baylor Fox-Kemper

(told by Greg)



(predicted significant wave height by Surfline's LOLA)



Craik-Leibovich-Huang theory

predicts wave-averaged modifications to the Boussinesq equations

$$\partial_t \boldsymbol{u} + (f\hat{\boldsymbol{z}} + \boldsymbol{\omega}) \times (\boldsymbol{u} + \boldsymbol{u}_s) = -\nabla(\pi^{\dagger} + \frac{1}{2}\boldsymbol{u}^2) + b^{\dagger}\hat{\boldsymbol{z}},$$

$$\partial_t b^{\dagger} + (\boldsymbol{u} + \boldsymbol{u}_s) \cdot \nabla b^{\dagger} = 0, \quad \nabla \cdot \boldsymbol{u} = 0$$

"state 0"

"state 1"

an exact steady solution: ordinary waveless balance

 $fv_0 = p_{0x}$ $-fu_0 = p_{0y}$

geostrophic

 $p_{0z} = b_0$ — hydrostatic

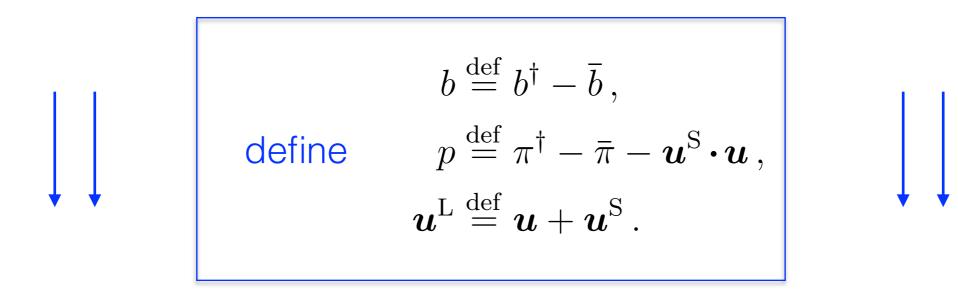
wave-modified balance?

what happens when we add waves?

Wave-averaged Boussinesq equations

$$\partial_t \boldsymbol{u} + (f\hat{\boldsymbol{z}} + \boldsymbol{\omega}) \times (\boldsymbol{u} + \boldsymbol{u}_s) = -\nabla(\pi^{\dagger} + \frac{1}{2}\boldsymbol{u}^2) + b^{\dagger}\hat{\boldsymbol{z}},$$

$$\partial_t b^{\dagger} + (\boldsymbol{u} + \boldsymbol{u}_s) \cdot \nabla b^{\dagger} = 0, \quad \nabla \cdot \boldsymbol{u} = 0$$



$$\frac{\mathrm{D}^{\mathrm{L}}\boldsymbol{u}^{\mathrm{L}}}{\mathrm{D}t} + f\,\hat{\boldsymbol{z}} \times \boldsymbol{u}^{\mathrm{L}} + \boldsymbol{\nabla}p - b\,\hat{\boldsymbol{z}} = (\boldsymbol{\nabla} \times \boldsymbol{u}^{\mathrm{S}}) \times \boldsymbol{u}^{\mathrm{L}} + \boldsymbol{u}_{t}^{\mathrm{S}} \,.$$
$$b_{t} + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}b + w^{\mathrm{L}}N^{2} = 0$$

Traditional balance (state 0)

take $oldsymbol{u}^{\mathrm{S}}=0$ and $oldsymbol{u}^{\mathrm{L}}=v_0(x,z)\,oldsymbol{\hat{y}}$

$$\frac{\mathrm{D}^{\mathrm{L}}\boldsymbol{u}^{\mathrm{L}}}{\mathrm{D}t} + f\,\hat{\boldsymbol{z}} \times \boldsymbol{u}^{\mathrm{L}} + \boldsymbol{\nabla}p - b\,\hat{\boldsymbol{z}} = (\boldsymbol{\nabla} \times \boldsymbol{u}^{\mathrm{S}}) \times \boldsymbol{u}^{\mathrm{L}} + \boldsymbol{u}_{t}^{\mathrm{S}} \,.$$
$$b_{t} + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}b + w^{\mathrm{L}}N^{2} = 0$$

Traditional balance (state 0)

take
$$\boldsymbol{u}^{\mathrm{S}} = 0$$
 and $\boldsymbol{u}^{\mathrm{L}} = v_0(x, z) \, \hat{\boldsymbol{y}}$
a steady solution is $fv_0 = p_{0x}$ and $p_{0z} = b_0$
1. geostrophic balance
2. hydrostatic balance
3. balance

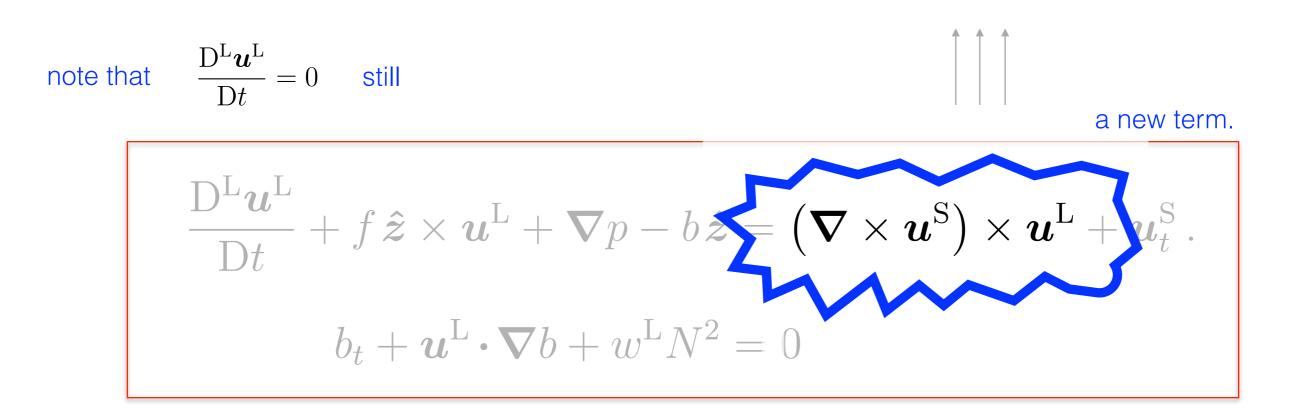
$$egin{aligned} rac{\mathrm{D}^{\mathrm{L}}oldsymbol{u}^{\mathrm{L}}}{\mathrm{D}t} + foldsymbol{\hat{z}} & imesoldsymbol{u}^{\mathrm{L}} + oldsymbol{p}oldsymbol{\hat{z}} = ig(oldsymbol{
aligned} imesoldsymbol{u}^{\mathrm{L}} + oldsymbol{u}^{\mathrm{L}} + oldsymbol{v}_t^{\mathrm{L}} + oldsymbol{u}_t^{\mathrm{S}} \,. \ b_t + oldsymbol{u}^{\mathrm{L}} oldsymbol{\cdot}
abla b + oldsymbol{w}^{\mathrm{L}} N^2 = 0 \end{aligned}$$

take $\boldsymbol{u}^{\mathrm{S}} = u^{\mathrm{S}}(z)\,\boldsymbol{\hat{x}} + v^{\mathrm{S}}(z)\,\boldsymbol{\hat{y}}$ and $\boldsymbol{u}^{\mathrm{L}} = v_1(x,z)\,\boldsymbol{\hat{y}}$.

$$\frac{\mathrm{D}^{\mathrm{L}}\boldsymbol{u}^{\mathrm{L}}}{\mathrm{D}t} + f\,\hat{\boldsymbol{z}} \times \boldsymbol{u}^{\mathrm{L}} + \boldsymbol{\nabla}p - b\,\hat{\boldsymbol{z}} = (\boldsymbol{\nabla} \times \boldsymbol{u}^{\mathrm{S}}) \times \boldsymbol{u}^{\mathrm{L}} + \boldsymbol{u}_{t}^{\mathrm{S}} \,.$$
$$b_{t} + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}b + w^{\mathrm{L}}N^{2} = 0$$

take
$$\boldsymbol{u}^{\mathrm{S}} = u^{\mathrm{S}}(z)\,\boldsymbol{\hat{x}} + v^{\mathrm{S}}(z)\,\boldsymbol{\hat{y}}$$
 and $\boldsymbol{u}^{\mathrm{L}} = v_1(x,z)\,\boldsymbol{\hat{y}}$.

$$ig(oldsymbol{
abla} imes oldsymbol{u}^{
m S}ig) imes oldsymbol{u}^{
m L} = -v_z^{
m S} v_1 oldsymbol{\hat{z}}$$
 .



take
$$\boldsymbol{u}^{\mathrm{S}} = u^{\mathrm{S}}(z)\,\boldsymbol{\hat{x}} + v^{\mathrm{S}}(z)\,\boldsymbol{\hat{y}}$$
 and $\boldsymbol{u}^{\mathrm{L}} = v_1(x,z)\,\boldsymbol{\hat{y}}$.

the steady solution
$$fv_1 = p_{1x}$$
 and $p_{1z} = b_1 - v_z^S v_1$ [[]]
(1. geostrophic balance
2. **not** hydrostatic balance)
note that $\frac{D^L u^L}{Dt} = 0$ still $(\nabla \times u^S) \times u^L = -v_z^S v_1 \hat{z}$.
 $\frac{D^L u^L}{Dt} + f \hat{z} \times u^L + \nabla p - b \hat{z} = -v_z^S v_1 \hat{z}$. $+ u_t^S$.
 $b_t + u^L \cdot \nabla b + w^L N^2 = 0$

$$p \stackrel{\text{def}}{=} \pi^{\dagger} - \bar{\pi} - \boldsymbol{u}^{S} \cdot \boldsymbol{u},$$
compare with (2.6) using
$$fv_{1} = p_{1x} \quad \text{and} \quad p_{1z} = b_{1} - v_{z}^{S}v_{1}$$

$$-f(v + \underbrace{v_{s}}_{SC}) = -\partial_{x}\pi + \underbrace{v_{s}\partial_{x}v}_{SV},$$

$$\partial_{z}\pi = b + \underbrace{v_{s}\partial_{z}v}_{SV} \quad (\nabla \times \boldsymbol{u}^{S}) \times \boldsymbol{u}^{L} = -v_{z}^{S}v_{1}\hat{\boldsymbol{z}}.$$

$$\frac{D^{L}\boldsymbol{u}^{L}}{Dt} + f\hat{\boldsymbol{z}} \times \boldsymbol{u}^{L} + \boldsymbol{\nabla}p - b\hat{\boldsymbol{z}} = -v_{z}^{S}v_{1}\hat{\boldsymbol{z}}. \qquad + \boldsymbol{u}_{t}^{S}.$$

$$b_{t} + \boldsymbol{u}^{L} \cdot \boldsymbol{\nabla}b + w^{L}N^{2} = 0$$

The big question

how do we get from

here

320

$$fv_0 = p_{0x}$$
$$p_{0z} = b_0$$

to here

$$fv_1 = p_{1x}$$
$$b = p_{1z} + v_z^{S} v_1$$

2d/1224mi

Conservative adjustment

consider a transient adjustment for which

$$\frac{\mathbf{D}^{\mathrm{L}}q}{\mathrm{D}t} = 0, \qquad \text{and} \qquad \frac{\mathbf{D}^{\mathrm{L}}b^{\dagger}}{\mathrm{D}t} = 0$$

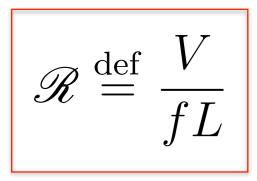
Let's solve the adjustment problem for small $\mathscr{R} \stackrel{\text{def}}{=} \frac{V}{fL}$

with one little twist...

A special scaling for oceanic wave-balanced flows

PV:
$$q = fN^2 + N^2v_x + fb_z + \frac{\partial(v,b)}{\partial(x,z)}$$

Ordinary QG
$$\left(\frac{v_x}{f}, \frac{b_z}{N^2}\right) \sim \mathscr{R}$$
, $\frac{v_z b_x}{f N^2} \sim \mathscr{R}^2$



A special scaling for oceanic wave-balanced flows

PV:
$$q = fN^2 + N^2v_x + fb_z + \frac{\partial(v,b)}{\partial(x,z)}$$

Ordinary QG
$$\left(\frac{v_x}{f}, \frac{b_z}{N^2}\right) \sim \mathscr{R}$$
, $\frac{v_z b_x}{f N^2} \sim \mathscr{R}^2$

here, assume

 ϵ

 $\frac{v_z^{\rm S} b_x}{f N^2} \sim \epsilon \,\mathscr{R}$

 $\mathscr{R} \stackrel{\text{def}}{=} \frac{V}{fL}$

$$\epsilon \gg \mathscr{R}$$

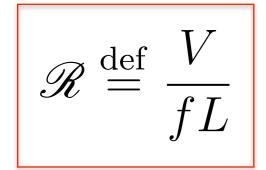
strong and *shallow* drift fields

Potential vorticity

equation (2.5)

$$q = fN^2 + N^2v_x + fb_z + \frac{\partial(v,b)}{\partial(x,z)}$$

use
$$v = v^{\mathrm{L}} - v^{\mathrm{S}}$$



if $\epsilon \gg \mathscr{R}$, we should consider this term!

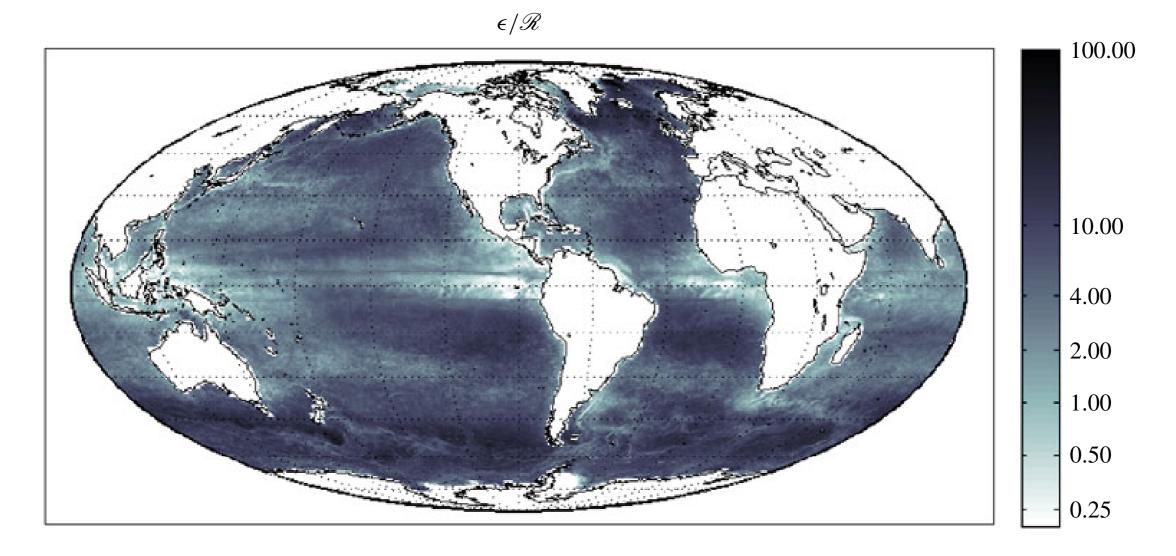
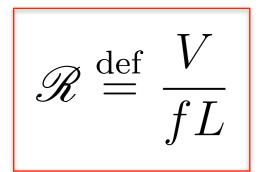
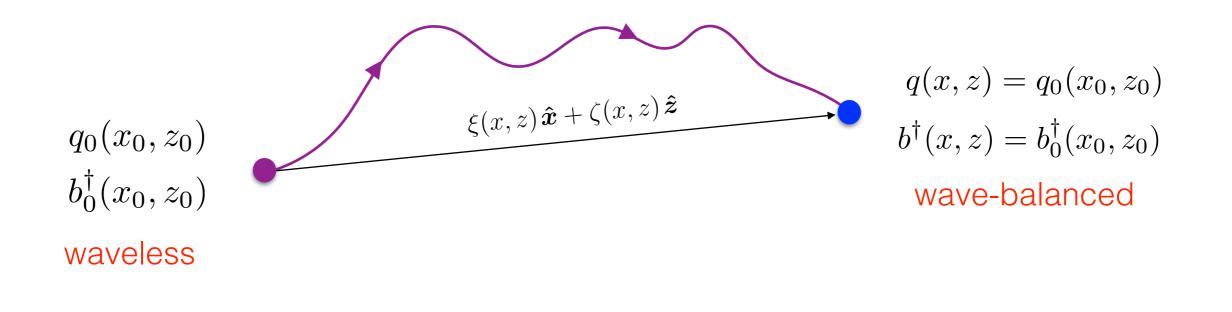


FIGURE 1. (Colour online) Estimated ratio $\epsilon / \Re \approx (|u_s \cdot u|h) / (|u|^2 h_s)$ governing the relative importance of Stokes effects versus nonlinearity. Eulerian velocity (u) is taken as the AVISO weekly satellite geostrophic velocity or $-u_s$ (for anti-Stokes flow) if $|u_s| > |u|$. The



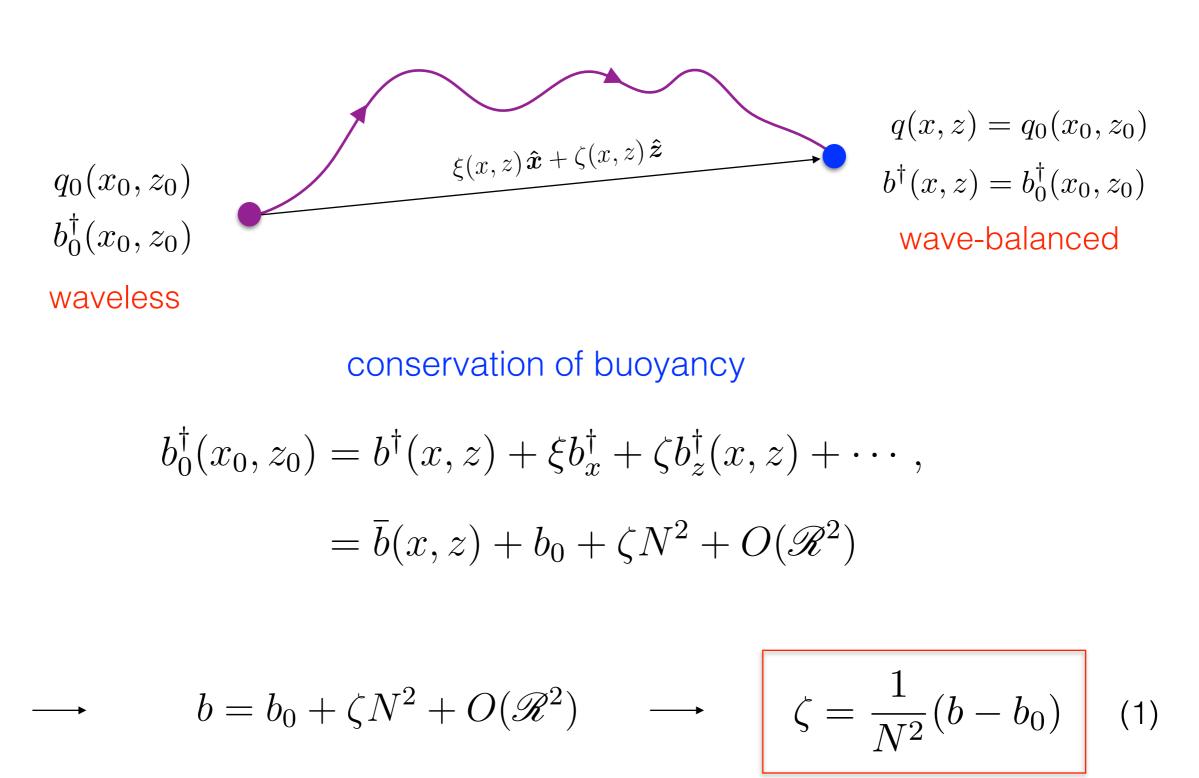
if $\epsilon \gg \mathscr{R}$, we should consider this term!

 $\mathscr{R} \ll 1$ implies small displacements



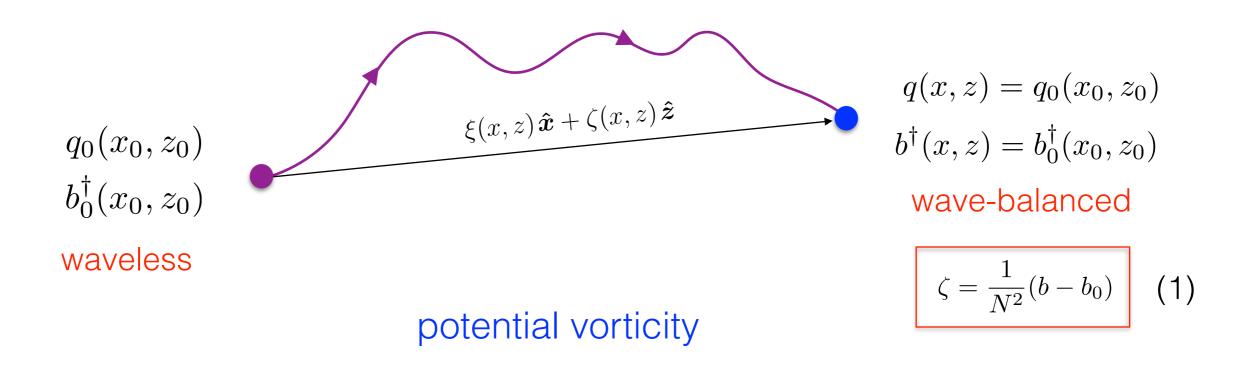
waveless

 $\mathscr{R} \ll 1$ implies small displacements



(turn the page)

 $\mathscr{R} \ll 1$ implies small displacements

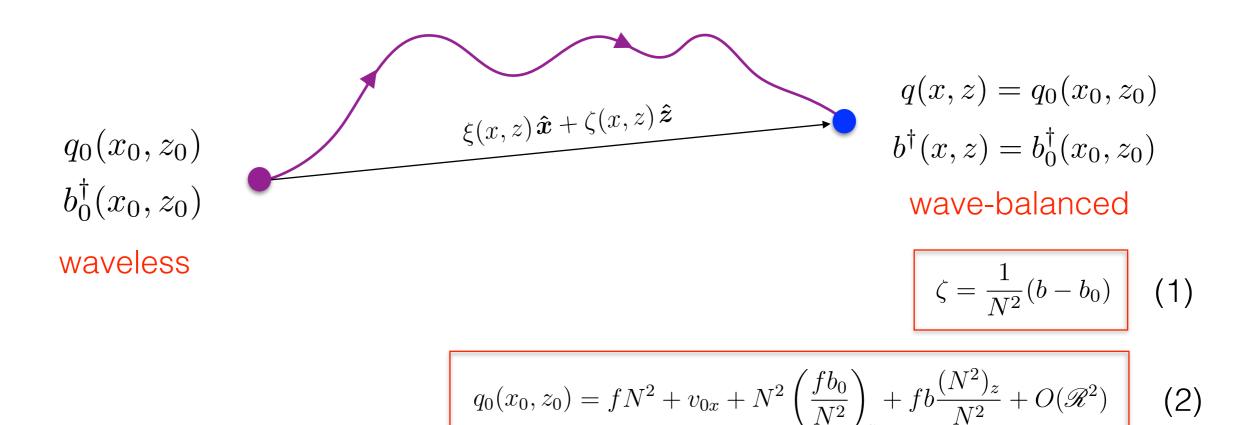


$$q_0(x_0, z_0) = q_0(x, z) + \xi q_{0x} + \zeta q_{0z} + \cdots$$
$$= f N^2 + v_{0x} + f b_{0z} + \zeta \left(f N^2 \right)_z + O(\mathscr{R}^2)$$

$$q_0(x_0, z_0) = fN^2 + v_{0x} + N^2 \left(\frac{fb_0}{N^2}\right)_z + fb\frac{(N^2)_z}{N^2} + O(\mathscr{R}^2)$$
(2)

(turn the page)

 $\mathscr{R} \ll 1$ implies small displacements





$$\underbrace{v_x + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^S b_x}{N^2}}_{\stackrel{\text{def}}{=} Q} = \underbrace{v_{0x} + \left(\frac{fb_0}{N^2}\right)_z}_{\stackrel{\text{def}}{=} Q_0}$$

Section 4: constant N and small ϵ

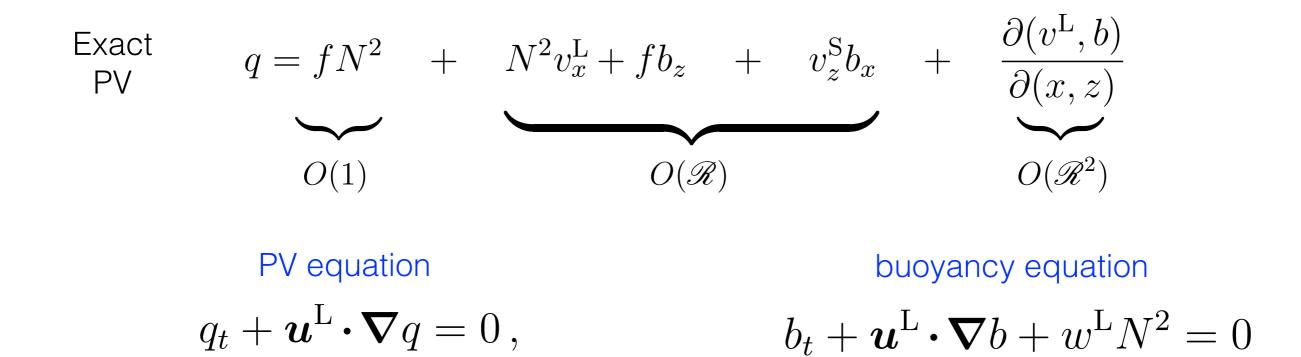
$$v_x + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\mathrm{S}}b_x}{N^2} = v_{0x} + \left(\frac{fb_0}{N^2}\right)_z$$

propose

$$v = v_0 + \epsilon v' \qquad \longrightarrow \qquad v'_x + \left(\frac{fb'}{N^2}\right)_z = -\frac{v_z^{\mathrm{S}}b_{0x}}{N^2} + O(\epsilon)$$
$$b = b_0 + \epsilon b'$$

next, use "imbalance" conditions to obtain elliptic equation

A way that was easier for me.



PV and buoyancy combine in the same way as ordinary QGPV, except there is an extra term in the PV. We get:

low Rossby PV

imbalance conditions

$$Q \stackrel{\text{def}}{=} v_x^{\text{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\text{S}}b_x}{N^2}$$

 $b = p_z + v_z^{\rm S} v^{\rm L}$

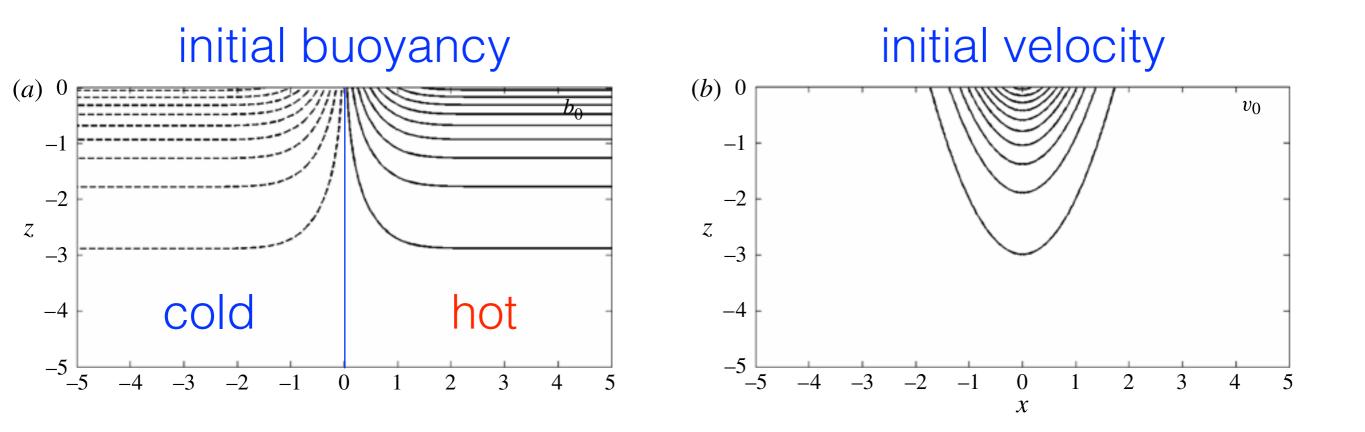
 $fv^{\rm L} = p_x$

adjustment problem is posed by equating initial and final PV:

$$Q_0 = Q = v_x^{\mathrm{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\mathrm{S}}b_x}{N^2}$$

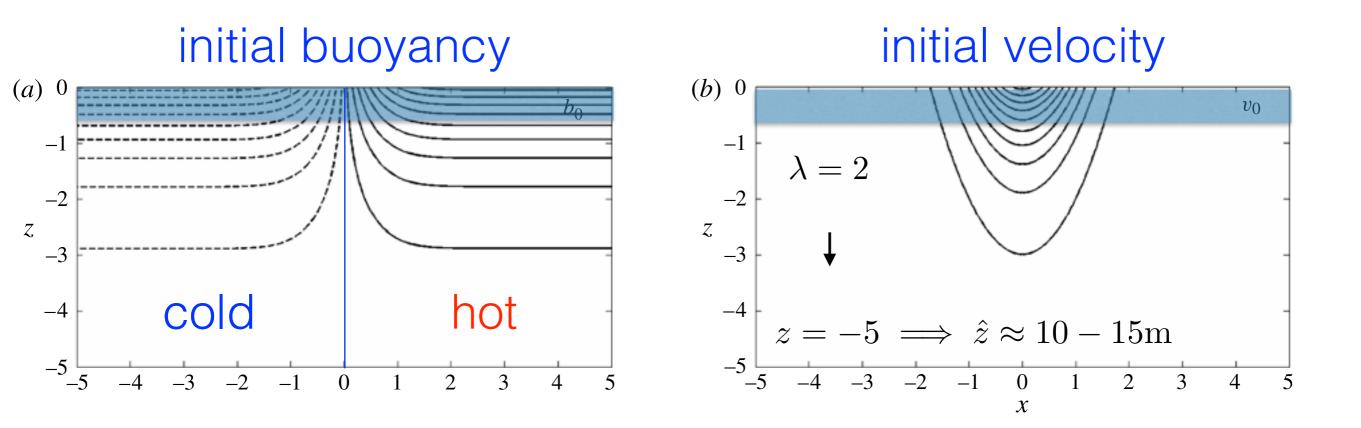
source

elliptic problem for *b* or *p*



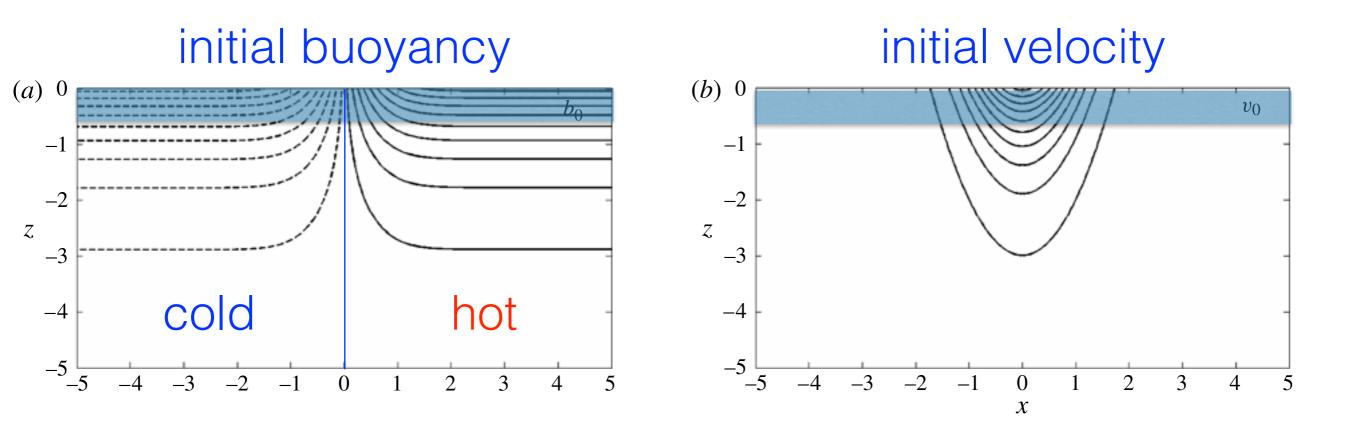
$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

$$v_z^{S} = e^{\lambda z} .$$
$$v_0(x, z) = e^{-x^2 + z},$$
$$b_0(x, z) = \frac{\sqrt{\pi}}{2} \operatorname{erf}[x] e^z.$$



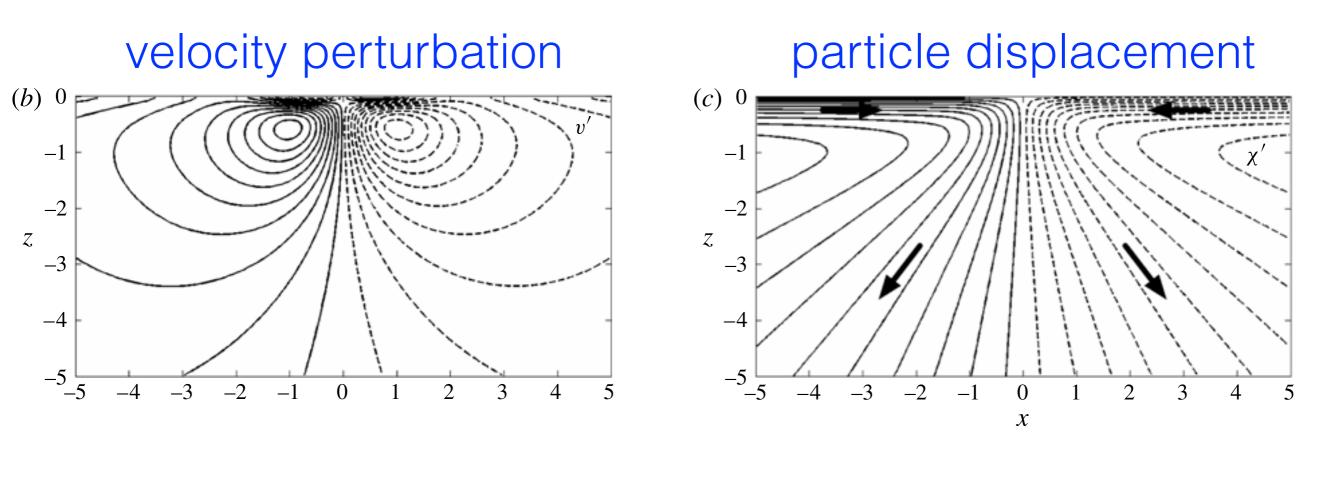
$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

$$v_z^{S} = e^{\lambda z} .$$
$$v_0(x, z) = e^{-x^2 + z},$$
$$b_0(x, z) = \frac{\sqrt{\pi}}{2} \operatorname{erf}[x] e^z.$$



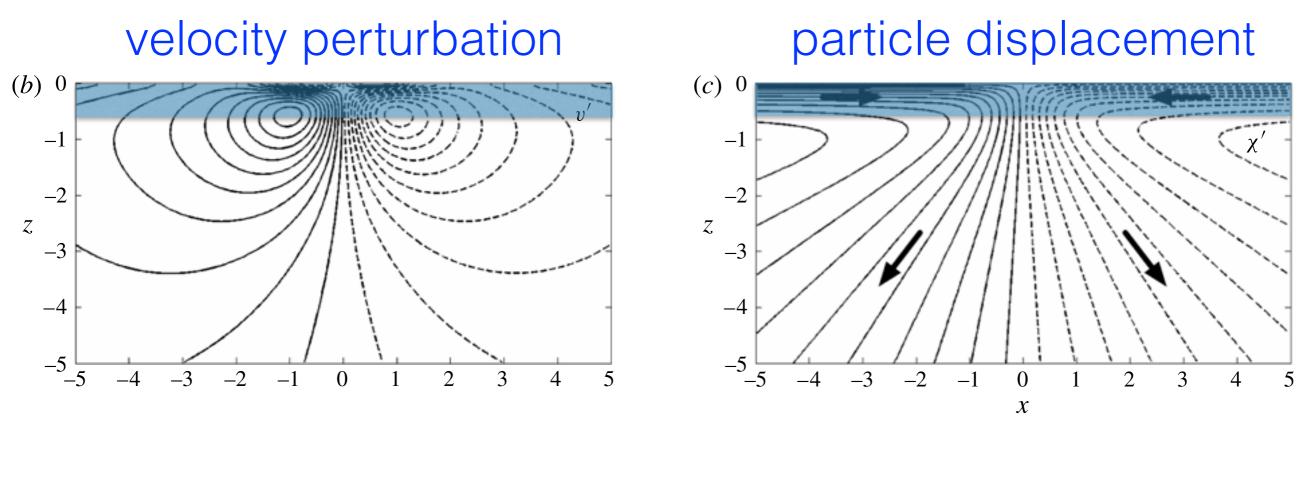
$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

$$v_z^{S} = e^{\lambda z} .$$
$$v_0(x, z) = e^{-x^2 + z},$$
$$b_0(x, z) = \frac{\sqrt{\pi}}{2} \operatorname{erf}[x] e^z.$$



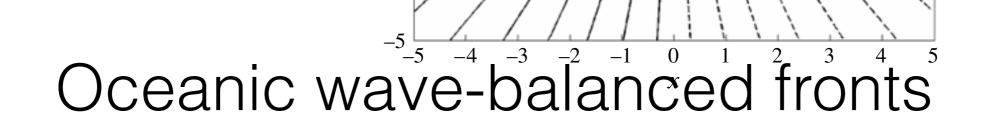
$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

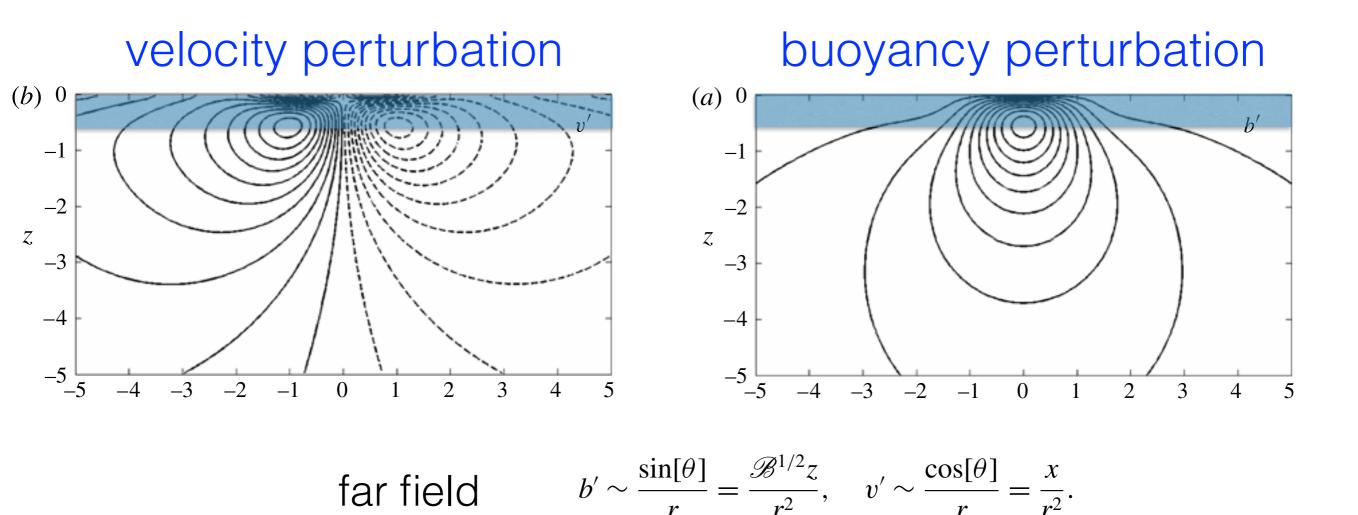
$$v_z^{S} = e^{\lambda z} .$$
$$v_0(x, z) = e^{-x^2 + z},$$
$$b_0(x, z) = \frac{\sqrt{\pi}}{2} \operatorname{erf}[x] e^z.$$



$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

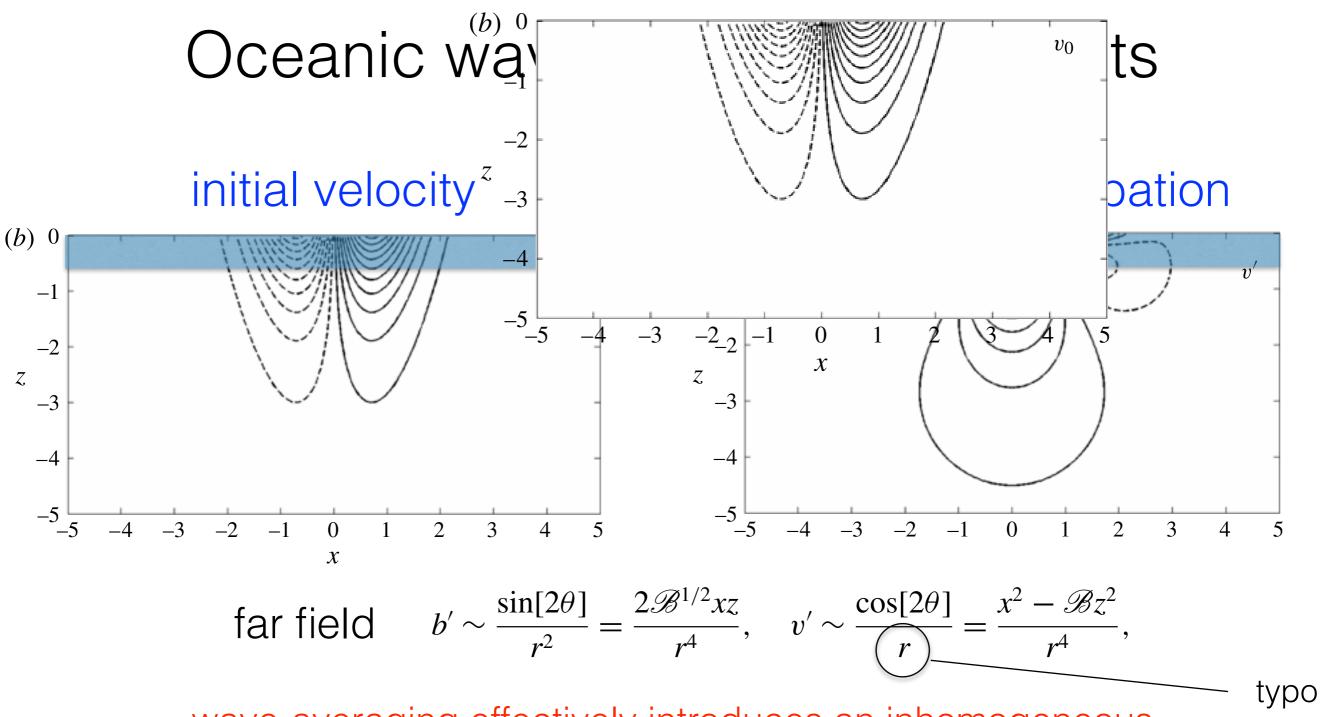
$$v_z^{S} = e^{\lambda z} .$$
$$v_0(x, z) = e^{-x^2 + z},$$
$$b_0(x, z) = \frac{\sqrt{\pi}}{2} \operatorname{erf}[x] e^z.$$





wave-averaging effectively introduces an inhomogeneous boundary condition into the elliptic problem.

$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

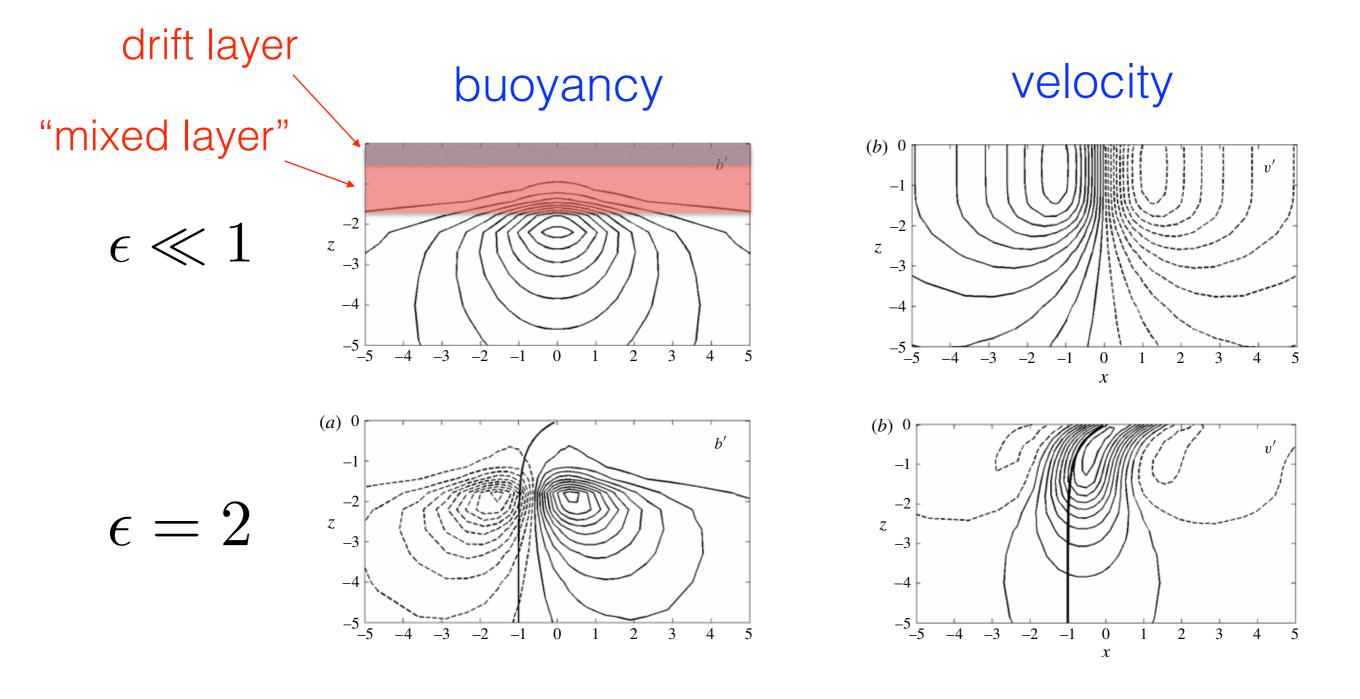


wave-averaging effectively introduces an inhomogeneous boundary condition into the elliptic problem.

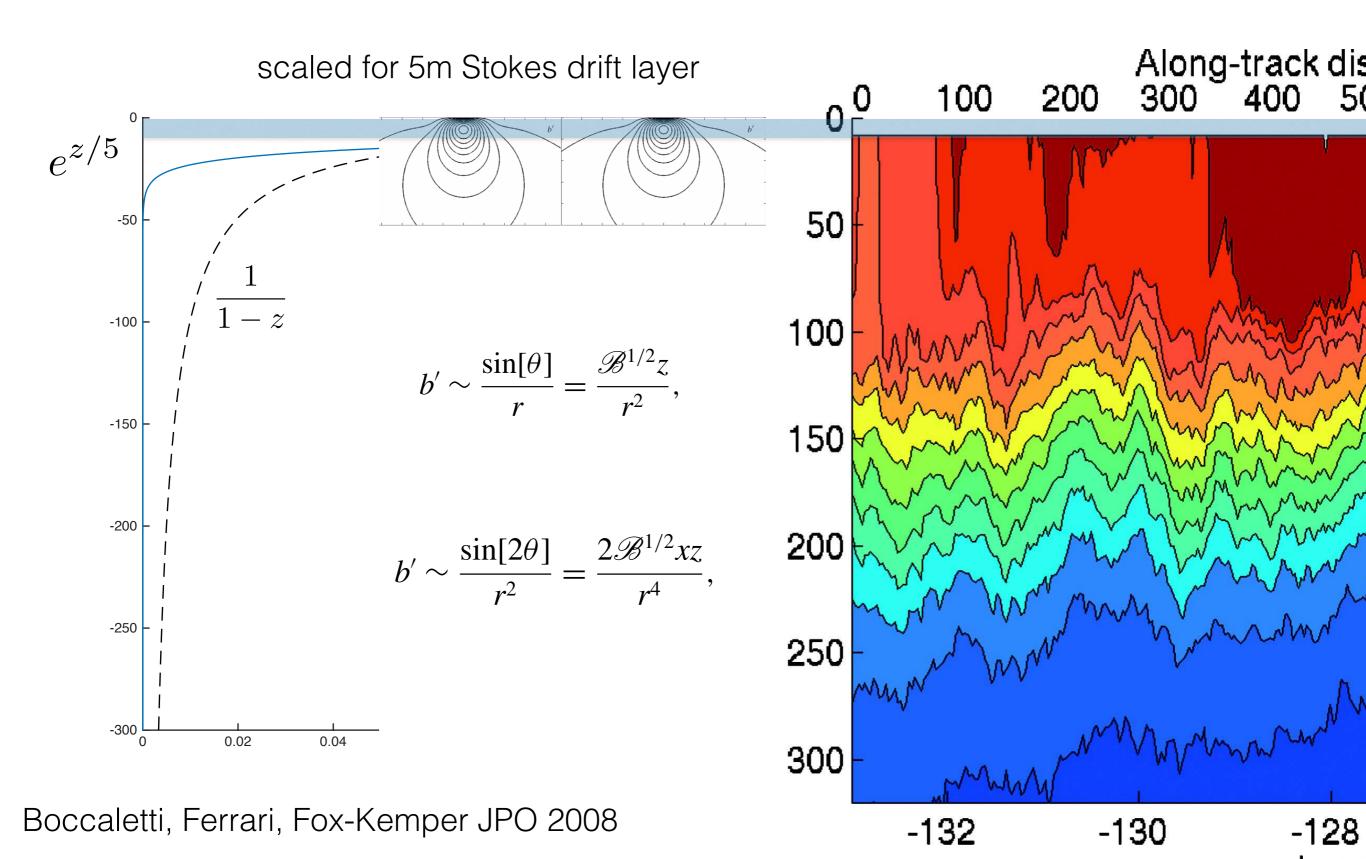
$$b'_{xx} + \left(\frac{fb'}{N^2}\right)_{zz} = fv_z^{\mathrm{S}}v_{0xx} - \left(\frac{fv_z^{\mathrm{S}}v_{0z}}{N^2}\right)_z$$

Generalization

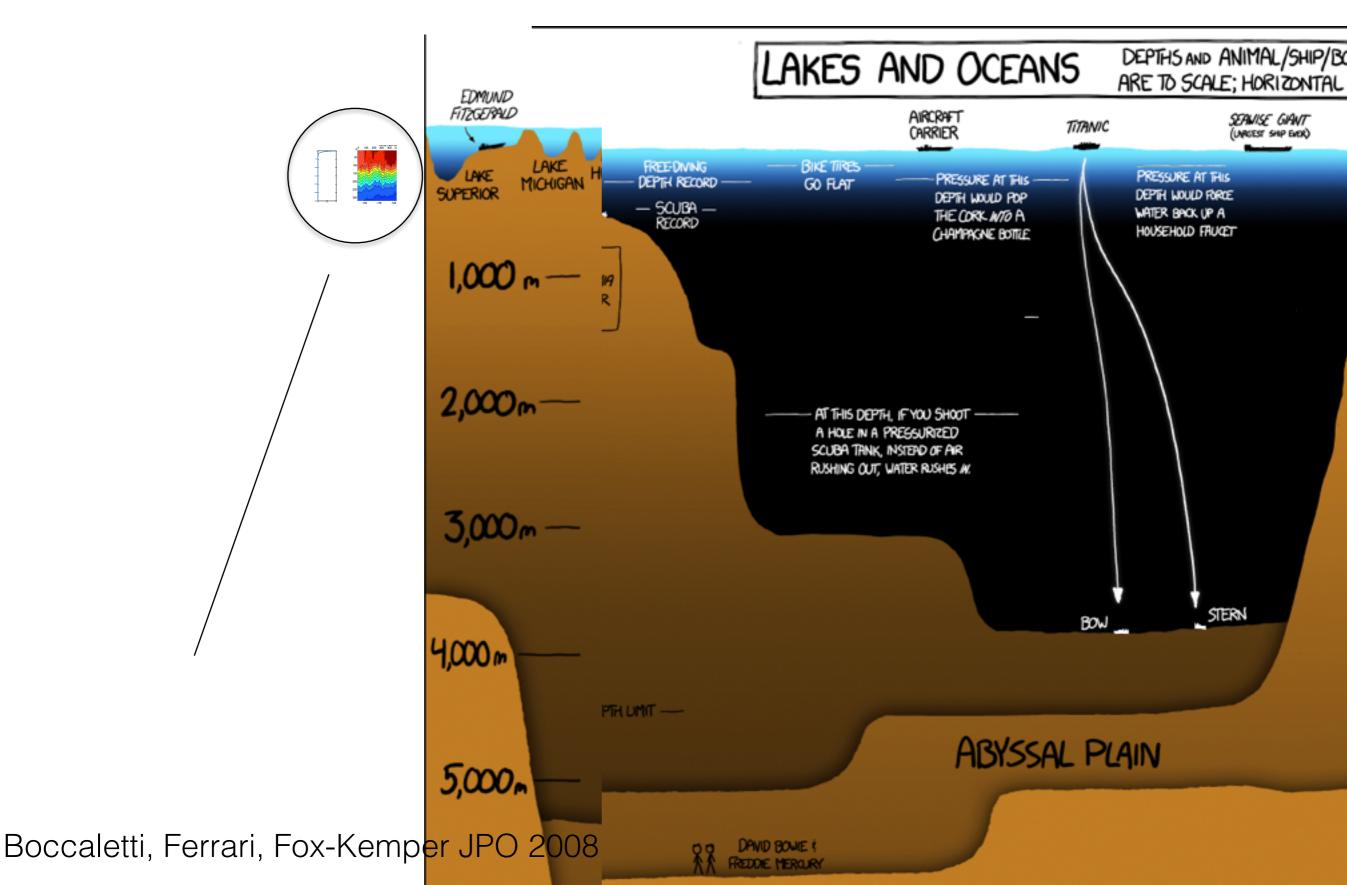
$$\partial_x^2 b' + \partial_z^2 \left(\frac{b'}{N^2}\right) = \mathscr{F}' - \epsilon \left(\frac{S_s^2}{N^2} \partial_x \partial_z v_0 + 2S_s \partial_z \left(\frac{\partial_x b'}{N^2}\right) + (\partial_z S_s) \left(\frac{\partial_x b'}{N^2}\right) + \epsilon S_s^2 \left(\frac{\partial_x^2 b'}{N^2}\right)\right)$$



The importance of sanity



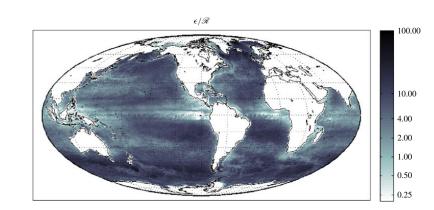
Sanity?!



Sanity?!

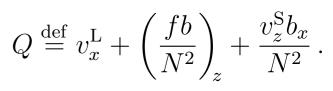
McWilliams and Kemper's conclusions

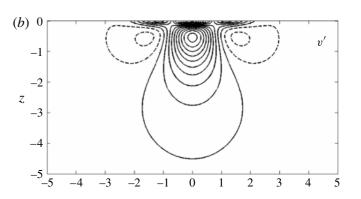
- waves disturb hydrostatic balance
- wave-averaged terms contribute to potential vorticity balance
 - important for strong, shallow Stokes drift fields
- effect of the waves resembles inhomogeneous boundary condition at surface
- weaker stratification implies deeper response
- with a mixed layer, response is trapped



$$fv_1^{\rm L} = p_{1x} ,$$

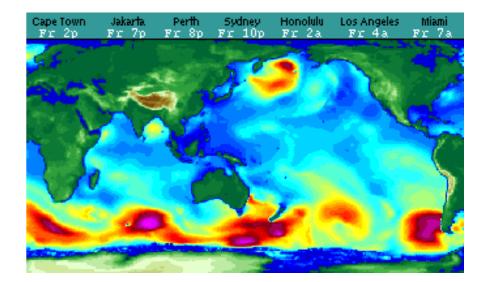
$$b_1 = p_{1z} + f^{-1} v_z^{\rm S} p_{1z}$$

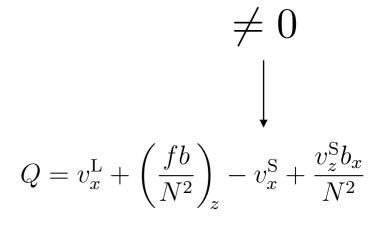




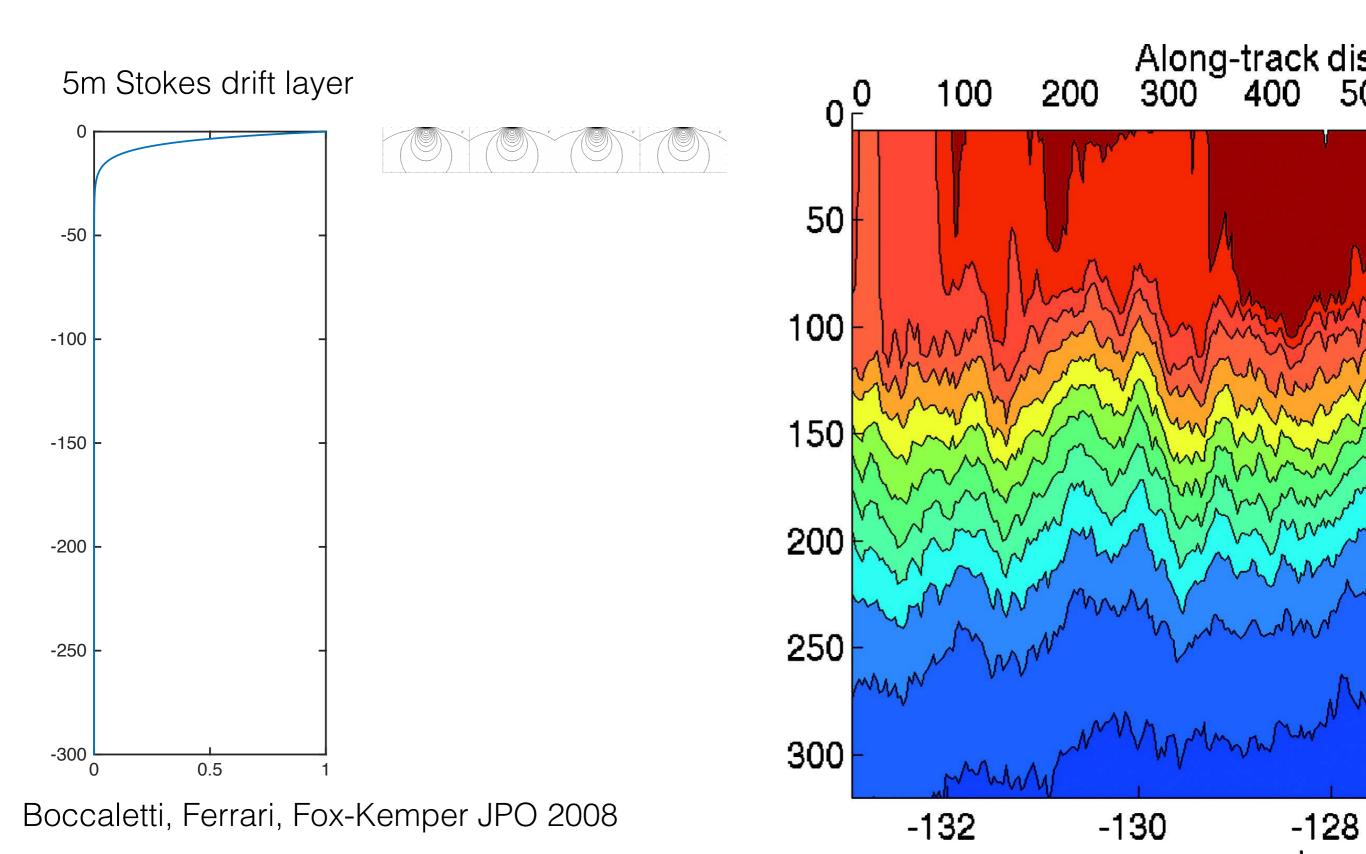
Greg's questions

- wave field forced by strongly intermittent storms.
 Is spatially uniform wave field realistic?
- why isn't there a second paper "Oceanic frontal- and filamental modulation of surface waves"?
- Can we generalize to 3D? "Wave-imbalanced" quasigeostrophic flow?
- McWilliams and Kemper mention several times that adjustment radiates internal waves.
 Does radiated energy come from waves or balanced flow?

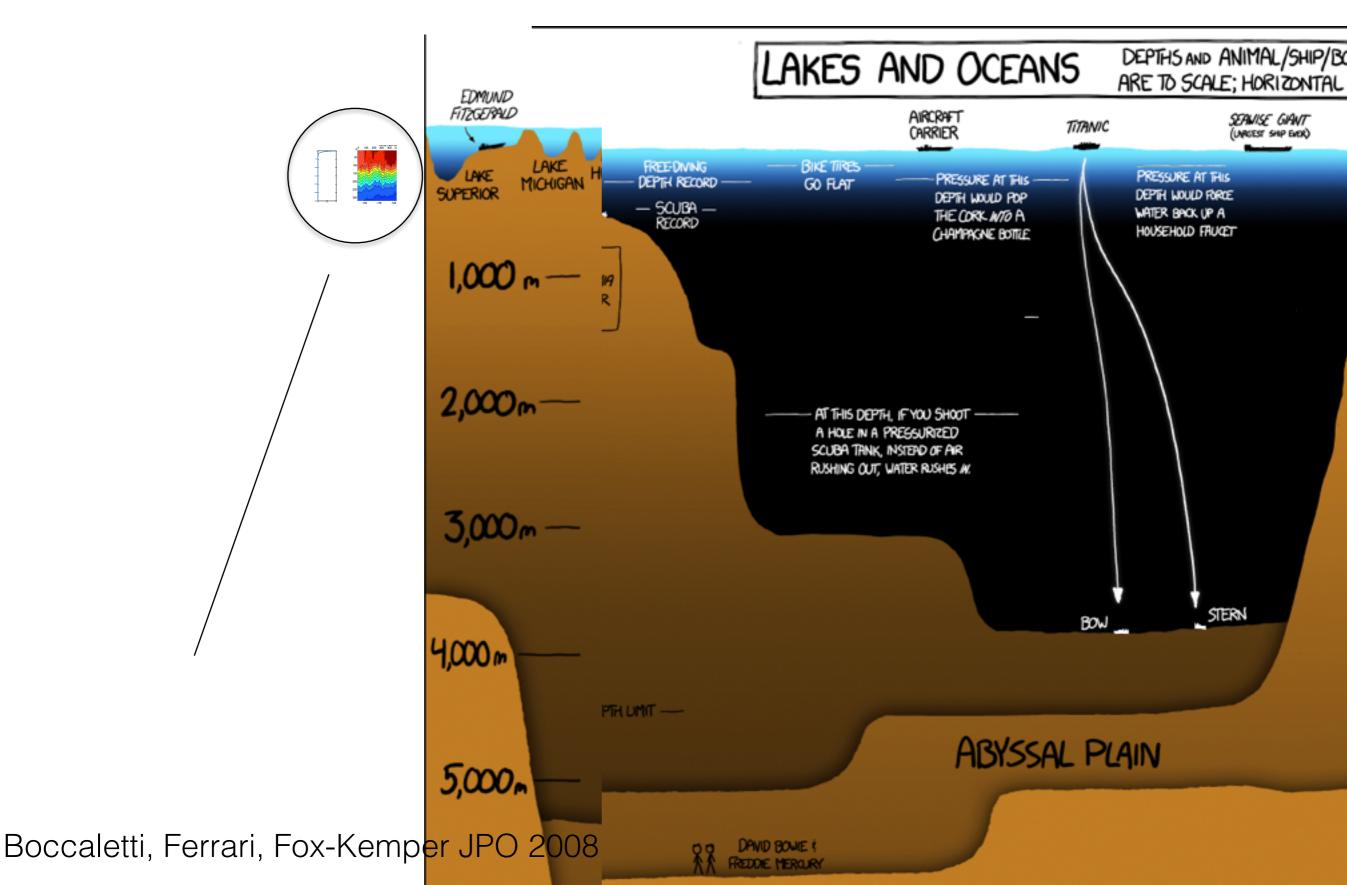




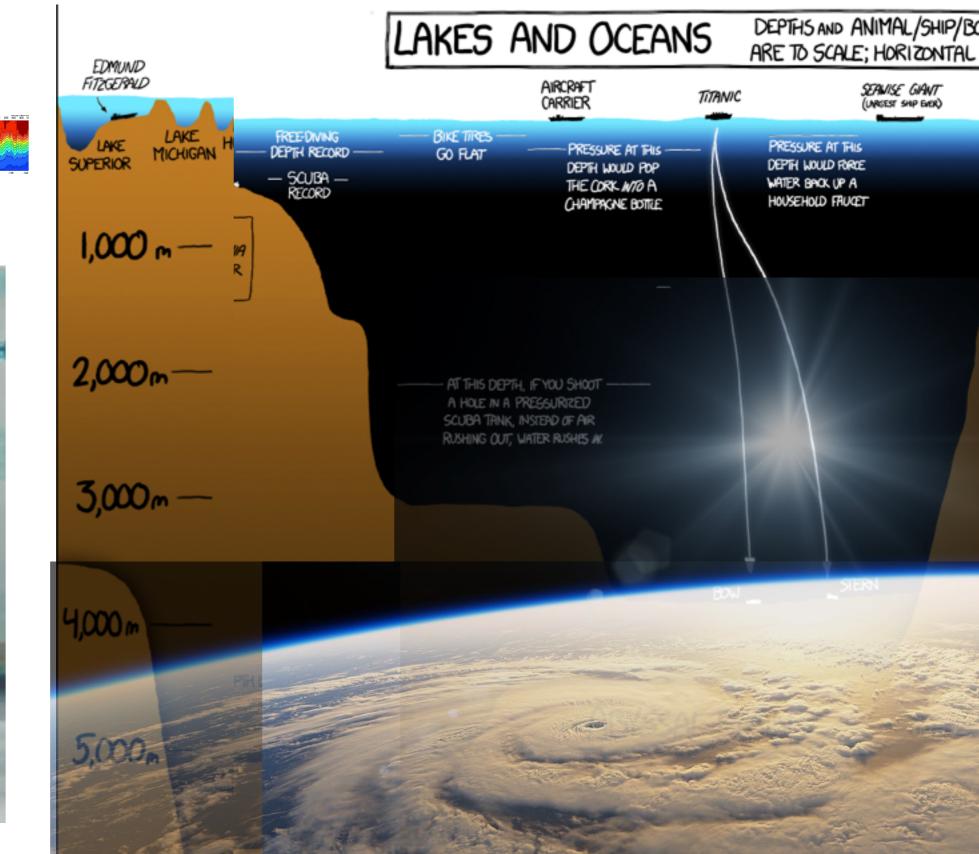
Sanity



Sanity?!



Sanity?!



Taylor column

Thanks

Generalization?

effect of the waves resembles inhomogeneous boundary condition at surface

is it possible to derive this effective boundary condition?

in 3D, the "strong, infinite wave" CL-QG theory generalizes to

 $Q_t + \mathsf{J}(\psi, Q) = 0.$

where

definition of potential vorticity

$$Q \stackrel{\text{def}}{=} v_x^{\text{L}} - u_y^{\text{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\text{S}}b_x}{N^2} - \frac{u_z^{\text{S}}b_y}{N^2} \,.$$

imbalance conditions

$$\begin{split} v^{\mathrm{L}} &= \psi_x \,, \\ -u^{\mathrm{L}} &= \psi_y \,, \\ b &= f \psi_z + v^{\mathrm{S}}_z \psi_x - u^{\mathrm{S}}_z \psi_y \,. \end{split}$$

Generalization?

effect of the waves resembles inhomogeneous boundary condition at surface

is it possible to derive this effective boundary condition?

in 3D, the "strong, infinite wave" CL-QG theory generalizes to

$$Q_t + \mathsf{J}(\psi, Q) = 0.$$

where

$$Q \stackrel{\text{def}}{=} \bigtriangleup \psi + \mathsf{L}\psi + \psi_x \mathsf{L}v^{\mathsf{S}} - \psi_y \mathsf{L}u^{\mathsf{S}} - \omega^{\mathsf{w}} + \frac{v_z^{\mathsf{S}}}{N^2} \Big(2f\psi_{xz} + (v_z^{\mathsf{S}}\psi_x)_x - (u_z^{\mathsf{S}}\psi_y)_x \Big) + \frac{u_z^{\mathsf{S}}}{N^2} \Big((v_z^{\mathsf{S}}\psi_x)_y - (u_z^{\mathsf{S}}\psi_y)_y \Big)$$

Two branches in the solution

$$\tilde{b}(z) = \frac{1 + \lambda + 2\mathscr{B}}{(1 + \lambda)^2 - 2\mathscr{B}} \left(e^{\sqrt{2\mathscr{B}}z} - e^{(1 + \lambda)z} \right),$$

$$\tilde{v}(z) = \frac{1+\lambda+2\mathscr{B}}{\sqrt{2\mathscr{B}}((1+\lambda)^2-2\mathscr{B})} e^{\sqrt{2\mathscr{B}}z} - \frac{2+\lambda}{(1+\lambda)^2-2\mathscr{B}} e^{(1+\lambda)z}.$$

B Deriving the PV equation

When the Stokes drift field is $\boldsymbol{u}^{\mathrm{S}} = u^{\mathrm{S}}(z)\,\hat{\boldsymbol{x}} + v^{\mathrm{S}}(z)\,\hat{\boldsymbol{y}}$, the exact PV and buoyancy equations are

$$\left(\partial_t + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}\right) q = 0, \qquad \left(\partial_t + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}\right) b + w^{\mathrm{L}} N^2 = 0.$$
 (96)

where

$$q \stackrel{\text{def}}{=} \underbrace{fN^2}_{O(1)} + \underbrace{N^2\hat{\omega} + fb_z + v_z^{\text{S}}b_x - u_z^{\text{S}}b_y}_{O(\mathscr{R})} + \underbrace{\hat{\omega} \cdot \nabla b}_{O(\mathscr{R}^2)} . \tag{97}$$

To leading-order in Rossby number, the momentum equations yield the "imbalance" conditions,

$$fv^{\rm L} = p_x \,, \tag{98}$$

$$-fu^{\rm L} = p_y \,, \tag{99}$$

$$b = p_z + v_z^{\rm S} v^{\rm L} - u_z^{\rm S} u^{\rm L} \,. \tag{100}$$

The balance conditions imply the leading-order velocity has no divergence. Note also that we can define a geostrophic streamfunction in terms of which the entire problem can be formulated. At O(1) the buoyancy equation implies that $w_g^{\rm L} = 0$ ("g" for geostrophic). At $O(\mathscr{R})$ we get

$$w_a^{\rm L} = \left(\partial_t + \boldsymbol{u}^{\rm L} \cdot \boldsymbol{\nabla}\right) \frac{b}{N^2}, \qquad (101)$$

where we can move the N^2 around because $w_g^{\rm L}=0.~$ The leading-order PV equation is therefore

$$\left(\partial_t + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}\right) \left(N^2 \hat{\omega} + f b_z + v_z^{\mathrm{S}} b_x - u_z^{\mathrm{S}} b_y\right) + w_a^{\mathrm{L}} \left(f N^2\right)_z = 0.$$
(102)

We can then use the buoyancy equation to eliminate $w_a^{\rm L}$. After dividing by N^2 , we have a nice result:

$$Q_t + \mathsf{J}(\psi, Q) = 0, \qquad (103)$$

with

$$Q \stackrel{\text{def}}{=} v_x^{\text{L}} - u_y^{\text{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\text{S}}b_x}{N^2} - \frac{u_z^{\text{S}}b_y}{N^2}, \qquad (104)$$

$$Q_t + \mathsf{J}(\psi, Q) = 0, \qquad (103)$$

with

$$Q \stackrel{\text{def}}{=} v_x^{\text{L}} - u_y^{\text{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\text{S}}b_x}{N^2} - \frac{u_z^{\text{S}}b_y}{N^2}, \qquad (104)$$

We insert these balance conditions into the expression for q to yield an expression solely in terms of ψ . We get

$$Q \stackrel{\text{def}}{=} \Delta \psi + \mathsf{L}\psi + \left(\frac{fv_z^{\mathrm{S}}\psi_x}{N^2}\right)_z + \left(\frac{fu_z^{\mathrm{S}}\psi_y}{N^2}\right)_z + \frac{v_z^{\mathrm{S}}b_x}{N^2} - \frac{u_z^{\mathrm{S}}b_y}{N^2} - \omega^{\mathrm{w}}, \qquad (28)$$

$$= \Delta \psi + \mathsf{L}\psi + \left(\frac{fv_z^{\mathrm{S}}\psi_x}{N^2}\right)_z - \left(\frac{fu_z^{\mathrm{S}}\psi_y}{N^2}\right)_z - \omega^{\mathrm{w}} + \frac{v_z^{\mathrm{S}}}{N^2} \left(f\psi_{xz} + (v_z^{\mathrm{S}}\psi_x)_x - (u_z^{\mathrm{S}}\psi_y)_x\right) + \frac{u_z^{\mathrm{S}}}{N^2} \left(f\psi_{yz} + (v_z^{\mathrm{S}}\psi_x)_y - (u_z^{\mathrm{S}}\psi_y)_y\right) + \frac{\omega_z^{\mathrm{S}}}{N^2} \left(f\psi_{xz} + (v_z^{\mathrm{S}}\psi_x)_x - (u_z^{\mathrm{S}}\psi_y)_y\right) + \frac{u_z^{\mathrm{S}}}{N^2} \left(2f\psi_{xz} + (v_z^{\mathrm{S}}\psi_x)_x - (u_z^{\mathrm{S}}\psi_y)_x\right) + \frac{u_z^{\mathrm{S}}}{N^2} \left((v_z^{\mathrm{S}}\psi_x)_y - (u_z^{\mathrm{S}}\psi_y)_y\right) \qquad (30)$$

Wave-averaged quasigeostrophy

$$\left(\partial_t + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}\right) Q = 0, \quad \text{where} \quad Q \stackrel{\mathrm{def}}{=} v_x^{\mathrm{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\mathrm{S}} b_x}{N^2}.$$

Initial waveless state

$$Q_0 = v_{0x} + \left(\frac{fb_0}{N^2}\right)_z$$

prescribed, with

 $fv_0 = p_{0x}$ $b_0 = p_{0z}$

$$Q_0 = Q_1$$

Final wavy state

$$Q_1 = v_{1x}^{\mathrm{L}} + \left(\frac{fb_1}{N^2}\right)_z + \frac{v_z^{\mathrm{S}}b_{1x}}{N^2}$$

unknown!

$$fv_1^{\rm L} = p_{1x},$$

 $b_1 = p_{1z} + f^{-1}v_z^{\rm S}p_{1x}.$

Wave-averaged quasigeostrophy

$$\left(\partial_t + \boldsymbol{u}^{\mathrm{L}} \cdot \boldsymbol{\nabla}\right) Q = 0, \quad \text{where} \quad Q \stackrel{\mathrm{def}}{=} v_x^{\mathrm{L}} + \left(\frac{fb}{N^2}\right)_z + \frac{v_z^{\mathrm{S}} b_x}{N^2}.$$

Initial waveless state

$$Q_0 = v_{0x} + \left(\frac{fb_0}{N^2}\right)_z$$

prescribed, with

 $fv_0 = p_{0x}$ $b_0 = p_{0z}$

$$Q_0 = Q_1$$

Final wavy state

$$Q_1 = v_{1x}^{\mathrm{L}} + \left(\frac{fb_1}{N^2}\right)_z + \frac{v_z^{\mathrm{S}}b_{1x}}{N^2}$$

unknown!

$$fv_1^{\rm L} = p_{1x},$$

 $b_1 = p_{1z} + f^{-1}v_z^{\rm S}p_{1x}.$