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The stability properties and stationary statistics of inviscid barotropic flow over 
topography are examined. Minimum enstrophy states have potential vorticity 
proportional to the streamfunction and are nonlinearly stable ; correspondingly, 
canonical equilibrium based on energy and enstrophy conservation predicts mean 
potential vorticity is proportional to the mean streamfunction. It is demonstrated 
that in the limit of infinite resolution the canonical mean state is statistically sharp, 
that is, without any eddy energy on any scale, and is identical to the nonlinearly 
stable minimum enstrophy state. Special attention is given to the interaction between 
small scales and a dynamically evolving large-scale flow. On the b-plane, these stable 
flows have a westward large-scale component. Possibilities for a general relation 
between inviscid statistical equilibrium and nonlinear stability theory are examined. 

1. Introduction 
From the statistical study of the inviscid flow, there emerges an interesting 

correspondence between the canonical equilibrium theory and nonlinear stability 
theory as developed by Arnol’d (1965,1969). To the extent that ergodic theory applies 
and long-term averages may be calculated from ensemble means, we should anticipate 
some such correspondence, simply because we would expect a system near a stable 
state to remain near it and reflect this in the time average. Our presentation develops 
both theories side by side, and attempts to show that the general stability theory 
implies the need for considering inviscid statistical theory in a more general form than 
has traditionally been the case in macroscopic fluid dynamics. 

The specific model which we investigate here is barotropic quasi-geostrophic flow 
over topography on a /?-plane for which there is a strong scale separation between 
the large-scale flow and the eddies. This model, which is a flat geometry approxima- 
tion to flow over topography on a rotating sphere, has been of particular importance 
in the study of blocking (cf. Hart 1979). The large-scale motion is represented by a 
uniform zonal flow with the dynamical coupling to the eddies produced by form drag. 
It is found that the statistics of this model are very similar to the results for inviscid 
flow on a sphere where the dynamics of the zonal flow derive directly from the Euler 
equation in spherical geometry. The model can also be considered a representation 
of the local interaction between small-scale topographic features and large-scale flow 
in a large basin. 

To a large degree many of the details of what is to follow are modifications of the 

6-2 



158 G. F. Carnevale and J. S. Frederiksen 

statistics for flow over a fixed topography on an f-plane with no explicit ‘large-scale’ 
mean flow. So we begin by presenting the results for this simple model and then 
introduce the necessary modifications for the more complicated model with large 
scales. 

The quasi-geostrophic equation for flow on the f-plane is simply the advection of 

potential vorticity aq -+V.(uq) = 0, 
at 

by the divergenceless velocity field, u, which can be 

(1.1) 

written in terms of a stream- 
function, $, as 

Assuming that the variation in bottom topography, A H ,  is small relative to the total 
depth, D ,  the potential vorticity is given by 

q = V2$+h, (1.2) 

where h is the spatial variation of the height of the bottom topography relative to 
the total depth in units of the Coriolis parameter f: 

AH 
h(x,y) = f  7. 

It will also’be convenient to represent the evolution equation as 

%+ at J($,q) = 0, 

where J, the Jacobian, is defined by 
a$ aq J($,q) =------. ax ay ay ax 

For a derivation and discussion of the range of validity of this equation see, for 
example, Pedlosky (1979). Throughout what follows we assume periodic boundary 
conditions on $ and h in both directions x and y. 

For our purposes, the most important aspect of the evolution equation is its set 
of integral conservation laws. The conservation of potential vorticity on fluid 
particles expressed by ( 1 . 1 )  implies the conservation of all integrals 

JJF(,)dXdY, 

were F(q)  is any function of q. That this is so with periodic boundary conditions is 
demonstrated directly from (1  . l )  and the fact that q here is also periodic. Of all these 
ktegrals, the most important is the quadratic invariant, the ‘potential enstrophy ’ : 

Q = - 1 J[q2dxdy. 
2 

( 1 . 4 ~ )  

The only other invariant of the flow that is quadratic in $ is the total energy, 

(1.4b) 

Based on the existence of these quadratic invariants, nonlinear stability theory (cf. 
Amol’d 1969) proves stability for the stationary state determined by 
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where certain restrictions are imposed on the proportionality constant p. On the other 
hand, canonical statistical theory for a finite resolution version of the vorticity 
equation predicts that the ensemble average streamfunction satisfies (Salmon, 
Holloway & Hendershott 1976) 

where the constant p is in general different from the constant in the previous equation. 
The correspondence between these results is quite simply related to the fact that for 
this case both theories are based entirely on the conservation of energy and potential 
enstrophy (cf. Purini & Salusti 1984). In $4 we show how these ‘states’ become 
equivalent in the limit of infinite resolution (i.e. no ultraviolet spectral truncation). 

In $5 we extend these results to flow on a p-plane with a uniform zonal flow. 
Energetics alone are sufficient to determine the local interaction of small (periodic) 
scales and the large-scale flow. The resulting equation for the large-scale zonal flow 
is the form drag equation. The coupled large-scale and small-scale equations conserve 
two invariants which are obtainable from the total energy and potential enstrophy 
via a two-scale analysis. Related investigations for unbounded flow on a sphere with 
finite resolution can be found in Frederiksen (1982) and Frederiksen & Carnevale 
(1986). 

The comparison between nonlinear stability theory and canonical statistical 
mechanics raises some fundamental questions. The stability theory is far more general 
than the case of the solution (1.5) would suggest. The proof of the stability of that 
solution is based solely on energy and enstrophy conservation, but the full theory, 
which can treat a much wider class of solutions, is based on all possible conserved 
quantities of which there are an infinity for this dynamics (cf. Holm et al. 1985). 
Statistical equilibrium theory can also be extended in a similar way. Although there 
have been many arguments in favour of inviscid statistics based only on energy and 
enstrophy conservation, it would seem clear in the light of the following discussion 
that that cannot be defended in all cases. In  $6 we investigate how the application 
of canonical equilibrium in a more general form may complete the correspondence 
with the general stability theory. 

We begin our treatment with a review of the stability and statistical theories in 
$$2 and 3. 

p ( $ )  = (q>, (1.6) 

2. Nonlinear stability 
Euler’s equation can be written as 

aq -+PV$ at x vq = 0, 

in which form it becomes obvious that stationary solutions are such that the gradient 
of the streamfunction is always parallel to the gradient of q. Thus stationary solutions 
locally have the general form + = F(d, (2.2) 

where F can be an arbitrary function of q (cf. Fofonoff 1954) - the definition in terms 
of the derivative F’(q) = dF/dq is for later convenience. The.simplest non-trivial such 
relationship is 

1111. = q 9  (2.3) 

that is p$ = Vz$ + h, (2.4) 
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-kf -k: -kl -k: 
FIGURE 1. Energy in the stationary state q = p$. Schematic sketch of the relation between the total 
energy and the parameterp as given by ( 2 . 6 ~ ) .  The topography is assumed to have non-zero spectral 
amplitudes only in the wavenumber range from k- to k,. A discrete spectral representation is 
assumed with resolved wavenumbers only in the range from k, to k,. The solutions II." are 
nonlinearly stable for all p > - ki (also for all p < - k: but these do not obtain in the physical limit 
kl+ m). There is an energy cutoff, E( - k:), above which there can be no physically relevant stable 
stationary state of this family. 

withp a constant. The solution to this equation, which we shall denote by 9" is readily 
obtained by Fourier transformation : 

This well-known solution has been investigated in some detail by Bretherton & 
Haidvogel (1976) among others. Here we shall expand on some particular details of 
this result that are relevant to the questions at  hand. 

All other quantities being equal, the energy and potential enstrophy of this solution 
can be viewed as a function of the parameter p : 

( 2 . 6 ~ )  

(2 .6b)  

For the following discussion we shall assume an artificial high-wavenumber trunca- 
tion a t  k,,, = k,. Also there is a lower wavenumber cutoff k, defined by the size of 
the periodic domain. Thus only wavevectors such that ki < k2 < k: are allowed, as 
would indeed be the case in a numerical simulation of the flow. The restriction to 
finite k, will be relaxed in $4. 

In general the function ES(,u) will have many discrete positive infinity points- 
one for each 'excited' wavenumber of the topography. For concreteness we begin 
the analysis by assuming the largest, k,, and smallest, k- ,  wavenumbers of the 
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topography fall strictly between the allowed limits on k (i.e. k, < k- < k ,  < k J .  Then 
the schematic in figure 1 represents the qualitative behaviour of @(p) .  

Note that for a given energy E there are in general multiple stationary solutions 
p(E).  Not all the possible solutions need be stable. However, by using the method 
of Amol'd (1969)) one can demonstrate rather simply that there are two parameter 
regimes for which the flow is stable: 

p > -k& (2 .7~)  

and /A < -k:. (2.7b) 

This method involves defining a norm in which an arbitrary perturbation of the 
stationary state remains bounded for all time. The result is referred to as nonlinear 
stability. In  this case the norm is obtained simply by calculating the energy and 
enstrophy in the perturbed state. We write the perturbed state as 

$ = Il."+S$. 

The norm is 

Q -  QS + P ( E - - P )  

This last line is obtained by using the definition (2.2) for II." and an integration by 
parts. Since Q and E are constants of motion this last quantity is also conserved by 
the full nonlinear dynamics. In  a Fourier representation this invariant is 

Q-QS+p(E-Es)  = + E k Z ( k 2 + p )  18$k12. (2.9) 
k 

Thus for p in the range defined in (2.7) each term in the series is of the same definite 
sign, and hence we have defined a norm which is constant for all time. By this measure 
then, no matter how large the initial perturbation is it can never grow (or decay for 
that matter). 

This nonlinear stability result implies nothing about the stability for the rest of 
the range of p ;  that would have to be checked by other means such as linear stability 
calculation (for flow on a sphere Frederiksen & Carnevale (1985) find linear instability 
for the analogous range). Nevertheless, even if the stationary state turns out to be 
unstable for a particular value of ,u the constancy of the quadratic quantity in (2.5) 
places strong restrictions on the manner in which the instability can develop as has 
been emphasized in the work of Vallis (1985) and Petroni, Pierini & Vulpiani (1986). 

The analysis of Bretherton & Haidvogel(i976) is based on the fact that the branch 
of solutions with ,u > - kt represents solutions with minimal potential enstrophy Q 
for a given energy E. This is shown by taking the first and second functional variations 
of Q +pE, where p plays the role of a Lagrange multiplier attached to the given value 
of E: 

and (2.11) 
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The vanishing of the first variation actually defmes the stationary solution (2.3), and 
the positivity of the second variation for y > - k i  implies minimality. Also note that 
the branch with y < - k? represents a maximum enstrophy branch. Alternatively the 
solution in the stable range with positive (negative) p has minimum (maximum) 
energy for a given Q as can be seen from the same variational equations. These points 
are also obvious directly from (2.9). 

Although the branch with y < - k: is mathematically interesting, it does not 
survive in the physically interesting limit k ,  + a. The only nonlinear stable solutions 
in this limit are on the minimum enstrophy branch. For our purposes it is worth 
pointing out at this point that for energy sufficiently large there may be no stable 
solution a t  all. For example if there is no topography of wavenumber k,, then Es( - k i )  
is finite and there is no nonlinear stable minimum enstrophy solution. A similar 
consideration holds for the maximum enstrophy branch. Nevertheless an ensemble 
average of the flow, even with E too large to be nonlinearly stable, will have a mean 
flow which is nonlinearly stable as discussed in the next section. 

Finally, let us emphasize that since these flows are inviscid, a perturbation to the 
stationary solution, even if it  is stable, can never decay. In fact, as noted above 
the constancy of the norm implies the perturbation is always bounded away from the 
unperturbed state. Furthermore, as will be demonstrated in the next section, the 
ensemble average and presumably the long time mean of the perturbation 6$ is also 
non-vanishing - the fluctuations about the stable state have non-vanishing expecta- 
tion (for finite resolution). 

3. Inviscid statistical equilibrium 
The inviscid statistical mechanics of quasi-geostrophic flow over topography is 

developed in Salmon et al. (1976). A prerequisite for such a statistical treatment is 
that the condition for Liouville's theorem be satisfied, that is, the motion in the phase 
space of the chosen variables must be incompressible. For our problem it is convenient 
to use the Fourier components of the streamfunction $k or equivalently the relative 
vorticity (k  = - k2$k. The equation of motion for these variables is given by 

where the interaction coefficient is 

Note that 

for all p and q, or in other words there is no self interaction among Fourier modes; 
this is sufficient for incompressibility in phase space, that is 

Here the set K is a reduced set of wavenumbers which takes into account the correct 
enumeration of independent degrees of freedom. The point is that we must avoid the 
redundancy implied in the Hermiticity constraint 

$k = @:k, (3.5) 
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which follows from the reality of $(x, y ) .  This may be accomplished by taking K to 
be the set of wavevectors such that for each k which appears in the list of the 
corresponding -k does not appear. Here the real and imaginary parts of the 
streamfunction amplitude are denoted by prime and double prime, and these are 
the actual phase space variables that we use throughout. When we write the 
probability distribution in this phase space, P({$k}), the independent variables are 
the real and imaginary parts of $ with k restricted to the set K. However, all the 
sums in what follows are unrestricted and include all wavevectora; the identification 
(3.5) remains implicitly understood. 

It is interesting to note that the $'s are not canonical variables even though the 
system is Hamiltonian in the sense that a transformation to canonical variables is 
possible. The important thing is that the @'s form an incompressible phase space so 
the methods of statistical mechanics can be applied directly in these variables. This 
will permit exact closed-form analytical results, whereas the nonlinear transformation 
to canonical coordinates would make that impossible (cf. Salmon 1982 ; Henyey 
1983). 

The canonical equilibrium for quasi-geostrophic flow is traditionally based on the 
conservation of energy and potential enstrophy and can be expressed as 

P({$k}) oc e-aE-bQ. (3.6) 
For a general review of the theory of the application of equilibrium statistical 
mechanics to two-dimensional fluids see Kraichnan & Montgomery (1980) (also 
recommended are Basdevant & Sadourny 1975, and Onsag 1970). The use of the 
energy and enstrophy invariants alone usually raises many questions since the 
vorticity equation that we started from, (1 . l ) ,  conserves the integral of any function 
of the vorticity, not only potential enstrophy. An immediate response here is that 
(3.6) is the proper choice for the truncated dynamics because the finite resolution 
model does not conserve the higher-order vorticity integrals. Strictly speaking this 
is correct ; however, it  is not completely satisfying and we shall address this question 
further in $$6 and 7 ,  where we explore the consequences of generalizing (3.6) to 
include other invariants - in this model with periodic boundary conditions the 
conservation of total vorticity is a trivial modification and will not be explicitly 
included here. 

Because the distribution (3.6) is Gaussian its moments are readily calculated. The 
mean and variance are given by (cf. Salmon et al. 1976) 

1.2 

( 3 . 7 ~ )  

(3.7b) 

In  the present context, the first thing to note is that the functional form of ($) is 
the same as 

Interestingly, even though this ensemble represents a maximum entropy state (cf. 
Carnevale, Frisch & Salmon 1981 ; Montgomery 1976, 1985), the statistics are in 
general inhomogeneous and anisotropic and the average $ is non-trivial with as much 
structure as in the topography. However, all the anisotropy and inhomogeneity is 
contained in the mean field; that is, the fluctuating eddy energy given by (3.3) is 
isotropic and homogeneous independent of the mean field or underlying topography. 

as defined in the previous section with ,u replaced by a/b. 
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The parameters a and b are determined by the prescribed values of E and Q for 
the mean energy and potential enstrophy of the ensemble. The defining relations are 
implicit and take the form: 

I 

I 

( 3 . 8 ~ )  

(3.8b) 

For emphasis, the decomposition into mean and eddy terms is explicitly displayed 
in these expressions. Katz (1967) demonstrates that for all physically realizable E 
and Q these implicit equations have a unique solution a(E,  Q )  and b(E, Q). From (3.7 b)  
it  is clear that physical realizability implies that 

a+bP > 0, (3.9) 

for all allowed values of k. Thus the canonical equilibrium is such that with peQ E a/b 
we have peq > -ki if b > 0, 

,ueq < -k: if b < 0. 
(3.10) 

Therefore the values of ,ueq are restricted to precisely the same range as defined by 
the stable branches of ,us derived in the previous section. However, for a'given value 
of E, peq(E,Q) is not the same as ,uS(E) except when Q is an extremum (i.e. for 

Comparison of IP given by (2.6) to EeQ given by (3.8) shows that for ,u > - k,2 (the 
minimum enstrophy branch) we have for equal energies, E8 = EeQ, that ,us < peq 

and of course &eq 2 Q" = Qmin. Similarly for ,u < - ki we have ,ueq < ,us and 
Q 6 Q" = Q,,,. Thus an energy preserving perturbation to an equilibrium state has 
non-vanishing mean streamfunction. That is, since Q is an extremum in the stable 
state we have for the perturbed state Q 4 Qs and ,ueQ(E, Q) + pS(E) .  If ensemble 
averages can be replaced by time averages we then have that the long time average 
of the perturbed state differs from the stable state which was perturbed. Indeed the 
long time average of the perturbation cannot vanish. This is the case for the finite 
resolution model. In contrast, as we shall show in the next section, in the limit of 
infinite resolution the minimum enstrophy state and the canonical equilibrium are 
identical. 

Q = &"). 

4. Infinite resolution 
In this section we show that the statistical mechanical equilibrium state 'collapses ' 

onto a corresponding Arnol'd stable state in the limit of infinite resolution. That is, 
in the limit k , + m  the eddy energy vanishes at wavenumbers k, such that 
k, < k < 00 leaving the sharply defined minimum enstrophy state. 
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For the purpose of the following calculations we shall assume the wavenumber 
band from k, to k ,  is continuous so that we can convert the sums to integrals and 
obtain convenient closed form expressions for the eddy energy terms. The particulars 
of the calculation for the discrete case add little to the overall picture and will not 
be included here. Thus evaluating the expressions in (3.8), we have 

A k2+y+l- k2 lh&12 lJd2k ( y + k 2 ) 2 '  2b k i + y  2 
E = - l n L  

Q = z [ ( k : - k t ) - y  A l n ~ ] + ~ J ~ d 2 k  k2 +y ' lh&I2 
ki +P (,a + k2)2 ' 

where y = a/b  = yeq(E, Q).  Without the topographic terms these results are given in 
Fox & Orszag (1973) and Kraichnan (1975). 

We first consider the case where the is no topography on the smallest or largest 
allowed scales. The limit of infinite resolution in the absence of topography is 
discussed by Kraichnan (1975) and Basdevant & Sadourny (1975) ; here we show the 
modifications due to the presence of topography. If the parameters a and b both 
remain finite as k ,  + 00 then the eddy energy would diverge which is inconsistent for 
a prescribed finite E. Thus either a or b or both must diverge in this limit. We h d  
that (4.1) and (4.2) can be simultaneously satisfied with the ratio p remaining finite 
in this limit. The leading asymptotic terms are calculated by assuming a finite y and 
then calculating b. As may have been anticipated from our previous discussion, the 
form of the asymptotic result depends on the size of E relative to Es( - k i ) ,  which 
is the maximum possible energy of a minimum enstrophy state. The solution is broken 
into two cases: 

Case I .  E < E s ( - k i )  
y e q m  Q )  + y s m ,  (4.3a) 

(4.3b) 

(4.4b) 

If there were no topography this would reduce to the pure 'turbulence' problem, 
which is represented by case I1 with Es = 0 and &" = 0. That case is examined in 
Kraichnan (1975). Without topography all of the energy is to be found at k = k,, while 
the enstrophy is split with a portion ki E at k, and the rest at k = 00. 

With topography, case I is such that ($) becomes identical with and there is 
no eddy energy at any scale. The mean state ($) then has enstrophy QS which must 
be less than or equal to Q, since this is a minimum enstrophy state. Any amount of 
Q exceeding Qs appears at k = 00. To demonstrate this we compute the enstrophy 
contained in the spectrum from K to k,,  where K is such that k ,  < K < k, < 00 (recall 
k ,  is the highest wavenumber of the topography). Then we take the limit k, + 00 

followed by the limit K+ 00. Combining (4.2) and (4.3) for case I produces 
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For case 11, the energy E is larger than can be accommodated by a minimum 
enstrophy state. The canonical equilibrium establishes a mean flow with energy equal 
to that maximum allowed for a stable state. The excess energy, E-@(-k;), is 
deposited at the smallest wavenumber, k,. The excess enstrophy not contained in the 
mean field can be found in two places: a t  k, there is a net enstrophy of ki(E-@), 
and at k = 00 the remaining Q - Q" - ki(E - Es) is to be found. These assertions follow 
from (4.1), (4.2) and (4.4) as above: 

the eddy energy a t  k, is 

lim (lim dk $) 
K+ko kl+w 

= lirn (E-@(-k;)) 
K+ko 

= E-Es(-ki); 

the eddy enstrophy at  k, is 

and the eddy enstrophy a t  k = 03 is 

= Q - Q s -  ki(E- @( - ki)). (4.8) 

The restrictions on k- and k, can be relaxed without difficulty. Setting k, = k, 
causes no change in either case I or I1 (assuming the topography falls of sufficiently 
rapidly at  k = 00. Setting k- = k, yields E( - ki) = 00, and so case I1 no longer applies, 
but case I is unaltered. 

5. Flow on a /3-plane 
In most geophysical fluid contexts the problem of flow over topography also 

involves the effects of differential rotation rate and interaction with the large-scale 
flows that drive the system. For our purposes the /3-plane approximation will suffice 
to model the effects of differential rotation on synoptic scale flow features. It is 
interesting to consider how best to model the interaction of these 'small' scale 
features with large or basin scale features. Here we shall approach the problem from 
a view point which emphasizes the role of the integral invariants, although one can 
also derive the same result from a two-scale analysis (cf. Hart 1979, for completeness 
we provide such a derivation in Appendix A). 

We begin by considering periodic flow on a /?-plane. The evolution equation is then 
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With periodic conditions on h and +, this equation does not have a potential 
enstrophy invariant. The rate of change of the potential enstrophy in the ‘small 
scales ’ is given by 

dt 2 JJ ([+ h)2 dz dy = - p 

and the rate of change of the full potential enstrophy including the large-scale 
variation py is given by 

where the scale of the periodic domain, 1, is hereafter taken to be unity. As an aside, 
note that if h E 0 then the relative enstrophy (5.2) is conserved on the periodic 
/3-plane; this implies that the canonical statistics of the periodic /I-plane are 
independent of /3. 

The loss of the enstrophy invariant when topography is present can be circum- 
vented by explicitly including large-scale flow. A self-consistent model can be 
achieved by incorporating a large-scale easewest flow U .  The full streamfunction is 
now Y = $- Uy.  The resulting evolution equaton for the ‘small scales’ then is 

3 + J ( @ -  at U y , [ + h + ) y )  = 0. (5.4) 

Of course, we still need an evolution equation for U .  If U is simply held fixed then 
the energy is no longer conserved. The rate of change of energy in the ‘small scales’ 
is given by 

d‘ JJ (V$)2dxdy = - U 
dt 2 (5.5) 

The potential enstrophy rate equations (5.2) and (5.3) are unaffected by the addition 
of U ;  thus with constant U (5.4) conserves neither energy nor potential enstrophy. 
Actually there is still a quadratic invariant for this system, but it is a combination 
of energy and enstrophy ; that conserved quantity is 

as can be seen by comparing (5.2) with (5.5) (Vallis 1985). 
From (5.5) we immediately see that the conservation of the full energy, 

is achieved if U.evo1ves according to 

This also recovers the conservation of potential enstrophy defined by 

It is shown in Appendix A that these forms for E and Q also result from a two-scale 
analysis. A large-scale northward flow, V, may also be included in the model without 



168 G. F. Carnevale and J .  S. Frederiksen 

difficulty. The conserved enstrophy, Q,, would be unaltered since there is a no 
large-scale variation of the Coriolis parameter to couple to V ,  while the energy, E,, 
would include additionally ?j Fn, The conservation laws then provide an evolution 
equation for V analogous to (5.8). Carrying this modification through the following 
discussion would add little and is neglected for simplicity. 

Thus (5.4) and (5.8) provide a closed system describing the interaction between 
large and small scales and maintaining the important quadratic invariants of the 
flow. These are in essence the same equations used by Hart (1979) and Charney & 
DeVore (1979) in the study of multiple equilibria flows. U plays the role of the Y i  
spherical harmonics for flow on a sphere, and there is a close correspondence between 
the statistics of the inviscid zonal flow on the sphere and the statistics of U (cf. 
Frederiksen 1982 ; Frederiksen & Carnevale 1986). 

Building on our previous results for the f-plane we can quickly develop the 
nonlinear stability and canonical equilibrium of this model. According to (5.4) the 
stationary solution must be such that the gradient of the full streamfunction, 
'YE $- U y ,  is everywhere parallel to the gradient of q = [+ h + p y .  The simplest 
possible non-trivial solution is again the linear proportionality, y Y  = C=h+Py,  or 

p(lc/"-USy) = V 2 p + h + P y .  (5.10) more explicitly 

Equating the periodic and large-scale pieces separately we have 

(5.11) 

and ,up = V 2 p + h .  

Substituting 9" in (5.8) yields the consistency check U = 0 - this is carried out most 
simply in the Fourier representation. We can again view the parameterp as a function 
of E or vice versa. The definitions of lP and Qs are now modified to 

and 

(5.12~) 

(5.12b) 

These formulae may be interpreted as modifications in which a k = 0 component has 
been added to the topography. Thus, since we now have topography at the largest 
allowed scale there is always an allowed minimum enstrophy solution for any given 
E ;  this is made clear in the modified schematic in figure 2 ,  where k,, k-, k,, and k ,  
retain there previous definitions referring only to the periodic functions $ and h.  
There is a 'spectral gap' between the large-scale, k = 0, and the scales with k 2 k,. 

Nonlinear stability is established by adding the large-scale terms to the computa- 
tion of the perturbation energy and enstrophy. The result is 

QIp-QS+p(Ey-E) +Z k 2 ( k 2 + y )  16$k12+ay(8u)2, (5.13) 

where the relation (5.11) has been used to obtain this compact form. This is positive 
definite if y > 0 and negative definite if y < - kf . Thus the stability range is decreased 
by shifting the largest scale from k, to k = 0. Note that the positive y branch 
corresponds to negative Us (i.e. westward flow). In the high resolution limit, k, + CX) 

the stable eastward flow branch no longer exists. 

k 
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I I I I 

-k: -k: -kP -k: ru 
FIQURE 2. Energy in the stationary state q = pY.  As in figure 1 except here a large-scale flow (U) 
and ‘topography’ (py) are included. The range of the physically relevant nonlinearly stable 
solutions is reduced to p > 0. There is no energy cutoff, that is, for any given energy there is a 
corresponding nonlinearly stable state. 

We can compare these stability results with the canonical statistical equilibrium. 
The probability distribution is now defined by 

f‘({$k}, u) 0~ exp {-aEp-bQpI 

txexp !ja U + ; P  exp{-aE+-bQ+}. I (  (5.14) 

Since this distribution is Gaussian the calculation of the averages is again straight- 
forward. The average and variance of $ are given by the formulae previously 
displayed, (3.7). The statistics of the large-scale flow are characterized completely by 

where again peg = a/b,  and 

(5.15) 

(5.16) 

Paradoxically, these results for the statistics of U do not explicitly involve the 
topography h. In  the limit h+O, (5.15) unambiguously predicts a mean U ;  however, 
for h identically zero, U is an invariant with arbitrary value. For the ideal case with 
h identically zero, the proper distribution allows U to be independently specified 
unlike (5.14). The point is that the presence of h, no matter how small, breaks the 
east-west Galilean invarianbe and U will equilibrate in accordance with (5.16) and 
(5.17). However, the smaller the value of h, the longer it will take for the equilibrption 
process to approximate the t = a0 statistics. 

Note that (5.16) implies that a > 0 and similarly the positivity of the eddy energy 
implies a+bk2 > 0 for all k from k, to k,. Combining these restrictions we see that 
the average solutions have either peg > 0 (westward flow of arbitrary amplitude) or 
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peQ < - k: (eastward flow of small amplitude). This parameter range for equilibrium 
is again the same as for nonlinear stability. 

The infinite resolution limit is also only a slight modification of the previous result. 
Since U acts as a k = 0 flow and by is essentially a k = 0 topography component, there 
is always a minimum enstrophy solution as pointed out above. Thus the asymptotic 
limit is given by case I of the previous section. For a given total energy E = E ,  and 
potential enstrophy Q = Q ,  we have: 

peq(E, Q )  +pS(E) ,  

(5.17) 

Thus in this limit all of the energy is contained in the mean flow, with the residual 
potential enstrophy again found at k = 00 and no eddy energy at any finite scale: 

(5.18) 

Thus at all finite scales the canonical equilibrium is statistically sharp and equivalent 
to the nonlinearly stable state of the same energy. 

6. A general relationship between stability and canonical equilibrium 
In  the case of the family of stationary solutions given by $ = (l/,u) q, we have 

demonstrated a relation between nonlinear stability theory and canonical equilibrium 
which becomes an equivalence in the limit of infinite resolution. This one example 
leads us to investigate the possiblity of a more general relationship. For this 
discussion we put aside the details of the definition of q and the particulars of the 
boundary conditions on $. The general stationary state is a solution of 

p = P ' ( q S ) .  (6.1) 

In the case with F = ?$/p, the stability is ensured by the conservation of energy and 
enstrophy. For the stability of the general steady state we examine energy and the 
general vorticity integral invariant defined by QF = j j  F(q) .  As emphasized by 
Bretherton & Haidvogel(1976), the general stationary state (6.1) is an extremal point 
of QF for a given energy E. As in (2.8), we may try to find a norm which is preserved 
for all time for arbitrary initial perturbation. Following the analogous calculation in 
$2, we now have 

I E -  ES + QF - Q$ 

= ISdzdyV6$.VP+:(V6$)"+F(qS) Gq+iF"(qs) 6q2+0(6q3) 

= I JJ dz dy 6q( - V-2 + F"(qS)) 6q + 0(6q3). 
2 
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The integral quadratic in 6q is actually conserved by the linearized dynamics (see 
Appendix B for details), and hence we immediately have linear stability if this 
quadratic piece is of definite sign, that is, if the operator 

- v - 2 + F( qs ) 

is of definite sign. Note that the integral quadratic in 6q is not in general conserved 
by the full nonlinear dynamics ; nevertheless, useful sufficient conditions for nonlinear 
stability can still be obtained as demonstrated by Arnol'd (1965, 1969). One result 
is that positive definiteness of this quadratic integral is in fact also sufficient for 
nonlinear stability. It follows that positivity of F ( q s )  for all @(z, y )  is also sufficient 
for nonlinear stability (Arnol'd 1969, theorem 1). If F" (q8) is positive for all space, the 
integral quadratic in 6q is bounded by the 'size' (as defined below) of the initial 
perturbation for all time. We shall concentrate here on this result which is perhaps 
the simplest to deal with in terms of its implications for the connection of inviscid 
statistical equilibrium and stability. 

We begin by reviewing Arnol'd's (1969) argument. Assume that F is such that 

0 < c < F(qS)  < c < a. (6.3) 

Arnol'd uses the richness of the infinity of dynamical invariants in two-dimensional 
flow to create a measure of the deviation from the stationary state which is bounded 
for all time no matter how large the initial perturbation. First, note that for a given 
stationary state qs there is a freedom in the choice of the function F that is used in 
the defining relation (6.1). In fact, F may be replaced by any function, say G, which 
agrees with F over the range of values, qkin < qs < qkax, taken on by the solutiori 
qs. Thus may be equivalently defined as the appropriate solution to 

9+ = G'(q).  (6.1') 

Futhermore, we can choose a G(q) which is the same as F over the range of qs and 
which also satisfies the inequality (6.3) for all q.  That is, we can choose 

0 < c < G"(q) < C < 00, (6.4) 

for all q. In fact, we could further restrict G to be smooth through its second 
derivative. For example, a specific choice might be 

(6.5) I F(q$n) + F'(&in) (q-qkin) + W ( q k i n )  (q-qkin12 ( P  < &in), 

G(q) = F(q) (qkin < P &ax), I F(qkax) +F'(qkax) (q-qkax) +$F"(qkax) (q-Pkax)2 (&ax < q ) .  

This specific construction is given for clarity; all we will use below is the smoothness 
through the second derivative. If we replace QF by QG = s [C(q)  in (6.2)' we can then 
make an estimate of the resulting terms of O(6q3). Integrating over q twice in (6.4), 
we obtain 

For convenience define 

From (6.6) it then follows that 
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for any perturbation 6$ of $.", Nonlinear stability then follows by the dynamical 
invariance of H (see Arnol'd 1969 for details). That is, Qc is invariant and thus so 
is H; then since each inequality in (6.8) holds for all time we can evaluate the right- 
hand inequality a t  the initial time, t = 0, and this will bound the left-hand side 
evaluated at any time t .  This yields 

Thus the quantity on the left is a norm which is bounded for all time by the initial 
deviation of the initial conditions as measured by the quantity on the right. This holds 
for all perturbations no matter how large and is thus considerably stronger than linear 
stability. 

Note that although the choice of G is not unique, the solution to (6.1') is unique. 
Since G satisfies (6.4) for all q any solution to (6.1') satisfies (6.8), which then proves 
that once the choice of G is made (6.1') has only one solution, qs. This can be seen 
replacing $ in (6.8) by the alternate solution and then interchanging the roles of the 
two solutions. The sign of AH would change under this interchange, but the bounds 
would be the same positive numbers, thus providing a contradiction. 

We now turn to the statistical theory. Canonical equilibrium theory based on 
energy and enstrophy conservation has only one possible mean state: 

(6.10) 

Since there are actually an infinity of conserved vorticity integrals, choosing only the 
enstrophy to  define the canonical statistics has always been a troublesome point. 
Nonlinear stability theory presents us with an inconsistency in this statistical theory. 
To make this argument as forcefully as possible, consider the following thought 
experiment. For sake of argument, assume F' is nonlinear and the stability criterion 
(6.3) is satisfied. Apply a small perturbation to  the stationary state (6.1), and perform 
a long-term average of the evolution. It would be inconsistent to predict that  the 
average would produce the result (6.10) when Arnol'd's theorem guarantees that $ 
can never be far from (6.1) especially considering very small initial perturbations. 

These considerations indicate that restricting canonical equilibrium to be based 
only on energy and enstrophy conservation is not valid for all situations. In  fact, 
general equilibrium statistical theory suggests it is important to consider all possible 
invariants. We may consider a generalization of the canonical equilibrium in which 
invariants other than energy and enstrophy are used. Here we shall demonstrate that  
it is possible to construct more general canonical distributions which are consistent 
with the existence of nonlinearly stable states other than the minimum enstrophy 
state. With H and G defined as above, we consider the stationary distribution 

P = N e-aH. (6.11) 

Here for the sake of argument we are absorbing the multiplier b in the definition of 
G. The inequality (6.8) assures that the distribution is normalizable, and N is fixed 
by unit normalization. Furthermore, normalizability requires that a be positive. 
Equation (6 .8)  immediately leads to 

Nexp{-a(HS+CJJ6qz)} < P <  Nexp{-a(H"+cjJSq')}. (6.12) 

Thus P achieves its global maximum when 6q vanishes everywhere - the state is 
the unique state of maximum likelihood of the distribution (6.11). Thus there is a 
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direct correspondence between the stationary state satisfying Arnold’s sufficient 
stability criterion (6.3) and .the state of maximum likelihood of this distribution 
(6.1 1). 

The equation for the mean streamfunction for distribution (6.1 1) is easily obtained. 
It is convenient to change variables from the Fourier amplitudes used above to the 
configuration space relative vorticity C(r) as the independent variable defining the 
incompressible phase space. This is valid as can be seen by noting that the Jacobian 
of the transformation between the sets of variables is a constant. For normalizability, 
P({) must vanish sufficiently rapidly in the limit of large 14 ; an equation for the mean 
streamfunction can be generated easily by using this property of P. We begin by 
calculating the integral of the total derivative of P over all phase space: 

Therefore, 

(6.13) 

(6.14) 

Thus we need the variation of E, which can be calculated as follows 

= -@PI (6.15) 

as well as the variational derivative of Q G  which is calculated according to 

= - JJ G ( q )  P(r  - r’) d2r’ 

= G ( q ) .  (6.16) 

Combining these calculations we have 

(@) = (Gk))’ (6.17) 

which is the average of the relation (6.1’). This correspondence between II.” and the 
average (V) is not an equivalence because one cannot equate (G(q)>  with G ( ( q ) ) .  
Equation (6.17) presents a closure problem - the average state in general can only 
be calculated by solving an infinite hierarchy of moment equations in a sequence of 
ascending degree, or approximately by some sort of closure scheme. It may be that 
for infinite resolution all energy is in the mean state as in the case with F linear, 
and averages of products could then be replaced by products of averages yielding an 
equivalence in the infinite resolution limit. This is plausible because as noted above 
the solution qs is a unique solution independent of the details of the particular choice 
of G. 

There is an inconsistency involved in considering the distribution (6.1 1) for finite 



174 G. F. Carnevale and J .  8. Frederiksen 

resolution that we have so far not mentioned. The problem is that  only linear and 
quadratic vorticity invariants and energy can be expected to survive as dynamics1 
invariants with the ultraviolet spectral truncation which is inherent in finite 
resolution simulation (cf. Seyler et at. 1975; Hald 1976). Moreover, the solutions of 
II. = F ( q )  for other than linear F' are not even stationary in typical finite resolution 
models. Thus technically the only correct choice for the canonical statistics of the 
finite resolution dynamics is the energy-nstrophy ensemble. It would be incorrect, 
however, to try to  deduce the properties of the continuum from a limit based only 
on the energy-nstrophy ensemble since the effects of the other invariants are then 
not recoverable. We have been proceeding rather from a hypothetical construct which 
maintains the relevant invariants at any resolution so as not to preclude valid 
continuum states. On the other hand, i t  is also interesting to consider simulations 
a t  high resolution and enquire about the conditions under which the effects of the 
conservation of the higher-order invariants might be significant for long (but finite) 
times. 

The distribution (6.1 1)  was designed to  provide a normalizable statistical distri- 
bution for the consideration of perturbations from a stable state which has F ( q S )  
positive. The condition of normalizability alone however is not strong enough to  
indicate what the appropriate generalization of canonical equilibrium should be. 

(6.18) 
Consider the distribution 

P cc exp{-a(E+QF)}. 

for arbitrary F .  The first question, of course, is whether it is normalizable; for the 
present we assume that i t  is. The assumption of normalizability alone produces some 
interesting results. The calculation (6.13) would then produce ($) = ( F ' ( q ) ) ,  
assuming thew averages exist. I n  addition normalizability also implies the definite- 
ness of the operator { - V2 + F }  in ensemble average; the calculation of the second 
variational derivative of P produces this result (see Appendix C).  I n  the limit of 
infinite resolution we might hope that all the statistical weight would fall into the 
stationary states of (6.1). Again if there were only one solution for the given F we 
would expect the statistical mean to  become equivalent to  that unique stationary 
state. Of course, if there are multiple stable stationary solutions such an equivalence 
could not obtain since the averages would be a weighted sum over them all. More 
serious is the fact that tbe prescription (6.18) may have local minima at  stable 
stationary points. It follows from the first functional variation of { E +  QF} that each 
stationary state is either an extremum or saddle of P. If the second variation is of 
definite sign then we have stability (at least in the linear sense) ; however, if that  sign 
is.posibive for one solution and negative for another, then one or the other must be 
a state of minimal probability (locally in function space) in the distribution (6.18), 
which is inconsistent. These questions of normalizability and the proper extremal 
properties of the distribution for stable stationary states can be circumvented by 
using the microcanonical distribution 

a(E-  Eo) S(QF -QFo)' 

where the subscript 0 indicates assigned or initial values. This distribution is always 
normalizable. In  the limit of a large number of degrees of freedom, i t  may be possible 
to asymptotically obtain the appropriate generalized canonical equilibrium from the 
microcanonical (cf. Salmon et al. 1976 Appendix A). However, there is still the 
ambiguity of which invariant QF to use, and then why should not more than one be 
included. 
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7. Discussion 
We have examined some properties of the inviscid equilibrium statistics of flow 

over topography. A general equivalence between nonlinear stability theory and 
inviscid statistical theory in the infinite resolution limit is strongly suggested. In the 
specific case of the minimum enstrophy state, we have demonstrated such an 
equivalence for barotropic flow over topography (including the case driven by 
dynamically interacting large-scale flow). We have discussed some of the possibilities 
as well as difficulties involved in demonstrating this equivalence in its most general 
form. These considerations raise many questions about the formulation of inviscid 
statistical mechanics. We shall conclude by noting some further interesting questions. 

It should be clear that in the calculation of the 'infinite resolution limit' of the 
energy-nstrophy ensemble, we have assumed a limiting process in which the time 
is first allowed to go to infinity for a finite resolution. Then, does our result have 
anything to do with the long-time behaviour of the infinite resolution flow? In 
two-dimensions with analytic initial conditions there are no finite time singularities, 
which implies that the conservation laws apply for all time (cf. Rose & Sulem 1978). 
Consider a flow which initially has an energy spectrum with an ultraviolet cutoff. In 
a turbulence scenario, scrambling of phase information persists for all time, and 
hence, with the conservation of energy and enstrophy, the mechanism for a tendency 
toward canonical equilibrium operates at  all times no matter what the resolution. 
The turbulent flow develops with the excitation of higher and higher scales, and a 
self-similar cascade is established at high wavenumbers. The spectrum never has the 
shape of a finite resolution equilibrium spectrum; however, in such a self-similar 
cascade, the eddy energy at all but the largest scale tends to vanish as time 
approaches infinity. Thus a turbulent self-similar evolution would actually tend 
toward the infinite resolution limit of canonical equilibrium. However, it is possible 
that as the spectral energy density decreases, phase-locking will result in an 
asymptotic tendency toward a coherent structure that would not participate in the 
turbulent cascade and hence violate the statistical prediction. Whether the statistical 
theory can in fact be generalized to include this latter possibility is an intriguing 
question. 

Further questions are raised by a reappraisal of the arguments in support of the 
energy-nstrophy ensemble. One such argument is based on the phase space structure 
of the surfaces representing the higher-order vorticity invariants. The integral of any 
power of the potential vorticity is an invariant. In a spectral representation these 
invariants take the form : 

where the sum is over all n wavevectors. It seems plausible that, in contrast to the 
energy and enstrophy ellipsoids, the constant level surfaces of these invariants for 
n > 2 are very complicated. The presumption is that these complicated, interleaved 
hypersurfaces intersect the energy-enstrophy hypersurface in a way which samples 
that surface well, and so coarse-grained statistical averages are accurately obtained 
simply by averages over the intersection of the energy and enstrophy hypersurfaces. 
Then the argument is that the restriction to these higher-order invariant hyper- 
surfaces does not significantly affect the statistics. Numerical simulation of inviscid 
flow evolving from randomly generated initial conditions supports this picture in that 
the evolntion is toward the canonical equilibrium spectrum (Fox & Orszag 1973; 
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Basdevant & Sadourny 1975; Seyler et al. 1975; Kells & Orszag 1978; Carnevale 
1982). On the other hand the possible existence of nonlinearly stable flows is at 
variance with this picture of ‘ mixing’ on the energy-enstrophy hypersurface. With 
reasonably high resolution one might find non-mixing behaviour by choosing initial 
conditions near a stable equilibrium. An example which has motivated some of our 
considerations is the modon. A nonlinear stability theorem for this strongly nonlinear, 
dipolar, coherent structure remains elusive ; however, numerical simulations indicate 
that it has a remarkable degree of stability (McWilliams et al. 1981). Similarly on the 
f-plane we must consider the behaviour of stable minimum enstrophy vortices (Leith 
1984). Furthermore, Malanotte Rizzoli (1982) demonstrates that certain solitary 
waves propagating over rough topography persist indefinitely in long-term numerical 
simulations. Such resistance to relaxation to canonical equilibrium suggests that 
certain regions of the energy-nstrophy hypersurface do not effectively mix with the 
whole. Thus even though ‘most’ ensembles may be expected to relax toward the 
energy-enstrophy ensemble, there is a set for which an ensemble based on higher- 
order invariants seems to be required for a proper statistical treatment. 

Finally we note the work of Thompson (1974), who shows that the assumptions 
of spatially local dynamics and total vorticity, energy and enstrophy conservation 
imply the higher-order conservation laws. Clearly the assumption of spatial locality 
is very strong, but how it leads to the Euler equation from the low-order invariants 
is quite remarkable. The implications of this result for statistical mechanics are not 
clear to us ; however, we mention it here because it may eventually help elucidate 
the proper specification of statistics for flows near stable equilibria as discussed in 
§ 6. 

We hope to pursue the questions raised in this section in future work. 
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for their help at various stages in the development of the ideas presented here. 
One of us (G.F.C.) was supported by the Office of Naval Research (USN N00014- 
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Appendix A. Two-scale derivation of the form-drag equation 
Here we shall use the techniques of multiple scale analysis to obtain the equation 

of evolution of the large-scale velocity U which was derived above simply from energy 
conservation. This calculation expands on that given by Hart (1979). 

Anticipating the effect of the large-scale variation of the Coriolis parameter, we 
introduce a large-scale variable in the y-direction. Thus we take 

Y 1 =  Y, Y2 =eY, 

where e is a small parameter expressing the ratio of small scales tolarge (i.e. e = Z/L 
and y2 represents variation on the large scale). We then introduce the ordered 
decomposition 

(A 1) 
1 

h(z,y) = ; ~ , ~ Y 2 ~ + ~ , ~ ~ , Y , ~ Y 2 ~ + ~ ~ , ~ ~ ~ Y 1 , Y 2 ~ + ~ ~ ~ 2 ~ ,  



Stability and statistics of flow over topography 177 

where we include the large-scale variation of the Coriolis parameter in the ho term 
(i.e. ho = By2 so that ( l / e ) h o  = By). Also the same decomposition will be found 
adequate for 11.: 

(A 2) 
1 

9% Y)  = ; $O(Y2) + $lk Y1, Y2) + + 2 ( 2 ,  Y1, Y2) + W). 

Next we substitute these representations into the evolution equation 

V2$+ J($, V2$+ h) = 0. 

For a compact notation we introduce 
a a --, 

- aYa 

and v, = @,,al), 

with i = 1,2. Thus we have the Laplacian decomposed according to 

Substituting these decompositions into the evolution equation we obtain an ordered 
series of equations. The lowest non-trivial order gives 

The J, terms are full divergences in x and yl, and thus they do not contribute to the 
integral over the small-scale periodic domain, and similarly all the other terms in 
(A 6) which are derivatives in the periodic variables will not contribute. Integration 
over the periodic domain thus yields 

PI- 
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The last line is obtained after some manipulation and integration by parts. Now we 
integrate the y2 variable once to obtain 

where in the unforced problem we take the integration constant C to be zero. Thus 
in the limit 

@o+- UY2, 

which we can only take at  this point, we have the desired result : 

It should be possible to derive the modified energy and potential enstrophy 
conservation laws directly by writing these quantities for the fields in this two-scale 
representation. The energy per unit area is given by 

1 1  

We can write the integral over all space as a sum of integrals over the small-scale 
domains. By assumption, in the integrand of any integral over an area 1 x 1 the 
dependence on the y2 variable is weak. The total integral is evaluated as a sum of 
L2/Z2 such small-scale integrals. Assuming periodicity on the small scale then yields 

For the potential enstrophy per unit area we have 

1 1  L L  Q = ~ S J  0 0  dxdyq2, 

Here C is just a constant coming from the static integrals involving only h. For the 
term h, 3; Po we are forced into a somewhat ad hoc treatment. To obtain the form 
we desire requires an integration by parts over the whole space; although we take 
the local limiting form to be $o+- Uy2,  we must assume boundary terms bring @ 
to 0 so we can eliminate the boundary integral. The other terms are handled as in 
the energy calculation above. Thus 

Appendix B. Conservation laws of the linearized dynamics 
Consider the evolution of the flow 

aq -+ J ( @ ,  q) = 0, at 
linearized about the stationary state 
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Substituting $ = p + 6$ into the evolution equation yields 

179 

_-  @-I at - -J(ll /"+S$,q+6q) 

= -J(F(qS) +6$, qs + 6q) 

= -J(6$,  qS) -F"(qS)J(qS, 6q)-J(6$, 69) 

= -J(qS, - 6$ + F"(qS) 6q) -J(S$-, 6q) 

= (%)lin-J(W, 

where 6q = V26$, and the linearized dynamics are determined by 

The invariance of the quadratic integral, 

in the linear dynamics can be tested by direct calculation with (B 1). Alternatively, 
more insight is gained by examining the nonlinear conservation laws order by order 
in the perturbation. The energy conservation law is 

dE 
- dt = - JJ d2r$V2$, 

Since the perturbation may be arbitrary, each of these brackets in the last line 
representing different orders in the perturbation must vanish independently. The first 
term shows that j j l l /"Sq is conserved by the linear dynamics. Now consider the 
vorticity invariants. The nonlinear dynamics conserves 

r = SJjd4y(d7 

where y is an arbitrary function. The conservation of r can also be written order by 
order in the perturbation: 

Again there must be an order by order cancellation, so that we immediately have 
that 

JJ Y(@) 6% 

is conserved by the linear dynamics; note that y is completely arbitrary and need 
have no relation to yP. Although these rate equations for E and r do not at second 
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order independently yield further linearly conserved quantities, the addition of their 
second-order terms with the identification y = F is such that the nonlinear part of 
the dynamics cancels identically. Thus we have that (B 2) is conserved by the linear 
dynamics. 

Appendix C. Calculation of ( - V2 + F”) 
We assume the distribution 

p exp { -a@+ Q F ) )  (C 1)  

is normalizable. The result is that  on average a( - V2 + F“] is positive. The calculation 
of the second variational derivative of P produces this result; that  is, we consider 

The operator is to be understood in terms of its action on an arbitrary test function. 
Explicitly we have for arbitrary q(r)  

or in a more illuminating form 

Thus the left-hand side is indeed positive for arbitrary test function q .  This identity 
is easily checked for the simple case with quadratic F by direct substitution of the 
canonical averages (3.7). 
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