


Inviscid 2D flow (periodic boundaries)
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advection of potential vorticity
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Quadratic Invariants
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q

2
dxdy
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Potential Enstrophy

Kinetic Energy

and many more invariants 
d

dt
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@tq +r · (vq) = 0



Section 2: Nonlinear Stability

µ = q = r2 + h
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+ ẑ · (r ⇥rq) = 0 r ||rq
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q1 ± �q

 1 ± � 

 s
k =

hk
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 = F 0(q)

non-trivial relationship is
locally



Quadratic Invariants (again)

k20 < k2 < k21

|hk|2 = 0 for k2+ < k2 < k2�

Potential Enstrophy 

Kinetic Energy
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non-zero 
modes of 

topography

multiple          for a 
given energy (not all 
necessarily stable) 

µ0s
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for
µ > �k20

µ < �k21
the perturbation doesn’t grow or decay
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Nonlinear Stability
Perturb the state to 
determine stability



 =  s + � 

for
µ > �k20

µ < �k21
the perturbation doesn’t grow or decay in time

Q�Q

s + µ(E � E

s) =
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⇥
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2 � (qs)2 + µ(r )2 � µ(r s)2
⇤

=
1

2

ZZ
dxdy

⇥
(r2( s + � ))2 + 2hr2

� � (r2
 

s)2 + µ(r( s + � ))2 � µ(r s)2
⇤

=
1

2

ZZ
dxdy

⇥
2qsr2

� + µ2r� ·r s + (r2
� )2 + µ(r� )2

⇤

=
1

2

ZZ
dxdy

⇥
(r2

� )2 + µ(r� )2
⇤
+

1

2

ZZ
dxdy

⇥
2qsr2

� � 2qsr2
� 

⇤

� 1

2

I

C
 

s(r� · n̂)dS

=
1

2

ZZ
dxdy

⇥
(r2

� )2 + µ(r� )2
⇤

=
1

2

X

k

k

2(k2 + µ)|� k|2

a miracle occurs

=
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single-signed

z}|{�Q+ µ�E

Nonlinear Stability
Perturb the state to 
determine stability

we don’t know anything about the rest of     thoughµ



Nonlinear Stability

�(Q+ µE) = �
X

k

k2(qk � µ k)� 
⇤
k

�2(Q+ µE) =
X

k

k2(k2 + µ)|� k|2

positive for    µ > �k20
minimum enstrophy branch

Recall that since flow is inviscid any perturbation does not 
decay, regardless of stability



Moving to Section 3

Inviscid statistical equilibrium



a bit of machinery is involved …
probability density depends on invariants of system

P ( k) / e�aE�bQ+...

ZZ
F (q)dxdy

let’s ignore the 
rest of these

h ki =
hk

(a/b) + k2

h(⇣k � h⇣ki)(⇣p � h⇣pi)i =
k2

a+ bk2
�k,�p

 s
k =

hk

µ+ k2
Recall from 

nonlinear stability

E =
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X
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k2|hk|2
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(a/b)2|hk|2

((a/b) + k2)2

a+ bk2 > 0
otherwise 

negative energy

for µeq ⌘ (a/b),
µeq > �k20 if b > 0

µeq < �k21 if b < 0

what are       ? a, b

-p is to denote complex 
conjugate



what does this mean?



Infinite Resolution
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Reminder k1 ! 1



Infinite Resolution

E =
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k2|hk|2

((a/b) + k2)2

Q =
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X
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a+ bk2
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(a/b)2|hk|2

((a/b) + k2)2

Reminder k1 ! 1

(No topography)

maximum energy of 
minimum enstrophy state



Infinite Resolution

k0 k1 ! 1
k

h 6= 0

k� k+

Q

no eddy energy

k0 k1 ! 1
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(E,Q)

(E, k20E) h = 0

E  Es(�k20) E � Es(�k20)

k0 k1 ! 1
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h 6= 0
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Q

remainder of enstrophy



Beta plane flow
@t⇣ + J( , ⇣ + h+ �y) = 0 Periodic on  , h
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dt
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(r )2dxdy = 0Energy is conserved

Small and large scale potential  
enstrophy are not conserved

Oh No!



Beta plane flow
@t⇣ + J( , ⇣ + h+ �y) = 0 Periodic on  , h

Conserved Quantity
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let’s do the same thing again
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+ ẑ · (r ⇥rq) = 0 r ||rq

 !  =  � Uy

q ! q = ⇣ + h+ �y

with a beta plane

without a beta plane

µ( s � Usy) = r2 s + h+ �y

µ s = r2 s + h

possible solution

possible solution



we have parts that are 
periodic and large scale parts

µ( s � Usy) = r2 s + h+ �y
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µ s = r2 s + h



Es(µ) =
1

2

�2

µ2
+

1

2

X

k

k2|hk|2

(µ+ k2)2

Qs(µ) = ��2

µ
+

1

2

X

k

µ2|hk|2

(µ+ k2)2



Nonlinear Stability (again)

z}|{�Q+ µ�E

> 0, for µ > 0

< 0, for µ < �k21

Physically 
relevant regime



Canonical equilibrium (again)

a > 0

a+ bk2 > 0

mean and variance of 
is same 

 



Canonical equilibrium (again)

a > 0

a+ bk2 > 0positive eddy energy

for µeq > 0 , hUi
for µeq < �k21, hUi

is large amplitude and westward

is small amplitude and eastward



Infinite Resolution (beta plane)
E = E , Q = Q 

k0 k1 ! 1
k

(E,Q)

(E , Q �Qres)

For

All energy goes to 
mean flow

For the same energy canonical 
equilibrium is equivalent to 

nonlinearly stable state



Section 6





Discussion
Is there some scheme that could be used to determine when 

to include the higher order invariants?





What does conservation of potential vorticity mean?

Salmon, R., ‘Lectures on Geophysical Fluid Dynamics’

f > 0, h > 0, q = q0

q = r2 + h, h(x, y) = f
�H

D



Canonical Equilibrium



Liouville’s Theorem
⇢12 = ⇢1⇢2

log ⇢12 = log ⇢1 + log ⇢2

log ⇢a = ↵a + �Ea( , q) + �Qa = ↵a � aE � bQ+ ...

Higher order moments of potential vorticity

⇢a = P ( k) / e�aE�bQ

h ki =
hk

(a/b) + k2

h(⇣k � h⇣ki)(⇣p � h⇣pi)i =
k2

a+ bk2
�k,�p

but what are    and    ? a b



Find     and    from the mean energy and potential enstrophy  a b

a+ bk2 > 0 otherwise negative energy

hfi⇤ = hf⇤i



Kinetic Energy Invariance
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