Intermittency and Multifractality in Two-Dimensional Turbulence with Drag

Yue-Kin Tsang,1,2 Edward Ott,1,2,3 Thomas M. Antonsen, Jr.,1,2,3 Parvez N. Guzdar3

1Department of Physics, 2Department of Electrical Engineering, 3Institute for Research in Electronics and Applied Physics
University of Maryland, College Park, MD, USA

Turbulence: 2-D versus 3-D

3-D Turbulence
- Navier-Stokes momentum equation
 \[
 \frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{V} + \vec{f} \quad (\nabla \cdot \vec{V} = 0)
 \]
- Kolmogorov’s Phenomenology \((r < 4/3)\)
 - mean energy dissipation rate \(\epsilon\)
 - structure functions
 \[
 \left\langle |\vec{V}(x) - \vec{V}(y)|^q \right\rangle \sim r^{\alpha_q} \quad \alpha_q = \frac{D_q - 1}{q - 1}
 \]
- experiments contradict Kolmogorov’s hypotheses

2-D Turbulence
- Vorticity equation \((\omega = \vec{V} \cdot \nabla \vec{V})\)
 \[
 \frac{\partial \vec{\omega}}{\partial t} + \vec{\omega} \cdot \nabla \vec{V} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{\omega} + \vec{f} \quad (\nabla \cdot \vec{\omega} = 0)
 \]
- Kraichnan’s Phenomenology (for forward cascade)
 - mean enstrophy dissipation rate \(\epsilon\)
 - structure functions
 \[
 \left\langle |\vec{\omega}(x) - \vec{\omega}(y)|^q \right\rangle \sim r^{\alpha_q} \quad \alpha_q = \frac{D_q - 1}{q - 1}
 \]
- recent experiment (magnetically forced stratified flow) supports Kraichnan’s theory

Why care about 2-D Turbulence?

- **Theory for \(\zeta_0\)**
 - relate \(\zeta_0\) to the finite-time Lyapunov exponent \(k\)
 \[
 k(\vec{x}, t) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \ln \left| \frac{dG(\vec{x})}{dG(\vec{x} + \epsilon \delta \vec{x})} \right|
 \]
 - probability density function of \(k\), \(P(h, t)\) with large time asymptotic form
 \[
 P(h, t) \sim \exp[-|G(h)|]
 \]
 - theoretical result for \(\zeta_0\)
 \[
 \zeta_0 = \min \left\{ \frac{G(h)}{h} : \frac{dG(h)}{dh} \right\}
 \]

Quantifying Multifractality

Divide the region \(R\) occupied by the fluid into grid of square boxes \(R_\epsilon(\alpha)\) of size \(\epsilon\)

- Measure \(p(\epsilon)\) \(\equiv \frac{\int_{R_\epsilon(\alpha)} |\vec{\omega}(\vec{x})|^q d\vec{x}}{\int_{\Omega} |\vec{\omega}(\vec{x})|^q d\vec{x}}\)

Generalized Dimension \(D_q\)

- Singularity Spectrum \(f(\alpha)\): \(p(\epsilon) \sim \epsilon^{-\alpha} ; \quad N(\alpha) \sim \epsilon^{-f(\alpha)}\)

- If the measure \(p(\epsilon)\) is multifractal, then
 - \(D_q\) varies with \(\alpha\)
 - \(f(\alpha)\) is a non-trivial function of \(\alpha\)

Relation between \(D_q\) and \(\zeta_0\)

At the dissipative scale \(r_d\), the vorticity field is smooth out by the action of viscosity, thus

\[
\int_{R_\epsilon(\alpha)} |\vec{\omega}(\vec{x})|^q d\vec{x} \sim r_d^q |\vec{\omega}(\vec{x})|^q
\]

It then follows,

\[
D_q = 2 - \frac{\zeta_0}{q - 1}
\]

Conclusion

For two-dimensional turbulence with linear drag,
- the vorticity field is intermittent, \(\zeta_0 \neq \zeta_3\)
- \(\zeta_0\) can be obtained in terms of the finite-time Lyapunov exponent and the drag coefficient \(\mu\)
- the measure based on the viscous enstrophy dissipation is multifractal, \(D_q \neq constant\)
- \(D_q\) is related to \(\zeta_0\)